Ehrhart's theorem on numbers of lattice points in polytopes and the reciprocity relation

Martin Klazar

May 20, 2015

A polytope $P \subset \mathbb{R}^{d}$ is a convex hull of a finite set $A \subset \mathbb{R}^{d}$,

$$
P=P(A)=\operatorname{conv}(A)=\left\{\sum_{a \in A} \lambda_{a} a \mid \lambda_{a} \in \mathbb{R}_{\geq 0}, \sum_{a \in A} \lambda_{a}=1\right\}
$$

For $M \subset \mathbb{R}^{d}$ and $n \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$,

$$
n M=\left\{n x=\left(n x_{1}, n x_{2}, \ldots, n x_{d}\right) \in \mathbb{R}^{d} \mid x \in M\right\} .
$$

By $\operatorname{dim} M$ we denote the minimum dimension of an affine subspace of \mathbb{R}^{d} containing M and write $S=S(M)$ for the corresponding unique subspace. We prove the following theorem and proposition.

Theorem 0.1 (Ehrhart, 1962). Let $A \subset \mathbb{Q}^{d}$ be finite and $m \in \mathbb{N}=\{1,2, \ldots\}$ satisfy $m A \subset \mathbb{Z}^{d}$. Then there is a quasi-polynomial $q(x) \in \mathbb{Q}[x]^{m}$ with rational coefficients and period m such that for every $n \in \mathbb{N}_{0}$,

$$
\left|\mathbb{Z}^{d} \cap n P(A)\right|=q(n)
$$

Moreover, the maximum degree of a component of $q(x)$ equals $\operatorname{dim} A$.
Proposition 0.2 (reciprocity relation). If $q(x)$ is the quasi-polynomial of the previous theorem then for every $n \in \mathbb{N}_{0}$,

$$
q(-n)=(-1)^{\operatorname{dim} A}\left|\mathbb{Z}^{d} \cap n P(A)^{o}\right|
$$

where $P(A)^{o}$ is the relative interior of $P(A)$ in $S(A)$.
Recall that a quasi-polynomial $q: \mathbb{Z} \rightarrow \mathbb{C}$ with period m is given by an m-tuple of polynomials $p_{i}(x), i=1,2, \ldots, m$, so that $q(n)=p_{i}(n)$ for every $n \in \mathbb{Z}$ congruent to i modulo m.

The proofs are based on the three propositions below. A cone $K \subset \mathbb{R}^{d}$ is determined by a finite set $A \subset \mathbb{R}_{\geq 0}^{d}$ by

$$
K=K(A)=\left\{\sum_{a \in A} \lambda_{a} a \mid \lambda_{a} \in \mathbb{R}_{\geq 0}\right\}
$$

It is elementary if A consists of linearly independent vectors; the set

$$
T=T_{K}=\left\{\sum_{a \in A} \lambda_{a} a \mid \lambda_{a} \in[0,1)\right\}
$$

is then the fundamental parallelepiped of K. For $M \subset \mathbb{R}^{d}$ we define the generating function of (the lattice points lying in) M as the formal series

$$
F_{M}(\bar{x})=F_{M}\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\sum_{a \in \mathbb{Z}^{d} \cap M} \bar{x}^{a}=\sum_{\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{Z}^{d} \cap M} x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots x_{d}^{a_{d}} .
$$

For every cone, $F_{K} \in \mathbb{Z}\left[\left[x_{1}, \ldots, x_{d}\right]\right]$ is a formal power series in d variables.
Proposition 0.3. If $K=K(A) \subset \mathbb{R}^{d}$ is an elementary cone with $A \subset \mathbb{N}_{0}^{d}$ and fundamental parallelepiped T, then

$$
F_{K}(\bar{x})=\frac{p(\bar{x})}{\prod_{a \in A}\left(1-\bar{x}^{a}\right)}, p(\bar{x})=F_{T}(\bar{x}) \in \mathbb{Z}[\bar{x}] .
$$

