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Preface

These notes are inspired by the course Combinatorial Counting (Kombinatorické
poč́ıtáńı, NDMI015) which I have been teaching on Faculty of Mathematics and
Physics of Charles University in Prague. Their main theme is how to count finite
things, precisely or, with less emphasize, asymptotically. Following topics are
covered. Chapter 1 revolves around the Catalan numbers. Chapter 2 presents
several analytic deductions of the Stirling (asymptotic) formula for factorial.

February 2018 Martin Klazar
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Chapter 1

Catalan numbers

We begin this text with the Catalan numbers cn and results they inspire. In Sec-
tion 1.1 we define them and find for them a recurrence relation, determine their
parity and bound them exponentially both from below and above. Section 1.2
discusses the concept of PIO formulas and PIO algorithms and illustrates it
on cn and the parity-modified Catalan numbers c′n. In Section 1.3 we derive
more recurrences and several explicit formulas and from the Stirling formula we
deduce asymptotics of cn, which we then prove in a weaker form cn−3/24n. In
Section 1.4 we present a bijective proof of the formula cn = 1

n

(
2n−2
n−1

)
and show

that cn count each of the six families of permutations avoiding a fixed pattern
of length three. Can cn satisfy a linear recurrence with constant coefficients?
Four arguments why they cannot are given in Section 1.5. A refinement cn,k
is treated in Section 1.6. In Section 1.7 we quote an excerpt from the list of
R. P. Stanley of problems in enumeration solved by the Catalan numbers, and
prove Valtr’s theorem: n random points in a square form a convex chain, assum-
ing that they already form a convex polygon, with probability 1

cn
. Concluding

Comments and references contain some comments and references.

1.1 Definition, recurrence, parity, exponential
growth

We define the Catalan numbers cn as numbers of certain trees with n vertices.
All trees considered in this chapter are finite. A rooted tree T = (r, V,E) is a
tree (V,E) with a distinguished vertex r ∈ V , called a root (of T ). Recall that
a tree is a graph (V,E) (E ⊂

(
V
2

)
) such that every two vertices in V are joined

by a unique path. For every edge e ∈ E in a rooted tree (r, V,E) there is a
unique path P whose one end is r and the other e. If u ∈ e is the vertex of e
that is the end of P different from r and v ∈ e is the other vertex (if v 6= r then
v is an inner vertex of P ), we write v → u; the presence of root determines this
orientation of edges in E away from r. A rooted plane tree, abbreviated rp tree,
is a rooted tree T = (r, V,E, L) enriched with a list L of linear orders on the sets
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{u ∈ V | v → u}, v ∈ V . We call such set a set of children (of v). Two rp trees
are isomorphic if there is a bijection between their vertex sets that preserves
roots, edges and linear orders of sets of children. Two rp trees are regarded as
distinct only if they are non-isomorphic. Here we list all five distinct rp trees
with four vertices:

@@ ��rr r r @@ ��
rr r r @@ ��
r r r
r

@@ ��
r
rr
r
rr
rr

We draw an rp tree in the plane with the root at the lowest position, with edges
as upgoing straight segments (arrows), and with the linear orders on sets of
children given by the left-to-right order. It is because of these orders that the
second and third tree are distinct because as rooted trees they are isomorphic.

Thus there is one rp tree with one vertex, one with two vertices, two with
three vertices and five with four vertices. How many rp trees with n vertices
exist? This is a text on enumerative combinatorics and not a philosophical
essay, and we are primarily concerned with the first two words and not so much
with the final verb. For n ∈ N = {1, 2, . . . } we define

the n-th Catalan number cn = the number of distinct rp trees with n vertices

—recall that “distinct” means “non-isomorphic”. Let T be the set of all distinct
rp trees. (Precisely, what are the elements of T ? We return to this question at
the end of the section.) For T ∈ T let |T | denote the number of vertices in T
and for n ∈ N let Tn = {T ∈ T | |T | = n}. In general we denote by |X| and
#X the cardinality of a set X. We call |T | also the size of an rp tree T . Let

C = C(x) :=
∑
T∈T

x|T | =

∞∑
n=1

|Tn| =
∞∑
n=1

cnx
n = x+ x2 + 2x3 + 5x4 + . . .

be the generating function (GF) of cn. More precisely, this is an ordinary gener-
ating function (OGF) of the numbers cn; later we will meet generating functions
of other kinds. We want to have an effective formula for the numbers cn—see
the next section for precise definition of this notion—and we will find several
nice ones with the help of the GF C(x). We explain why cn are “Catalan” in
the final Comments and references.

