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A polytope P ⊂ Rd is a convex hull of a finite set A ⊂ Rd,

P = P (A) = conv(A) = {
∑

a∈A λaa | λa ∈ R≥0,
∑

a∈A λa = 1} .

For M ⊂ Rd and n ∈ N0 = {0, 1, 2, . . . },

nM = {nx = (nx1, nx2, . . . , nxd) ∈ Rd | x ∈ M} .

By dim M we denote the minimum dimension of an affine subspace of Rd con-
taining M and write S = S(M) for the corresponding unique subspace. We
prove the following theorem and proposition.

Theorem 0.1 (Ehrhart, 1962). Let A ⊂ Qd be finite and m ∈ N = {1, 2, . . . }
satisfy mA ⊂ Zd. Then there is a quasi-polynomial q(x) ∈ Q[x]m with rational
coefficients and period m such that for every n ∈ N0,

|Zd ∩ nP (A)| = q(n) .

Moreover, the maximum degree of a component of q(x) equals dim A.

Proposition 0.2 (reciprocity relation). If q(x) is the quasi-polynomial of
the previous theorem then for every n ∈ N0,

q(−n) = (−1)dim A|Zd ∩ nP (A)o|

where P (A)o is the relative interior of P (A) in S(A).

Recall that a quasi-polynomial q : Z → C with period m is given by an m-tuple
of polynomials pi(x), i = 1, 2, . . . ,m, so that q(n) = pi(n) for every n ∈ Z
congruent to i modulo m.

The proofs are based on the three propositions below. A cone K ⊂ Rd is
determined by a finite set A ⊂ Rd

≥0 by

K = K(A) = {
∑

a∈A λaa | λa ∈ R≥0} .
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It is elementary if A consists of linearly independent vectors; the set

T = TK = {
∑

a∈A λaa | λa ∈ [0, 1)}

is then the fundamental parallelepiped of K. For M ⊂ Rd we define the gener-
ating function of (the lattice points lying in) M as the formal series

FM (x) = FM (x1, x2, . . . , xd) =
∑

a∈Zd∩M

xa =
∑

(a1,...,ad)∈Zd∩M

xa1
1 xa2

2 . . . xad

d .

For every cone, FK ∈ Z[[x1, . . . , xd]] is a formal power series in d variables.

Proposition 0.3. If K = K(A) ⊂ Rd is an elementary cone with A ⊂ Nd
0 and

fundamental parallelepiped T , then

FK(x) =
p(x)∏

a∈A(1− xa)
, p(x) = FT (x) ∈ Z[x] .

Proof. K is partitioned into the shifts c + T of T by all nonnegative integral
linear combinations c =

∑
a∈A caa, ca ∈ N0, so (disjoint union)

K =
⋃
c

(c + T ) .

It follows from the fact that the elements of K one-to-one correspond to the
expressions

∑
a∈A λaa with λa ≥ 0 (the elements of A are linearly independent),

and λa = bλac+ {λa} = ca + {λa}, ca ∈ N0 and {λa} ∈ [0, 1). Since

Fc+T (x) =
∏
a∈A

xcaa · FT (x) = FT (x)
∏
a∈A

(xa)ca ,

formal geometric series yields the stated formula:

FK(x) =
∑

c

Fc+T (x) = FT (x)
∏
a∈A

∞∑
ca=0

(xa)ca = FT (x)
∏
a∈A

1
1− xa .
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A simplicial complex S on a set X is a hereditary system of subsets of X,
that is, S ⊂ exp(X) and A ⊂ B ∈ S ⇒ A ∈ S. Clearly, S is determined by its
maximal elements A1, A2, . . . , At, and we write S = S(A1, A2, . . . , At).

Proposition 0.4 (triangulation of K). For every finite set A ⊂ Rd
≥0 there

is a simplicial complex S = S(A1, A2, . . . , At) on A such that always |Ai| =
dim K(A), all cones K(Ai) (and hence all cones K(B), B ∈ S) are elementary,

K(A) =
t⋃

i=1

K(Ai) and B,C ∈ S ⇒ K(B) ∩K(C) = K(B ∩ C) .
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Proof. Let K = K(A). We proceed by induction on |A| and assume (as
we may) that A is minimal with respect to generating K. The claim holds if
|A| = dim K: then K is elementary and S = S(A) works. Let |A| > dim K.
We take any a ∈ A and set A′ = A\{a}. Then K(A′) is a strict subset of
K but dim K(A′) = dim K and by induction A′ has the required simplicial
complex S(A1, . . . , As). We claim that there is a set B such that a ∈ B ⊂ A,
|B| = dim K, K(B) is elementary, K = K(A′) ∪ K(B), and K(A′) ∩ K(B) =
K(B\{a}). Then S(A1, . . . , As, B) is the required simplicial complex on A.

[to be continued] 2

Proof of Ehrhart’s theorem. We move P = P (A) by an integral shift in
the nonnegative orthant of Rd, thus we may assume that A is a finite nonempty
subset of Qd

≥0 and mA ⊂ Nd
0. We denote e = dim A = dim P , so 0 ≤ e ≤ d. We

consider the cone

K = K(B) ⊂ Rd+1
≥0 , B = {m(a, 1) = (ma1, . . . ,mad,m) | a ∈ A} ⊂ Nd+1

0 .

