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A polytope P C R? is a convex hull of a finite set A C R,
P = P(A) =conv(A) = {D ,carat | Xa €ER>0,> cnra =1}
For M C R and n € Ng = {0,1,2,...},
nM = {nz = (nz1,nxs,...,nxq) € R |z € M} .

By dim M we denote the minimum dimension of an affine subspace of R¢ con-
taining M and write S = S(M) for the corresponding unique subspace. We
prove the following theorem and proposition.

Theorem 0.1 (Ehrhart, 1962). Let A C Q? be finite andm € N= {1,2,...}
satisfy mA C Z2. Then there is a quasi-polynomial q(x) € Q[x]™ with rational
coefficients and period m such that for every n € Ny,

1Z* N nP(A)| = q(n) .
Moreover, the maximum degree of a component of q(x) equals dim A.

Proposition 0.2 (reciprocity relation). If ¢(z) is the quasi-polynomial of
the previous theorem then for every n € Ny,

q(=n) = (=) AZT NP (A)°|
where P(A)° is the relative interior of P(A) in S(A).

Recall that a quasi-polynomial q : Z — C with period m is given by an m-tuple
of polynomials p;(x), i = 1,2,...,m, so that ¢(n) = p;(n) for every n € Z
congruent to ¢ modulo m.

The proofs are based on the three propositions below. A cone K C R? is
determined by a finite set A C R‘io by

K =K(A) = {3, c1 M0 | Ao € R} .



It is elementary if A consists of linearly independent vectors; the set
T=Tg =1{> 4carat| s €[0,1)}

is then the fundamental parallelepiped of K. For M C R? we define the gener-
ating function of (the lattice points lying in) M as the formal series

— —a ay _.a ag

Fy(Z) = Fyr(xy, e, ..., xq) = E T4 = E xtwy? L xy
a€ZiNM (a1,...,aq)EZINM

For every cone, F € Z[[x1,...,24]] is a formal power series in d variables.

Proposition 0.3. If K = K(A) C R? is an elementary cone with A C N and
fundamental parallelepiped T, then

. p(Z)
Fg(7) = m7 p(T) = Fr(Z) € Z[7] .

Proof. K is partitioned into the shifts ¢ + T of T by all nonnegative integral

linear combinations ¢ = )~ . 4 caa, ¢4 € Ny, so (disjoint union)

K:U(c+T).

It follows from the fact that the elements of K one-to-one correspond to the
expressions ) | . 4, Aqa with A, > 0 (the elements of A are linearly independent),
and A\, = |Ao] + { A} =ca + { A}, ca € Ng and {N\,} € [0,1). Since

c+T H Zla® . FT FT(E) H(fa)ca s

a€A a€A

formal geometric series yields the stated formula:

K (T) :ZFHT(T) H Z z%)% = Fr( )H 1_1?1 .

a€A ce,=0 acA

O

A simplicial complex S on a set X is a hereditary system of subsets of X,
that is, S C exp(X) and A C B€ S = A € S. Clearly, S is determined by its
maximal elements Ay, Ao, ..., A, and we write S = S(Ay, Ag, ..., Ay).

Proposition 0.4 (triangulation of K). For every finite set A C R‘io there
is a simplicial complex S = S(A1, Aa, ..., A;) on A such that always |A;| =
dim K (A), all cones K(A4;) (and hence all cones K(B), B € S) are elementary,

K(A)=|JK(A) and B,C€S=K(B)NK(C)=K(BNC).

=1



Proof. Let K = K(A). We proceed by induction on |A| and assume (as
we may) that A is minimal with respect to generating K. The claim holds if
|A] = dim K: then K is elementary and S = S(A) works. Let |[A] > dim K.
We take any a € A and set A’ = A\{a}. Then K(A') is a strict subset of
K but dim K(A’) = dim K and by induction A’ has the required simplicial
complex S(Ay,...,As). We claim that there is a set B such that a € B C A,
|B| = dim K, K(B) is elementary, K = K(A') U K(B), and K(A')NK(B) =
K(B\{a}). Then S(Ai,...,As, B) is the required simplicial complex on A.

