Ehrhart's theorem on numbers of lattice points in polytopes and the reciprocity relation

Martin Klazar

May 20, 2015

A polytope $P \subset \mathbb{R}^d$ is a convex hull of a finite set $A \subset \mathbb{R}^d$,

$$P = P(A) = \operatorname{conv}(A) = \left\{ \sum_{a \in A} \lambda_a a \mid \lambda_a \in \mathbb{R}_{\ge 0}, \sum_{a \in A} \lambda_a = 1 \right\}.$$

For $M \subset \mathbb{R}^d$ and $n \in \mathbb{N}_0 = \{0, 1, 2, \dots\},\$

$$nM = \{nx = (nx_1, nx_2, \dots, nx_d) \in \mathbb{R}^d \mid x \in M\}$$

By dim M we denote the minimum dimension of an affine subspace of \mathbb{R}^d containing M and write S = S(M) for the corresponding unique subspace. We prove the following theorem and proposition.

Theorem 0.1 (Ehrhart, 1962). Let $A \subset \mathbb{Q}^d$ be finite and $m \in \mathbb{N} = \{1, 2, ...\}$ satisfy $mA \subset \mathbb{Z}^d$. Then there is a quasi-polynomial $q(x) \in \mathbb{Q}[x]^m$ with rational coefficients and period m such that for every $n \in \mathbb{N}_0$,

$$|\mathbb{Z}^d \cap nP(A)| = q(n) \; .$$

Moreover, the maximum degree of a component of q(x) equals dim A.

Proposition 0.2 (reciprocity relation). If q(x) is the quasi-polynomial of the previous theorem then for every $n \in \mathbb{N}_0$,

$$q(-n) = (-1)^{\dim A} |\mathbb{Z}^d \cap nP(A)^o|$$

where $P(A)^{o}$ is the relative interior of P(A) in S(A).

Recall that a quasi-polynomial $q: \mathbb{Z} \to \mathbb{C}$ with period m is given by an m-tuple of polynomials $p_i(x), i = 1, 2, ..., m$, so that $q(n) = p_i(n)$ for every $n \in \mathbb{Z}$ congruent to i modulo m.

The proofs are based on the three propositions below. A cone $K \subset \mathbb{R}^d$ is determined by a finite set $A \subset \mathbb{R}^d_{>0}$ by

$$K = K(A) = \left\{ \sum_{a \in A} \lambda_a a \mid \lambda_a \in \mathbb{R}_{\ge 0} \right\}.$$

It is *elementary* if A consists of linearly independent vectors; the set

$$T = T_K = \{ \sum_{a \in A} \lambda_a a \mid \lambda_a \in [0, 1) \}$$

is then the fundamental parallelepiped of K. For $M \subset \mathbb{R}^d$ we define the generating function of (the lattice points lying in) M as the formal series

$$F_M(\overline{x}) = F_M(x_1, x_2, \dots, x_d) = \sum_{a \in \mathbb{Z}^d \cap M} \overline{x}^a = \sum_{(a_1, \dots, a_d) \in \mathbb{Z}^d \cap M} x_1^{a_1} x_2^{a_2} \dots x_d^{a_d} .$$

For every cone, $F_K \in \mathbb{Z}[[x_1, \ldots, x_d]]$ is a formal power series in d variables.

Proposition 0.3. If $K = K(A) \subset \mathbb{R}^d$ is an elementary cone with $A \subset \mathbb{N}_0^d$ and fundamental parallelepiped T, then

$$F_K(\overline{x}) = \frac{p(\overline{x})}{\prod_{a \in A} (1 - \overline{x}^a)}, \ p(\overline{x}) = F_T(\overline{x}) \in \mathbb{Z}[\overline{x}]$$

Proof. K is partitioned into the shifts c + T of T by all nonnegative integral linear combinations $c = \sum_{a \in A} c_a a, c_a \in \mathbb{N}_0$, so (disjoint union)

$$K = \bigcup_c (c+T) \; .$$

It follows from the fact that the elements of K one-to-one correspond to the expressions $\sum_{a \in A} \lambda_a a$ with $\lambda_a \ge 0$ (the elements of A are linearly independent), and $\lambda_a = \lfloor \lambda_a \rfloor + \{\lambda_a\} = c_a + \{\lambda_a\}, c_a \in \mathbb{N}_0$ and $\{\lambda_a\} \in [0, 1)$. Since

$$F_{c+T}(\overline{x}) = \prod_{a \in A} \overline{x}^{c_a a} \cdot F_T(\overline{x}) = F_T(\overline{x}) \prod_{a \in A} (\overline{x}^a)^{c_a} ,$$

formal geometric series yields the stated formula:

$$F_K(\overline{x}) = \sum_c F_{c+T}(\overline{x}) = F_T(\overline{x}) \prod_{a \in A} \sum_{c_a=0}^{\infty} (\overline{x}^a)^{c_a} = F_T(\overline{x}) \prod_{a \in A} \frac{1}{1 - \overline{x}^a} .$$

A simplicial complex S on a set X is a hereditary system of subsets of X, that is, $S \subset \exp(X)$ and $A \subset B \in S \Rightarrow A \in S$. Clearly, S is determined by its maximal elements A_1, A_2, \ldots, A_t , and we write $S = S(A_1, A_2, \ldots, A_t)$.