The term “generating function” is a bit of a misnomer because primarily GF
is a formal (algebraic) object, an infinite sequence like (c1, c2, . . . ) or a formal
power series like c1x + c2x

2 + . . . , which can be operated with without associ-
ating to it any function. Of course, handling a GF as a function is often very
useful, and for determinig asymptotic behaviour of its coefficients practically
indispensable, whence originated the term. It is not apriori clear why replacing
a sequence of numbers by a GF should help in determining a formula for them.
The reason for the success of GFs lies in mirroring of combinatorial decom-
positions of structures in algebraic relations for GFs—this text contains many
examples.
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Every non-singleton rp tree decomposes uniquely in two parts as follows.

Proposition 1.1.1. There is a bijection

f : T \T1 → T × T , T 7→ (T1, T2) ,

such that always |T | = |T1|+ |T2|.

Proof. We define f by setting T1 to be the rp subtree of T rooted in the first
child of T ’s root, and T2 to be the rest of T :

T 6= • =⇒
@

@
@

�
�
�

•

T =

@
@

@
@

@
@

�
�
�

•

•

T1

T2

It is easy to check that f has the stated properties. 2

Exercise 1.1.2. Check it.

This decomposition of rp trees is the key to their enumeration. Restricting f to
Tn we get for every n ≥ 2 the bijection

Tn ←→
n−1⋃
k=1

Tk × Tn−k ,

which translates to the basic recurrence relation

c1 = 1, cn =

n−1∑
k=1

ckcn−k for n ≥ 2 . (1.1)

For a similar but different recurrence for cn see Proposition 1.4.11 and Exer-
cise 1.4.12. Recurrence (1.1) readily gives as many Catalan numbers as we
wish:

(cn) = (cn)n≥1 = (1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, . . . ) .

Without reading further, can you guess when cn is odd?

Proposition 1.1.3. The Catalan number cn is odd if and only if n is a power
of 2, n = 2m for m ∈ N0 = {0, 1, 2, . . . }.

Proof. Induction using recurrence (1.1). For n = 1 indeed c1 = 1 is odd. If n >

1 is even then cn =
∑n−1
k=1 ckcn−k = c2n/2+2

∑n/2−1
k=1 ckcn−k, and cn has the same

parity as cn/2. If n > 1 is odd then cn =
∑n−1
k=1 ckcn−k = 2

∑(n−1)/2
k=1 ckcn−k,

and cn is always even. Thus cn is odd iff n can be completely divided by 2, i.e.,
iff n = 2m. 2

Symmetry of the sum in recurrence (1.1) reveals parity of cn easily. It is harder
to deduce it from simpler recurrences and formulas for cn that we derive later.
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Exercise 1.1.4. How do cn behave modulo 3? (You may use Google.)

The problem of effective computation of modular reductions of (cn) and similar
sequences of numbers will be treated in Section 4.5.

How fast do Catalan numbers grow? By recurrence (1.1), for n ≥ 3 we have
cn ≥ 2c1cn−1 = 2cn−1. Since c7 = 132 > 27 = 128, induction gives

cn > 2n for every n ≥ 7 .

It is a little harder to obtain an exponential upper bound for cn directly from
recurrence (1.1). We need for it the next lemma.

Lemma 1.1.5. For every n = 2, 3, . . . ,

n−1∑
k=1

1

k2(n− k)2
<

8

n2
.

Proof. As (k(n− k))−1 = n−1(k−1 + (n− k)−1), we have

n−1∑
k=1

1

k2(n− k)2
=

2

n2

n−1∑
k=1

1

k2
+

4

n3

n−1∑
k=1

1

k
<

4

n2
+

4

n2
=

8

n2

because
∑n−1
k=1

1
k2 < 1 +

∑∞
k=2

1
k(k−1) = 1 +

∑∞
k=2

(
1

k−1 −
1
k

)
= 2. 2

Thus cn grow only exponentially:

Proposition 1.1.6. For every n = 1, 2, . . . ,

cn ≤
8n−1

n2
< 8n .