Proof. K is partitioned into the shifts $c+T$ of T by all nonnegative integral linear combinations $c=\sum_{a \in A} c_{a} a, c_{a} \in \mathbb{N}_{0}$, so (disjoint union)

$$
K=\bigcup_{c}(c+T) .
$$

It follows from the fact that the elements of K one-to-one correspond to the expressions $\sum_{a \in A} \lambda_{a} a$ with $\lambda_{a} \geq 0$ (the elements of A are linearly independent), and $\lambda_{a}=\left\lfloor\lambda_{a}\right\rfloor+\left\{\lambda_{a}\right\}=c_{a}+\left\{\lambda_{a}\right\}, c_{a} \in \mathbb{N}_{0}$ and $\left\{\lambda_{a}\right\} \in[0,1)$. Since

$$
F_{c+T}(\bar{x})=\prod_{a \in A} \bar{x}^{c_{a} a} \cdot F_{T}(\bar{x})=F_{T}(\bar{x}) \prod_{a \in A}\left(\bar{x}^{a}\right)^{c_{a}},
$$

formal geometric series yields the stated formula:

$$
F_{K}(\bar{x})=\sum_{c} F_{c+T}(\bar{x})=F_{T}(\bar{x}) \prod_{a \in A} \sum_{c_{a}=0}^{\infty}\left(\bar{x}^{a}\right)^{c_{a}}=F_{T}(\bar{x}) \prod_{a \in A} \frac{1}{1-\bar{x}^{a}} .
$$

A simplicial complex \mathcal{S} on a set X is a hereditary system of subsets of X, that is, $\mathcal{S} \subset \exp (X)$ and $A \subset B \in \mathcal{S} \Rightarrow A \in \mathcal{S}$. Clearly, \mathcal{S} is determined by its maximal elements $A_{1}, A_{2}, \ldots, A_{t}$, and we write $\mathcal{S}=\mathcal{S}\left(A_{1}, A_{2}, \ldots, A_{t}\right)$.

Proposition 0.4 (triangulation of K). For every finite set $A \subset \mathbb{R}_{\geq 0}^{d}$ there is a simplicial complex $\mathcal{S}=\mathcal{S}\left(A_{1}, A_{2}, \ldots, A_{t}\right)$ on A such that always $\left|A_{i}\right|=$ $\operatorname{dim} K(A)$, all cones $K\left(A_{i}\right)$ (and hence all cones $K(B), B \in \mathcal{S}$) are elementary,

$$
K(A)=\bigcup_{i=1}^{t} K\left(A_{i}\right) \quad \text { and } B, C \in \mathcal{S} \Rightarrow K(B) \cap K(C)=K(B \cap C)
$$

Proof. Let $K=K(A)$. We proceed by induction on $|A|$ and assume (as we may) that A is minimal with respect to generating K. The claim holds if $|A|=\operatorname{dim} K$: then K is elementary and $\mathcal{S}=\mathcal{S}(A)$ works. Let $|A|>\operatorname{dim} K$. We take any $a \in A$ and set $A^{\prime}=A \backslash\{a\}$. Then $K\left(A^{\prime}\right)$ is a strict subset of K but $\operatorname{dim} K\left(A^{\prime}\right)=\operatorname{dim} K$ and by induction A^{\prime} has the required simplicial complex $\mathcal{S}\left(A_{1}, \ldots, A_{s}\right)$. We claim that there is a set B such that $a \in B \subset A$, $|B|=\operatorname{dim} K, K(B)$ is elementary, $K=K\left(A^{\prime}\right) \cup K(B)$, and $K\left(A^{\prime}\right) \cap K(B)=$ $K(B \backslash\{a\})$. Then $\mathcal{S}\left(A_{1}, \ldots, A_{s}, B\right)$ is the required simplicial complex on A.
[to be continued]
Proof of Ehrhart's theorem. We move $P=P(A)$ by an integral shift in the nonnegative orthant of \mathbb{R}^{d}, thus we may assume that A is a finite nonempty subset of $\mathbb{Q}_{\geq 0}^{d}$ and $m A \subset \mathbb{N}_{0}^{d}$. We denote $e=\operatorname{dim} A=\operatorname{dim} P$, so $0 \leq e \leq d$. We consider the cone

$$
K=K(B) \subset \mathbb{R}_{\geq 0}^{d+1}, B=\left\{m(a, 1)=\left(m a_{1}, \ldots, m a_{d}, m\right) \mid a \in A\right\} \subset \mathbb{N}_{0}^{d+1}
$$