[to be continued] O

Proof of Ehrhart’s theorem. We move P = P(A) by an integral shift in
the nonnegative orthant of R%, thus we may assume that A is a finite nonempty
subset of Q‘io and mA C N(Oi. We denote e = dim A =dim P, so 0 <e <d. We
consider the cone

K =K(B) CR”;(SI, B = {mf(a,1) = (may,...,mag,m) | a € A} ¢ N&1 .

Clearly, dim K = e + 1. Also, ¢ € Z¢NnP iff (¢,n) € Z41 N K, and |Z¢ N nP|
equals to the number of the lattice points lying in the section of K by the
hyperplane z441 = n. In terms of generating functions,

fe(x):= Z |Z* N nP|2™ = Fr (1, Tas1) oy = mrumt zasr =2 -
n>0

Using Proposition 0.4, we take the triangulation K; = K(B;), i =1,2,...,t, of
K into (e + 1)-dimensional elementary cones. The inclusion-exclusion principle
and Propositions 0.4 and 0.3 give ([t] = {1,2,...,t} and for I C [t] we denote
K] = K(B]), B[ = mie[ Bi, SO K{l} = K,’ and K(@) = {6})

FK(E): Z (_]‘)HH_IFKI(f): Z (_1)|I|+1%.

b
0AIC[1] 0AIC[1] [lrep, (1 =77
Since [Bj| <e+1and z° =...27, ,

(D" *gr(z) _ q(2)

fp(z)=Fk(1,1,...,1,2) = (l—xm)e“ - (l—fEm)eJrl

DAIC[t]

with gqr(z),q(z) € Z[z]. Since p;(Z) = Fr,(T), where Tt is the fundamental
parallelepiped of K7, and ¢ = (..., cq11) € Z NTy = cqp1 < ZbeBI Apm <
m|By| (because A, € [0,1)), each ¢r(z) has degree at most m(e + 1) — 1 =
me +m — 1 and so has ¢(x). Expressing ¢(z) as an integral linear combination
of z5(1—2™)t, 0 < s <m—1and 0 <t < e, and using the generalized geometric



series 1/(1 —x)7 =37, -, (”jﬁ;l)m", j € N, we get the expression

e+1

Q( ) Zﬂ]0+ﬂj,lz+"'+ﬁj7m—lxm

fr(z) = 1— gm)e+l (1 —am)i

SR

S=

B (5 s

s=0 n>0 ‘7

-1

—~

for some 3; ; € Z. Thus for each fixed s € Ny, s < m — 1, the coefficient of
™S in fp(x) is a rational polynomial in n, hence in mn+ s, of degree at most
e. Thus n — |ZTNnP|, n € Ny, is a rational quasi-polynomial in n with period
m, each component of which has degree < e. The maximum degree is e because
P contains a relative open ball C' = {z € S(P) | |z —a| < r}, a € S(P) and
r > 0, which implies that |Z¢ N mnP| > |Z% N mnC| > ne.

[But there is a problem with the inclusion-exclusion formula with the terms
with By = ) for which in fact deg¢; = deg of the denominator.] o

Proposition 0.5 (perturbation trick). Suppose that K = K(A) C R? is a
cone with A C Q‘éo and K; = K(A;), i = 1,2,...,t, is its triangulation into
dim K -dimensional elementary cones. Then there is a vector v € —K such that

ZNK=2N(w+K) and i#j=2"N(w+K)Nw+K;)=0.

Proof. The relative boundary of K and all intersections K; N K, i # j,
are contained in the union U of the linear subspaces Sp = S(K (0, B)) C S(K),
where B C A runs through all (dim K —1)-element linearly independent subsets.
One can show that every ¢ € Z%\Sp has from Sp distance at least bg > 0. We
put

0= mEi;n bp >0.

We claim that every vector v € (—K)\U with 0 < |jv|| < B has the required
property; since U is a finite union of subspaces with dimensions dim K — 1,
(=K)\U contains relative open balls arbitrarily close to the origin and many
such v exist. Since v € (—K), we have v+ K D K and Z¢N(v+ K) D Z¢N K.
The last inclusion is an equality, as every ¢ € (Z? N S(K))\K has from K
distance larger than ||v||. Since v € U and is nonzero, the shift by v shakes off
lattice points from every K; N K, @ # j. The distance argument again shows
that the shifted K; N K; does not acquire any new lattice point. O

Proof of the reciprocity relation.
[to be continued] O
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