Proposition 0.4 (triangulation of K). For every finite set $A \subset \mathbb{R}^d_{\geq 0}$ there is a simplicial complex $S = S(A_1, A_2, \ldots, A_t)$ on A such that always $|A_i| = \dim K(A)$, all cones $K(A_i)$ (and hence all cones K(B), $B \in S$) are elementary,

$$K(A) = \bigcup_{i=1}^{t} K(A_i) \text{ and } B, C \in \mathcal{S} \Rightarrow K(B) \cap K(C) = K(B \cap C) .$$

Proof. Let K = K(A). We proceed by induction on |A| and assume (as we may) that A is minimal with respect to generating K. The claim holds if $|A| = \dim K$: then K is elementary and S = S(A) works. Let $|A| > \dim K$. We take any $a \in A$ and set $A' = A \setminus \{a\}$. Then K(A') is a strict subset of K but $\dim K(A') = \dim K$ and by induction A' has the required simplicial complex $S(A_1, \ldots, A_s)$. We claim that there is a set B such that $a \in B \subset A$, $|B| = \dim K$, K(B) is elementary, $K = K(A') \cup K(B)$, and $K(A') \cap K(B) = K(B \setminus \{a\})$. Then $S(A_1, \ldots, A_s, B)$ is the required simplicial complex on A. [to be continued]

Proof of Ehrhart's theorem. We move P = P(A) by an integral shift in the nonnegative orthant of \mathbb{R}^d , thus we may assume that A is a finite nonempty subset of $\mathbb{Q}^d_{\geq 0}$ and $mA \subset \mathbb{N}^d_0$. We denote $e = \dim A = \dim P$, so $0 \leq e \leq d$. We consider the cone

$$K = K(B) \subset \mathbb{R}_{\geq 0}^{d+1}, \ B = \{m(a, 1) = (ma_1, \dots, ma_d, m) \mid a \in A\} \subset \mathbb{N}_0^{d+1}$$

Clearly, dim K = e + 1. Also, $c \in \mathbb{Z}^d \cap nP$ iff $(c, n) \in \mathbb{Z}^{d+1} \cap K$, and $|\mathbb{Z}^d \cap nP|$ equals to the number of the lattice points lying in the section of K by the hyperplane $x_{d+1} = n$. In terms of generating functions,

$$f_P(x) := \sum_{n \ge 0} |\mathbb{Z}^d \cap nP| x^n = F_K(x_1, \dots, x_{d+1}) |_{x_1 = \dots = x_d = 1, x_{d+1} = x}.$$

Using Proposition 0.4, we take the triangulation $K_i = K(B_i)$, i = 1, 2, ..., t, of K into (e + 1)-dimensional elementary cones. The inclusion-exclusion principle and Propositions 0.4 and 0.3 give $([t] = \{1, 2, ..., t\}$ and for $I \subset [t]$ we denote $K_I = K(B_I)$, $B_I = \bigcap_{i \in I} B_i$, so $K_{\{i\}} = K_i$ and $K(\emptyset) = \{\overline{0}\}$)

$$F_{K}(\overline{x}) = \sum_{\emptyset \neq I \subset [t]} (-1)^{|I|+1} F_{K_{I}}(\overline{x}) = \sum_{\emptyset \neq I \subset [t]} (-1)^{|I|+1} \frac{p_{I}(\overline{x})}{\prod_{b \in B_{I}} (1 - \overline{x}^{b})} .$$