Proof. For n ∈ N we seek an upper bound cn ≤ cα
n

n2 where c > 0 and α > 1 are
constants, which are to be determined. Suppose it holds for ck for every k < n,
then recurrence (1.1) and the previous lemma for n ≥ 2 give

cn =

n−1∑
k=1

ckcn−k ≤
n−1∑
k=1

cαk

k2
· cαn−k

(n− k)2
<

8c2αn

n2
.

For this to be ≤ cα
n

n2 , we set c = 1
8 . To start induction, we need that cn ≤

cα
n

n2 = αn

8n2 holds for n = 1 and thus set α = 8. So cn ≤ αn

8n2 = 8n−1

n2 for every
n ∈ N. 2

Using minimalistic tools (just induction and recurrence (1.1)), we derived the
bounds

2n < cn < 8n (1.2)

where the first inequality holds for n ≥ 7 and the second for every n ≥ 1. We
give better bounds in inequalities (1.9), and precise asymptotics in Corollar-
ies 1.3.8 and 1.3.10. We extend the bound of Proposition 1.1.6 to more general
recurrences in Proposition 4.6.1 in Chapter 4.
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Exercise 1.1.7. Can you decrease the constant 8? Or increase the 2? By how
much?

What objects exactly the numbers cn count? What exactly are the elements
of the set T of all distinct rp trees? We intuitively view them as blocks of
mutually isomorphic rp trees, but are not these blocks as sets unnecessarily
big? Could not we take from each some nice representative? This is what we
do now. For n ∈ N and [n] = {1, 2, . . . , n} we call a rooted tree

(1, [n], E), E ⊂
(

[n]

2

)
,

a natural tree if

• v → u implies v < u for every edge {u, v} ∈ E and

• each set of children {u ∈ [n] | v → u}, v ∈ [n], is an interval in [n].

Every natural tree (1, [n], E) is obviously also an rp tree: the sets of children
are ordered by the natural order < of N. For example, if n = 4 we can cast the
five rp trees of page 2, respectively, as natural:

(1, [4], {{1, 2}, {1, 3}, {1, 4}}) ,
(1, [4], {{1, 2}, {1, 3}, {2, 4}}) ,
(1, [4], {{1, 2}, {1, 3}, {3, 4}}) ,
(1, [4], {{1, 2}, {2, 3}, {2, 4}}) and

(1, [4], {{1, 2}, {2, 3}, {3, 4}}) .

We revisit the definition of cn and give it a simpler and concrete form:

the n-th Catalan number cn = the number of natural trees (1, [n], E) .

Of course, we have to prove equivalence of both definitions of Catalan numbers.

Proposition 1.1.8. Every rp tree with n vertices is isomorphic to exactly one
natural tree (1, [n], E).

Proof. Suppose U = (r, V,E, L) is an rp tree. We merge the linear orders in
L in the single linear order (V,≺) of the breadth-first search in U . If Vi ⊂ V ,
i = 0, 1, . . . , are vertices with distance i from r, so V0 = {r}, V1 are the children
of r and so on, we put V0 ≺ V1 ≺ V2 ≺ . . . and for distinct u, v ∈ Vi we put
u ≺ v (resp. v ≺ u) if the path joining u to r branches to the left (resp. to the
right), according to L, from that for v. We label the vertices in V by 1, 2, . . . , |V |
according to ≺. The resulting tree T = (1, [|V |], E) is clearly a natural tree that
is isomorphic, as an rp tree, to U . It remains to show that there are no two
different natural trees that are isomorphic as rp trees. Suppose that (1, [n], E)
and (1, [n], F ) are two natural trees that are isomorphic as rp trees. 2
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1.2 What is an effective formula? For example,
for n 7→ cn?

In this section we give concrete and general answer. What we mean by an effec-
tive formula (we mentioned this term in the previous section) for the Catalan
numbers n 7→ cn? Or, more generally, for a counting function?

A counting function is any computable function f : N→ Z.