Clearly, $\operatorname{dim} K=e+1$. Also, $c \in \mathbb{Z}^{d} \cap n P$ iff $(c, n) \in \mathbb{Z}^{d+1} \cap K$, and $\left|\mathbb{Z}^{d} \cap n P\right|$ equals to the number of the lattice points lying in the section of K by the hyperplane $x_{d+1}=n$. In terms of generating functions,

$$
f_{P}(x):=\sum_{n \geq 0}\left|\mathbb{Z}^{d} \cap n P\right| x^{n}=\left.F_{K}\left(x_{1}, \ldots, x_{d+1}\right)\right|_{x_{1}=\cdots=x_{d}=1, x_{d+1}=x}
$$

Using Proposition 0.4 , we take the triangulation $K_{i}=K\left(B_{i}\right), i=1,2, \ldots, t$, of K into $(e+1)$-dimensional elementary cones. The inclusion-exclusion principle and Propositions 0.4 and 0.3 give $([t]=\{1,2, \ldots, t\}$ and for $I \subset[t]$ we denote $K_{I}=K\left(B_{I}\right), B_{I}=\bigcap_{i \in I} B_{i}$, so $K_{\{i\}}=K_{i}$ and $\left.K(\emptyset)=\{\overline{0}\}\right)$

$$
F_{K}(\bar{x})=\sum_{\emptyset \neq I \subset[t]}(-1)^{|I|+1} F_{K_{I}}(\bar{x})=\sum_{\emptyset \neq I \subset[t]}(-1)^{|I|+1} \frac{p_{I}(\bar{x})}{\prod_{b \in B_{I}}\left(1-\bar{x}^{b}\right)} .
$$

Since $\left|B_{I}\right| \leq e+1$ and $\bar{x}^{b}=\ldots x_{d+1}^{m}$,

$$
f_{P}(x)=F_{K}(1,1, \ldots, 1, x)=\sum_{\emptyset \neq I \subset[t]} \frac{(-1)^{|I|+1} q_{I}(x)}{\left(1-x^{m}\right)^{e+1}}=\frac{q(x)}{\left(1-x^{m}\right)^{e+1}}
$$

with $q_{I}(x), q(x) \in \mathbb{Z}[x]$. Since $p_{I}(\bar{x})=F_{T_{I}}(\bar{x})$, where T_{I} is the fundamental parallelepiped of K_{I}, and $c=\left(\ldots, c_{d+1}\right) \in \mathbb{Z}^{d+1} \cap T_{I} \Rightarrow c_{d+1} \leq \sum_{b \in B_{I}} \lambda_{b} m<$ $m\left|B_{I}\right|$ (because $\lambda_{b} \in[0,1)$), each $q_{I}(x)$ has degree at most $m(e+1)-1=$ $m e+m-1$ and so has $q(x)$. Expressing $q(x)$ as an integral linear combination of $x^{s}\left(1-x^{m}\right)^{t}, 0 \leq s \leq m-1$ and $0 \leq t \leq e$, and using the generalized geometric
series $1 /(1-x)^{j}=\sum_{n \geq 0}\binom{n+j-1}{j-1} x^{n}, j \in \mathbb{N}$, we get the expression

$$
\begin{aligned}
f_{P}(x) & =\frac{q(x)}{\left(1-x^{m}\right)^{e+1}}=\sum_{j=1}^{e+1} \frac{\beta_{j, 0}+\beta_{j, 1} x+\cdots+\beta_{j, m-1} x^{m-1}}{\left(1-x^{m}\right)^{j}} \\
& =\sum_{s=0}^{m-1} \sum_{n \geq 0}\left(\sum_{j=1}^{e+1} \beta_{j, s}\binom{n+j-1}{j-1}\right) x^{m n+s} \\
& =\sum_{s=0}^{m-1} \sum_{n \geq 0}\left(\sum_{j=1}^{e+1} \frac{\beta_{j, s}}{(j-1)!} \prod_{i=0}^{j-2}(n+j-1-i)\right) x^{m n+s}
\end{aligned}
$$