Since $|B_I| \leq e+1$ and $\overline{x}^b = \dots x_{d+1}^m$,

$$f_P(x) = F_K(1, 1, \dots, 1, x) = \sum_{\emptyset \neq I \subset [t]} \frac{(-1)^{|I|+1} q_I(x)}{(1-x^m)^{e+1}} = \frac{q(x)}{(1-x^m)^{e+1}}$$

with $q_I(x), q(x) \in \mathbb{Z}[x]$. Since $p_I(\overline{x}) = F_{T_I}(\overline{x})$, where T_I is the fundamental parallelepiped of K_I , and $c = (\ldots, c_{d+1}) \in \mathbb{Z}^{d+1} \cap T_I \Rightarrow c_{d+1} \leq \sum_{b \in B_I} \lambda_b m < m|B_I|$ (because $\lambda_b \in [0, 1)$), each $q_I(x)$ has degree at most m(e + 1) - 1 = me + m - 1 and so has q(x). Expressing q(x) as an integral linear combination of $x^s(1-x^m)^t$, $0 \leq s \leq m-1$ and $0 \leq t \leq e$, and using the generalized geometric

series $1/(1-x)^j = \sum_{n\geq 0} {n+j-1 \choose j-1} x^n, j \in \mathbb{N}$, we get the expression

$$f_P(x) = \frac{q(x)}{(1-x^m)^{e+1}} = \sum_{j=1}^{e+1} \frac{\beta_{j,0} + \beta_{j,1}x + \dots + \beta_{j,m-1}x^{m-1}}{(1-x^m)^j}$$
$$= \sum_{s=0}^{m-1} \sum_{n\geq 0} \left(\sum_{j=1}^{e+1} \beta_{j,s} \binom{n+j-1}{j-1}\right) x^{mn+s}$$
$$= \sum_{s=0}^{m-1} \sum_{n\geq 0} \left(\sum_{j=1}^{e+1} \frac{\beta_{j,s}}{(j-1)!} \prod_{i=0}^{j-2} (n+j-1-i)\right) x^{mn+s}$$

for some $\beta_{j,s} \in \mathbb{Z}$. Thus for each fixed $s \in \mathbb{N}_0$, $s \leq m-1$, the coefficient of x^{mn+s} in $f_P(x)$ is a rational polynomial in n, hence in mn+s, of degree at most e. Thus $n \mapsto |\mathbb{Z}^d \cap nP|$, $n \in \mathbb{N}_0$, is a rational quasi-polynomial in n with period m, each component of which has degree $\leq e$. The maximum degree is e because P contains a relative open ball $C = \{x \in S(P) \mid ||x-a|| < r\}, a \in S(P)$ and r > 0, which implies that $|\mathbb{Z}^d \cap mP| \geq |\mathbb{Z}^d \cap mnC| \gg n^e$.

[But there is a problem with the inclusion-exclusion formula with the terms with $B_I = \emptyset$ for which in fact deg q_I = deg of the denominator.]

Proposition 0.5 (perturbation trick). Suppose that $K = K(A) \subset \mathbb{R}^d$ is a cone with $A \subset \mathbb{Q}^d_{\geq 0}$ and $K_i = K(A_i)$, i = 1, 2, ..., t, is its triangulation into dim K-dimensional elementary cones. Then there is a vector $v \in -K$ such that

 $\mathbb{Z}^d \cap K = \mathbb{Z}^d \cap (v+K) \text{ and } i \neq j \Rightarrow \mathbb{Z}^d \cap (v+K_i) \cap (v+K_j) = \emptyset$.

Proof. The relative boundary of K and all intersections $K_i \cap K_j$, $i \neq j$, are contained in the union U of the linear subspaces $S_B = S(K(\overline{0}, B)) \subset S(K)$, where $B \subset A$ runs through all $(\dim K - 1)$ -element linearly independent subsets. One can show that every $c \in \mathbb{Z}^d \setminus S_B$ has from S_B distance at least $b_B > 0$. We put

$$\beta = \min_B b_B > 0 \; .$$

We claim that every vector $v \in (-K) \setminus U$ with $0 < ||v|| < \beta$ has the required property; since U is a finite union of subspaces with dimensions dim K - 1, $(-K) \setminus U$ contains relative open balls arbitrarily close to the origin and many such v exist. Since $v \in (-K)$, we have $v + K \supset K$ and $\mathbb{Z}^d \cap (v + K) \supset \mathbb{Z}^d \cap K$. The last inclusion is an equality, as every $c \in (\mathbb{Z}^d \cap S(K)) \setminus K$ has from K distance larger than ||v||. Since $v \notin U$ and is nonzero, the shift by v shakes off lattice points from every $K_i \cap K_j$, $i \neq j$. The distance argument again shows that the shifted $K_i \cap K_j$ does not acquire any new lattice point.

Proof of the reciprocity relation.

[to be continued]

References

[1]

- [2] M. Beck and F. Sottile, Irrational proofs of three theorems of Stanley, Europ. J. Combin. 28 (2007) 403–409.
- [3] E. Ehrhart, Sur les polyèdres rationnels homothétiques à n dimensions, C. R. Acad. Sci. Paris 254 (1962) 616–618.
- [4] R. Stanley, Enumerative Combinatorics, vol. I, Cambridge University Press, Cambridge, 1997 (corrected reprint of the 1986 original).