We think of the values of f as giving cardinalities f(n) = |Sn| of finite sets
(Sn)n≥1 coming up in an enumerative problem, or giving solutions to some
other problem in enumeration or number theory. For example, we may have
f(n) = |Tn| = cn. Usually, but not always, already the very statement of the
problem gives at once an algorithm, effective or not, computing f(n). It is
natural to require f be computable; for non-computable f there is nothing to
talk about, at least for enumerative combinatorialist. To continue the example,
how the very first algorithm for n 7→ cn, coming to one’s mind immediately
after learning the definition cn := |Tn|, could look like? (Recurrence (1.1) or
formula (1.7), of course, but try to imagine that you are not yet indoctrinated,
never heard about the Catalan numbers and rooted plane trees, and are learning
about them only now.) It might work as follows. For the set

S = {E | E ⊂ [n]× [n]}

with 2n
2

elements, the algorithm first determines the subset S0 ⊂ S of the
edge sets E of rp trees with vertex set [n] and root 1 (the sets of children are
ordered by the natural order on [n]). For example, if n = 4 then S0 contains
{(1, 2), (1, 3), (2, 4)} and {(1, 3), (1, 4), (3, 2)}, both an isomorphic copy of the
second rp tree on page 2, but {(1, 2), (3, 4)} 6∈ S0. Then the algorithm deter-
mines (by checking n! bijections from [n] to itself) which rp trees {E,E′} ⊂ S0,
E 6= E′, are isomorphic. Finally, the algorithm finds the maximum subset
S1 ⊂ S0 of pairwise non-isomorphic rp trees and outputs cn = |S1|. Thus
n 7→ cn is a computable function and so a counting function. The algorithm is
not very effective, though, as it does more than 2n

2

steps. The interested reader
certainly knows a much more effective algorithm and soon we mention it.

But not always a number theoretic or enumerative problem leads to a com-
putable function. We mention two examples, the second one is a big embarass-
ment at the heart of enumerative combinatorics (or rather the theory of algebraic
numbers).

Definition 1.2.1 (PIO formula, PIO algorithm). A counting function

f : N→ Z

has a PIO formula if there is an algorithm A, called a PIO algorithm, that for
every input n ∈ N computes the output f(n)

in time polynomial in m(n) = mf (n) := log(1 + n) + log(2 + |f(n)|) .

6



That is to say, for some constants c, d ∈ N, for every n ∈ N the algorithm A
computes f(n) in at most c ·m(n)d steps. Similarly, if f is defined only on a
subset X ⊂ N.

1.3 Recurrences, explicit formulae, asymptotics

We employ the GF C(x) to derive for cn a recurrence relation simpler than
(1.1), and then two explicit formulae. Recurrence (1.1) translates in an algebraic
relation for C = C(x):

C − x = C2, or C2 − C + x = 0 . (1.3)

Thus C ∈ C[[x]] is algebraic over the field of rational functions C(x) because it
satisfies a quadratic equation with coefficients in C[x]. Note that one can bypass
basic recurrence (1.1) and derive equation (1.3) directly from the combinatorial
decomposition of rp trees: since

C =
∑
T∈T

x|T | ,

C − x = C2 is a direct translation of the bijection in Proposition 1.1.1.

Exercise 1.3.1. What algebraic relation for C(x) you get by using another
decomposition of rp trees: T 7→ (T1, T2, . . . , Tk) where Ti is the rp subtree of T
rooted in the i-th child of T ’s root.

Writting equation (1.3) as C = x
1−C , we expand C in a continued fraction:

C =
x

1− C
=

x

1−
x

1− C

= · · · =
x

1−
x

1−
x

1−
x

. . .

.

We deduce from the algebraic equation for C a differential equation. Differ-
entiation of equation (1.3) yields

2CC ′ − C ′ + 1 = 0, or C ′ =
1

1− 2C
. (1.4)

Exercise 1.3.2. Can you solve this differential equation?

Since C satisfies a quadratic equation, by multiplying both the denominator and
the numerator in the last fraction with a linear polynomial in C we get rid of
C in the denominator. We get for C a linear differential equation of first order:

C ′ =
1

1− 2C
=

−C2 + 1
4

(1− 2C)(−C2 + 1
4 )

=
−C2 + 1

4

C2 − C + 1
4

=
−C2 + 1

4
1
4 − x

,

7



or
(1− 4x)C ′ + 2C − 1 = 0 . (1.5)

In terms of the coefficients in C =
∑
n≥1 cnx

n we get for n ≥ 2 by collecting

coefficients of xn−1 the relation

ncn − 4(n− 1)cn−1 + 2cn−1 = 0, or cn =
4n− 6

n
cn−1 . (1.6)

This is certainly a recurrence simpler than (1.1), and we can solve it:

cn =

n∏
i=2

4i− 6

i
· c1 =

2 · 6 · 10 · . . . · (4n− 6)

n!