for some $\beta_{j, s} \in \mathbb{Z}$. Thus for each fixed $s \in \mathbb{N}_{0}, s \leq m-1$, the coefficient of $x^{m n+s}$ in $f_{P}(x)$ is a rational polynomial in n, hence in $m n+s$, of degree at most e. Thus $n \mapsto\left|\mathbb{Z}^{d} \cap n P\right|, n \in \mathbb{N}_{0}$, is a rational quasi-polynomial in n with period m, each component of which has degree $\leq e$. The maximum degree is e because P contains a relative open ball $C=\{x \in S(P) \mid\|x-a\|<r\}, a \in S(P)$ and $r>0$, which implies that $\left|\mathbb{Z}^{d} \cap m n P\right| \geq\left|\mathbb{Z}^{d} \cap m n C\right| \gg n^{e}$.
[But there is a problem with the inclusion-exclusion formula with the terms with $B_{I}=\emptyset$ for which in fact $\operatorname{deg} q_{I}=\operatorname{deg}$ of the denominator.]

Proposition 0.5 (perturbation trick). Suppose that $K=K(A) \subset \mathbb{R}^{d}$ is a cone with $A \subset \mathbb{Q}_{\geq 0}^{d}$ and $K_{i}=K\left(A_{i}\right), i=1,2, \ldots, t$, is its triangulation into $\operatorname{dim} K$-dimensional elementary cones. Then there is a vector $v \in-K$ such that

$$
\mathbb{Z}^{d} \cap K=\mathbb{Z}^{d} \cap(v+K) \quad \text { and } \quad i \neq j \Rightarrow \mathbb{Z}^{d} \cap\left(v+K_{i}\right) \cap\left(v+K_{j}\right)=\emptyset .
$$

Proof. The relative boundary of K and all intersections $K_{i} \cap K_{j}, i \neq j$, are contained in the union U of the linear subspaces $S_{B}=S(K(\overline{0}, B)) \subset S(K)$, where $B \subset A$ runs through all ($\operatorname{dim} K-1$)-element linearly independent subsets. One can show that every $c \in \mathbb{Z}^{d} \backslash S_{B}$ has from S_{B} distance at least $b_{B}>0$. We put

$$
\beta=\min _{B} b_{B}>0 .
$$

We claim that every vector $v \in(-K) \backslash U$ with $0<\|v\|<\beta$ has the required property; since U is a finite union of subspaces with dimensions $\operatorname{dim} K-1$, $(-K) \backslash U$ contains relative open balls arbitrarily close to the origin and many such v exist. Since $v \in(-K)$, we have $v+K \supset K$ and $\mathbb{Z}^{d} \cap(v+K) \supset \mathbb{Z}^{d} \cap K$. The last inclusion is an equality, as every $c \in\left(\mathbb{Z}^{d} \cap S(K)\right) \backslash K$ has from K distance larger than $\|v\|$. Since $v \notin U$ and is nonzero, the shift by v shakes off lattice points from every $K_{i} \cap K_{j}, i \neq j$. The distance argument again shows that the shifted $K_{i} \cap K_{j}$ does not acquire any new lattice point.

Proof of the reciprocity relation.
[to be continued]

References

[1]
[2] M. Beck and F. Sottile, Irrational proofs of three theorems of Stanley, Europ. J. Combin. 28 (2007) 403-409.
[3] E. Ehrhart, Sur les polyèdres rationnels homothétiques à n dimensions, C. R. Acad. Sci. Paris 254 (1962) 616-618.
[4] R. Stanley, Enumerative Combinatorics, vol. I, Cambridge University Press, Cambridge, 1997 (corrected reprint of the 1986 original).

