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We present an asymptotic upper bound and then an exact formula, both
in elementary combinatorial probability. Trotter and Winkler have shown in
[4], among other things, that in each sequence Aj, As,..., A, of events in a
probability space P = (£, A, Pr) there are two events A; and A;, ¢ < j, such
that Pr(A;A4;) < 1 + o(1); here 1 is clearly best possible and the o(1) error is
with respect to n — oo.

A quick proof (different from the one in [4]) goes like this. Let o) be, as
usual, the sum of probabilities

O = ZPT(AilAig Azk)

taken over all k-subsets of [n] = {1,2,...,n}. It is well known that oo > (%),
and in general oj > (‘Tkl) (this bound is not an optimum one, more about this
later). Therefore if the A; are equiprobable with Pr(A;) = p, we must have
two, i # j, such that Pr(4;4;) > ("F)/(5). Thus Pr(4;4;) = Pr(4,4;) =
pP— PI‘(A,L'AJ') < p —p2 + % and PI‘(AZZJ) = PI‘(AjZi) < % + ﬁ In the
general situation we apply this to some |y/n]| events whose probabilities differ
by at most 1//n and obtain the T-W theorem, with O(n~1/2) in place of o(1).
We sketch the proof of the following strengthening.

Theorem 1 Among each n events Ay, As, ..., Ay there are two, i < j, such
that PI’(AZ‘A]‘) < i + O(n‘2/3).

Proof of Theorem 1 (Sketch). Using the argument with o2, we prove first a
lemma saying that if Ay, ..., A,, are events satisfying |Pr(4;) —p| < A for some
A >0and 0 <p <1, then Pr(A4;4;) <p—p2+m+6A for some i < j.
Then we define the function f as a constant cn'/? in [% —n /3, %Jrn*l/g] and as
f(z) = en™'/3(x—1/2)~2 in the rest of [0, 1], where ¢ = 1/(4—4n~'/3). Clearly
fol f(z)dz =1 and f is continuous. The pigeon hole principle tells us then that
for any n events A, ..., A, there is an interval I C [0,1], |I| = 2n~2/3, and an
z € I such that Pr(4;) € I for at least 2f(x)n'/3 of the events. Finally, using
the lemma with m = 2f(2)n'/? and A = 2n=%/3, we obtain the error term
O(n=2/3). |

If i < j in the T-W theorem is replaced by i # j then the best upper bound
on min Pr(A4;A4;) can be determined exactly for each n. This follows easily from
the instance k = 2 of our second result.



By |a] and {a} we denote the integral and the fractional part of a and by
(7) the product z(x —1)---(x — k +1). Let [n]* be all k-subsets of [n].

Theorem 2 For all triples n, k,p, 0 < p < 1, we have

— 1
min max Pr( /\ A;) (Lpn])—1(lpn] =k + —|—k;{pn}) P(n,k,p),
Xe[n]k (n)k
where the minimum is taken over all P and n equiprobable events Ay, ..., Ay,

Pr(4;) =p.
The proof uses the following bound.

Theorem 3 We have the inequality

o > G“_”l)o—l —(k—1) (L"leJF 1).

Proof of Theorem 3 (Sketch). Set m = |o1] in oy, > ()01 —(k—1) (™).
The latter inequality reduces by the Rényi’s 0-1 principle to an easily verifiable
inequality for binomial coefficients. a

Proof of Theorem 2 (Sketch). That minmax > P(n,k,p) follows imme-
diately from Theorem 3 as in the above proof of the T-W theorem. To prove
minmax < P(n, k,p) we define a P and events Ay, ..., A, such that Pr(4;) =p
for all ¢ and Pr(4;, 4;,...4;.) = P(n,k p) for all k-subsets of [n]. We set

m = pn, Q= [ U )™, A= exp(@), Pr(A) = 3, 0(w)/] 3yeq wl(w),

where the weight is w(w) =1 on [n]™ and w(w) = 2EL . {pni} (which is zero

for integral pn) on [n]™T!. Finally, 4; = {w € Q: i € w}. Straightforward
calculations show that A; and A;, A;, ... A;, have the stated probabilities . O

One can derive from the formula in Theorem 2 that P(n, k,p) = P(n+1,k,p)
iff (i) p(n+1) is an integer or (ii) p > n/(n+1) or (iii) p < (k—1)/(n+1) or (iv)
k = 1. The construction of P also shows that the inequality in Theorem 3 is best
possible For example, for k = 2 it improves o3 > (%) = (01 — {01} — [01])/2
to o2 > (0f — {o1}? — [o1])/2.

As an 1nterest1ng problem we mention the question what is the right order
of magnitude of the error in the T-W theorem. The above example gives the
> 1/n lower bound but it is suited for the symmetric (i # j) case and can be
probably improved in the asymetric (i < j) situation.

Another problem, in the spirit of [4]. If G is a graph on [n], set P(G,p) =
min max Pr(A; A;), where the max is taken over all edges {4, j} of G and the min
as above. It can be seen that the maximum value of p such that P(G,p) =0 is
1/x*(G), where x*(G) is the fractional chromatic number of G. What else can
be said about the function P(G,p)?

A problem closely related to the case k = 2 of Theorem 2 was investigated
already by Erdés, Neveu and Rényi in [1].



Final remark. I was informed by prof. J. Galambos that Theorems 2 and
3 are very close to some results in [2] and [3]. So it might be that these are
already known results (in which case their authors have my apologies). When
writing this extended abstract I had neither [2] nor [3] to my disposal and was
not able to clarify this matter.
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