=
(n− 1)! · 2n−1 · 1 · 3 · 5 · . . . · (2n− 3)

(n− 1)! · n!
=

(2n− 2)!

(n− 1)! · n!

=
1

n

(
2n− 2

n− 1

)
(1.7)

which is the classical explicit formula for the Catalan numbers. Of course, it is
“explicit” only so far as we regard factorial n! = 1 · 2 · . . . · n as explicit. But we
can solve the recurrence also in another way:

cn =

n∏
i=2

4i− 6

i
· c1 = −1

2

n−1∏
i=0

4i− 2

i+ 1

=
(−1)n+14n

2
·

1
2 ( 1

2 − 1) . . . ( 1
2 − n+ 1)

n!

=
(−1)n+1

2

( 1
2

n

)
4n (1.8)

which is the less known explicit formula for the Catalan numbers. Hence

cn =
1

n

(
2n− 2

n− 1

)
=

(−1)n+1

2

( 1
2

n

)
4n .

The advantage of formula (1.8) over formula (1.7) is that it reveals at once
the asymptotic order of cn (however, see Exercise 1.3.4). Indeed, from(

α

n

)
=
α(α− 1) . . . (α− n+ 1)

n!
=

n−1∏
i=0

α− i
i+ 1

it follows that if α ∈ C with |α| ≤ 1 then
∣∣(α
n

)∣∣ ≤ 1 for every n ∈ N0. For α = 1
2

we can say more precisely that for every n ∈ N (empty products are set to 1),

1

4n2
≤ 1

4
· 1 · 2 · . . . · (n− 2)

n!
≤
∣∣∣∣( 1

2

n

)∣∣∣∣ ≤ 1

2
· 1 · 2 · . . . · (n− 1)

n!
=

1

2n
.
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Thus by formula (1.8) for every n ∈ N,

4n

8n2
< cn ≤

4n

4n
(1.9)

which is a considerable tightening of bounds (1.2).

Exercise 1.3.3. How do we exactly get the strict lower bound < from composing
the two non-strict ≤s above it? Should not one of these be < instead?

Exercise 1.3.4. Deduce similar bounds on cn, with multiplicative gap roughly
n between the lower and upper bound, from the formula (1.7).

The route from the algebraic equation (1.3), via the differential equations
(1.4) and (1.5) and the recurrence (1.6), to the formulae (1.7) and (1.8) is a
little runaround. By it we wanted to demonstrate that one can deduce from an
algebraic equation for GF a recurrence like (1.6) without actually solving the
equation; we return to this method later. But we can solve equation (1.3), so
let us rederive formula for cn also this way. By the quadratic formula,

C(x) =
1−
√

1− 4x

2
(1.10)

(we selected −√. . . in ±√. . . because C(0) = 0). But what is
√

1− 4x? By
Newton’s binomial theorem, it is the formal power series

(1− 4x)
1
2 =

∞∑
n=0

( 1
2

n

)
(−4)nxn ,

and formula (1.8) follows. It was easy to solve the quadratic equation (1.3) but
had we for C(x) a cubic or some higher degree equation, things would be less
easy (but not hopeless, as we will see in Section 4.4).

Exercise 1.3.5. Devise a variant of rp trees, with GF satisfying a cubic or a
higher degree algebraic equation.

Suppose you guessed the formula cn = 1
n

(
2n−2
n−1

)
and want to verify it by the

basic recurrence (1.1). This can be done more easily using the alternative form

cn = (−1)n+1

2

( 1
2
n

)
4n. To check it we apply the Vandermonde convolution identity

a∑
k=0

(
α

k

)(
β

a− k

)
=

(
α+ β

a

)
where α, β are variables and a ∈ N0. By combinatorics, it holds for all numbers
α, β ∈ N because then the right side counts a-element subsets X ⊂ [α+ β] (for
n ∈ N0 we set [n] = {1, 2, . . . , n} with [0] = ∅) while the left side just pigeonholes
X according to the size k of the intersection X ∩ [α]. Since we have equality
for infinitely many numeric values of α and β, the identity holds formally as an
equality between two bivariate polynomials with degree a.

9



Exercise 1.3.6. Is this argument correct? In

α2 + β2 − 1 = 0

we also have equality for infinitely many numeric values α, β ∈ R, for coordi-
nates of the points on the unit circle, but the polynomial on the left side is far
from being identically zero.