Clearly, dim K = e + 1. Also, c ∈ Zd ∩ nP iff (c, n) ∈ Zd+1 ∩K, and |Zd ∩ nP |
equals to the number of the lattice points lying in the section of K by the
hyperplane xd+1 = n. In terms of generating functions,

fP (x) :=
∑
n≥0

|Zd ∩ nP |xn = FK(x1, . . . , xd+1) |x1=···=xd=1,xd+1=x .

Using Proposition 0.4, we take the triangulation Ki = K(Bi), i = 1, 2, . . . , t, of
K into (e + 1)-dimensional elementary cones. The inclusion-exclusion principle
and Propositions 0.4 and 0.3 give ([t] = {1, 2, . . . , t} and for I ⊂ [t] we denote
KI = K(BI), BI =

⋂
i∈I Bi, so K{i} = Ki and K(∅) = {0})

FK(x) =
∑

∅6=I⊂[t]

(−1)|I|+1FKI
(x) =

∑
∅6=I⊂[t]

(−1)|I|+1 pI(x)∏
b∈BI

(1− xb)
.

Since |BI | ≤ e + 1 and xb = . . . xm
d+1,

fP (x) = FK(1, 1, . . . , 1, x) =
∑

∅6=I⊂[t]

(−1)|I|+1qI(x)
(1− xm)e+1

=
q(x)

(1− xm)e+1

with qI(x), q(x) ∈ Z[x]. Since pI(x) = FTI
(x), where TI is the fundamental

parallelepiped of KI , and c = (. . . , cd+1) ∈ Zd+1 ∩ TI ⇒ cd+1 ≤
∑

b∈BI
λbm <

m|BI | (because λb ∈ [0, 1)), each qI(x) has degree at most m(e + 1) − 1 =
me + m− 1 and so has q(x). Expressing q(x) as an integral linear combination
of xs(1−xm)t, 0 ≤ s ≤ m−1 and 0 ≤ t ≤ e, and using the generalized geometric
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series 1/(1− x)j =
∑

n≥0

(
n+j−1

j−1

)
xn, j ∈ N, we get the expression

fP (x) =
q(x)

(1− xm)e+1
=

e+1∑
j=1

βj,0 + βj,1x + · · ·+ βj,m−1x
m−1

(1− xm)j

=
m−1∑
s=0

∑
n≥0

( e+1∑
j=1

βj,s

(
n + j − 1

j − 1

))
xmn+s

=
m−1∑
s=0

∑
n≥0

( e+1∑
j=1

βj,s

(j − 1)!

j−2∏
i=0

(n + j − 1− i)
)

xmn+s

for some βj,s ∈ Z. Thus for each fixed s ∈ N0, s ≤ m − 1, the coefficient of
xmn+s in fP (x) is a rational polynomial in n, hence in mn+s, of degree at most
e. Thus n 7→ |Zd ∩ nP |, n ∈ N0, is a rational quasi-polynomial in n with period
m, each component of which has degree ≤ e. The maximum degree is e because
P contains a relative open ball C = {x ∈ S(P ) | ‖x − a‖ < r}, a ∈ S(P ) and
r > 0, which implies that |Zd ∩mnP | ≥ |Zd ∩mnC| � ne.

[But there is a problem with the inclusion-exclusion formula with the terms
with BI = ∅ for which in fact deg qI = deg of the denominator.] 2

Proposition 0.5 (perturbation trick). Suppose that K = K(A) ⊂ Rd is a
cone with A ⊂ Qd

≥0 and Ki = K(Ai), i = 1, 2, . . . , t, is its triangulation into
dim K-dimensional elementary cones. Then there is a vector v ∈ −K such that

Zd ∩K = Zd ∩ (v + K) and i 6= j ⇒ Zd ∩ (v + Ki) ∩ (v + Kj) = ∅ .

Proof. The relative boundary of K and all intersections Ki ∩ Kj , i 6= j,
are contained in the union U of the linear subspaces SB = S(K(0, B)) ⊂ S(K),
where B ⊂ A runs through all (dim K−1)-element linearly independent subsets.
One can show that every c ∈ Zd\SB has from SB distance at least bB > 0. We
put

β = min
B

bB > 0 .

We claim that every vector v ∈ (−K)\U with 0 < ‖v‖ < β has the required
property; since U is a finite union of subspaces with dimensions dim K − 1,
(−K)\U contains relative open balls arbitrarily close to the origin and many
such v exist. Since v ∈ (−K), we have v + K ⊃ K and Zd ∩ (v + K) ⊃ Zd ∩K.
The last inclusion is an equality, as every c ∈ (Zd ∩ S(K))\K has from K
distance larger than ‖v‖. Since v 6∈ U and is nonzero, the shift by v shakes off
lattice points from every Ki ∩ Kj , i 6= j. The distance argument again shows
that the shifted Ki ∩Kj does not acquire any new lattice point. 2

Proof of the reciprocity relation.
[to be continued] 2
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