Anyhow, the Vandermonde identity holds and using it for α = β = 1
2 we

easily check by the basic recurrence (1.1) and induction on n the explicit formula

cn = (−1)n+1

2

( 1
2
n

)
4n: for n = 1 it holds, 1 = c1 = (−1)1+1

2

( 1
2
1

)
41, and for n ≥ 2 we

indeed have (the Vandermonde identity is used on the third line)

cn =

n−1∑
k=1

ckcn−k =

n−1∑
k=1

(−1)k+1

2

( 1
2

k

)
4k · (−1)n−k+1

2

( 1
2

n− k

)
4n−k

=
(−1)n4n

4

( n∑
k=0

( 1
2

k

)( 1
2

n− k

)
− 2

( 1
2

n

))
=

(−1)n4n

4

((
1

n

)
− 2

( 1
2

n

))
=

(−1)n+1

2

( 1
2

n

)
4n

as
(

1
n

)
= 0 for n > 1.

We saw that the GF C(x) of the Catalan numbers satisfies algebraic equa-
tion (1.3) and two differential equations (1.4) and (1.5). Does it satisfy some
functional equation, equation involving the operation of composition? If we
substitute x− x2 for x in C(x), due to the identity

1− 4(x− x2) = (1− 2x)2

the right side of formula (1.10) becomes x. So C(x) satisfies the functional
equation

C(x− x2) = x . (1.11)

Interestingly, substitution of C(x) for x in the same polynomial x−x2 gives
by equation (1.3) x again:

C(x)− C(x)2 = x . (1.12)

As we explain in Section 4.3, the pair of identities (1.11) and (1.12) is an instance
of a general phenomenon rooted in associativity of composition of formal power
series.

What identity for cn does equation (1.11) imply? Equating for n ≥ 2 the
coefficient of xn in

∑
k≥1 ck(x − x2)k =

∑
k≥1 ckx

k(1 − x)k to zero, we obtain
third recurrence for cn:

c1 = 1, cn =
∑
k≥1

(−1)k+1

(
n− k
k

)
cn−k for n ≥ 2 . (1.13)
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Summation here goes efectively from k = 1 to k = bn/2c. With formula (1.7)
this yields the binomial identity

1

n

(
2n− 2

n− 1

)
=

bn/2c∑
k=1

(−1)k+1 1

n− k

(
2n− 2k − 2

n− k − 1

)(
n− k
k

)
, n ≥ 2 .

As we know, equation (1.12) is equivalent with basic recurrence (1.1).
With the help of Stirling’s asymptotic formula for n! we deduce from formula

(1.7) precise asymptotics for cn.

Theorem 1.3.7 (Stirling’s formula). For n → ∞ we have the asymptotic
relation

n! = 1 · 2 · 3 · . . . · n ∼
√

2πn

(
n

e

)n
where π = 3.14159 . . . and e = 2.71828 . . . are the well known constants.

We prove Stirling’s formula in three ways in Chapter 2.

Corollary 1.3.8. The Catalan numbers for n→∞ satisfy

cn =
1

n

(
2n− 2

n− 1

)
∼ 1

4
√
π
· 4n

n3/2
.

Proof. By Stirling’s formula, for n→∞

cn =
n

2n(2n− 1)
· (2n)!

n! · n!
∼ 1

4n
·
√

4πn
(

2n
e

)2n(√
2πn

(
n
e

)n)2
which simplifies to the stated expression. 2

However, unless we estimate rate of convergence in ∼, this says nothing about
the size of cn for a particular n ∈ N. Fortunately, explicit versions of Stirling’s
formula are known and we mention them in Section 1.7.

In conclusion we derive in a self-contained way the asymptotics for cn in
weaker form without the factor 1

4
√
π

. We use the following more generally ap-

plicable result. Recall that sequences (an) ⊂ C defined by

an =

n∏
j=1

r(j)

for a rational function r ∈ C(x) (i.e., r(x) is a ratio of two complex polynomials)
are called hypergeometric.

Theorem 1.3.9 (asymptotics of hypergeometric sequences). Suppose that
(an) ⊂ (0,+∞) is a sequence of positive real numbers such that for every n > n0

we have
an+1

an
= A · n

k + α1n
k−1 + · · ·+ αk

nk + β1nk−1 + · · ·+ βk

11



where A,αi, βi ∈ R are constants such that A > 0, k ≥ 1 and α1 6= β1. Then
there is a real constant c > 0 such that for n → ∞ we have the asymptotic
relation

an ∼ cnα1−β1An .

Proof.
2

Catalan numbers form a hypergeometric sequence and we can apply to them
Theorem 1.3.9.

Corollary 1.3.10. For some constant c > 0 and n→∞,

cn =
1

n

(
2n− 2

n− 1

)
∼ c · 4n

n3/2
.

Proof. By recurrence (1.6), for every n ∈ N one has

cn+1

cn
=

4n− 2

n+ 1
= 4 ·

n− 1
2

n+ 1
.

For the sequence (cn) the constants therefore are A = 4, α1 = − 1
2 and β1 = 1.

The asymptotics follows from Theorem 1.3.9. 2

Exercise 1.3.11. Which is larger for n→ +∞,

2n∏
i=n+1

i or

n−1∏
i=0

(3i+ 1) ?

Determine asymptotics of the ratio of the first product to the second.

1.4 Dyck words, good bracketings and pattern-
avoiding permutations

We derive the classic formula cn = 1
n

(
2n−2
n−1

)
for Catalan numbers combinato-

rially, without generating functions. We find a bijection between rp trees and
simpler objects, which we count directly by a clever transformation. Then we
present other families of structures counted by cn: good bracketings and per-
mutations avoiding a fixed three-term subpermutation.

The objects are Dyck words. A Dyck word

D = (d1, . . . , d2n) ∈ {−1, 1}2n

of size n ∈ N0 is a 2n-tuple of 1s and −1s such that

d1 + d2 + · · ·+ dj ≥ 0, 1 ≤ j ≤ 2n, d1 + d2 + · · ·+ d2n = 0 .

12



So D has equal number, n, of 1s and −1s and never more −1s than 1s in any
initial segment. Let Dn be the set of Dyck words with size n. We establish a
bijection between them and rp trees.

Proposition 1.4.1. For every n ∈ N there is a bijection f : Tn → Dn−1. Thus
cn = |Dn−1|.

Proof. We define f both recursively and explicitly. For n = 1 and the only rp
tree T with |T | = 1 we set f(T ) = ∅. For n > 1 and T ∈ Tn,

f(T ) := (1, f(T1), −1, 1, f(T2), −1, . . . , 1, f(Tk), −1)

where T1, T2, . . . , Tk are the rp subtrees of T rooted in the children of the root,
listed in the order of the children. Explicitly, we walk around T in clockwise
direction, starting and finishing at the root, and write for each edge 1 if we go
upwards and −1 if we go downwards. Clearly, this is the same as the recursive
definition, and f is a bijection between Tn and Dn−1. The walk in fact does the
depth-first search in T . 2

Exercise 1.4.2. Check in details that f is a bijection between Tn and Dn−1.

For example, the five rp trees of T4 (see p. 2) are sent by f to the respective
Dyck words (we write 0 for −1)

D3 = {101010, 110010, 101100, 110100, 111000} .

To count Dn, we consider the set En of all 2n-tuples of n 1s and n −1s, and
the set Fn of all 2n-tuples of n+ 1 1s and n− 1 −1s. Clearly,

Dn ⊂ En, |En| =
(

2n

n

)
and |Fn| =

(
2n

n+ 1

)
=

(
2n

n− 1

)
.

Proposition 1.4.3. For every n ∈ N there is a bijection f : En\Dn → Fn.
Thus |En| − |Dn| = |Fn|.

Proof. For D = (d1, . . . , d2n) ∈ En, D 6∈ Dn ⇐⇒ d1 + d2 + · · ·+ dj = −1 for
some j ∈ [2n]. For D ∈ En\Dn we take minimum such j and set

f(D) := (−d1,−d2, . . . ,−dj , dj+1, . . . , d2n) .

Since the initial part of D with length j has one more −1 than 1s, and the rest
of D contrarywise, f(D) has two more 1s than −1s and belongs to Fn. For
D ∈ Fn take the shortest initial part with sum 1 (which exists) and change
signs in it. This gives a mapping g : Fn → En\Dn, inverse to f . So f is a
bijection. 2

Since

|En| − |Fn| =
(

2n

n

)
−
(

2n

n− 1

)
=

(2n)!(1− n
n+1 )

n!n!
=

1

n+ 1

(
2n

n

)
,
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the previous two propositions prove that cn = |Dn−1| = |En−1| − |Fn−1| =
1
n

(
2n−2
n−1

)
. For reference we record the count of Dn as a proposition.

Proposition 1.4.4 (counting Dyck words). The number of Dyck words
with size n ∈ N0 is

#Dn = cn+1 =
1

n+ 1

(
2n

n

)
.

Exercise 1.4.5. Do we really have to translate rp trees to Dyck words? Could
not the argument be carried on just with rp trees?

Let us have a look at so called good bracketings, counted by the Catalan
numbers too. They relate both to rp trees and to Dyck words. What is a
good bracketing? A basic syntactic combinatorial concept in logic (even though
many textbooks on mathematical logic do not recognize it as such, but some
do) without which we would stay helpless over a formula and could not parse it
correctly.

A good bracketing is a bijection f : A → B between two disjoint
subsets A,B ⊂ [n] (n ∈ N0), such that i < f(i) for every i ∈ A and,
for every i, j ∈ A, i < j < f(i)⇒ f(j) < f(i).

Obviously, we may assume in addition that A ∪ B = [2n] and |A| = |B| = n
and will do so; we call such partitions bracketings, the elements of A and B
record, respectively, the positions of left and right brackets “(” and “)”. In a
good bracketing f pairs each opening bracket with its closing partner. By the
next proposition, f is unique; we can recover these pairs and parse each well
bracketed formula unambiguously. For example, consider the bracketings

( ( ( ) ( ) ) ) ) ( ( ) ( ) and ( ( ( ) ( ) ) ) ( ( ) ) ( ) .

The former is not good but the latter is, with f(1) = 8, f(2) = 7, f(3) = 4,
f(5) = 6, f(9) = 12, f(10) = 11 and f(13) = 14.

Proposition 1.4.6 (uniqueness of good bracketings). For every n ∈ N0

and every partition [2n] = A∪B with two n-element blocks, there exists at most
one good bracketing f : A→ B.

Proof. Let f : A→ B be a good bracketing where A and B are as given. We
consider labeling ` : [2n] → {−1, 1}, `(A) = {1} and `(B) = {−1}, and claim
that for every i ∈ A and j ∈ [2n] with i ≤ j < f(i),

`(i) + `(i+ 1) + · · ·+ `(j) > 0 and `(i) + `(i+ 1) + · · ·+ `(f(i)) = 0 .

Indeed, by the definition of f each element e ∈ B ∩ [i, j] pairs with the element
f−1(e) ∈ A ∩ [i, e] but i remains unpaired, and for the whole interval [i, f(i)]
the elements f−1(e) exhaust A ∩ [i, f(i)] and |B ∩ [i, f(i)]| = |A ∩ [i, f(i)]|. So
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if f exists, it can be recovered just from A and B by setting for i ∈ A the value
f(i) to be the first j ∈ (i, 2n] with `(i) + `(i+ 1) + · · ·+ `(j) = 0. 2

Thus we identify good bracketings with those words from {−1, 1}2n with n −1s
and n 1s, for which there is a bijection f as above between the positions of 1s
and −1s. We denote the set of good bracketings in this format by Bn. They
look quite similar to Dyck words. Indeed, they are the same.

Proposition 1.4.7 (good bracketings are Dyck words). For any n ∈ N0,

Bn = Dn .

Hence |Bn| = cn+1 = 1
n+1

(
2n
n

)
.

Proof. Let D = (d1, d2, . . . , d2n) ∈ {−1, 1}2n have n −1s and n 1s. Assume
that D ∈ Bn and take the bijection f : A→ B (A are the positions of 1s, and
B of −1s) proving it. Consider an initial segment (d1, . . . , dj), 1 ≤ j ≤ 2n, of D.
We cover [1, j] by the intervals [1, f(1)], [f(1)+1, f(f(1)+1)], . . . , [i, f(i)] where
i ≤ j ≤ f(i). By the displayed inequalities in the proof of Proposition 1.4.6,∑
k∈I dk = 0 if I is any on these intervals and is ≥ 0 if I = [i, j]. Thus∑j
k=1 dk ≥ 0 and D ∈ Dn.
Assume that D ∈ Dn. We prove by induction on n that D ∈ Dn. For

n = 0 it is true as then D = () and the bijection f is an empty mapping.
Suppose that n > 0, consider the minimum j with d1 + d2 + · · · + dj = 0 and
set D1 = (d2, . . . , dj−1) and D2 = (dj+1, . . . , d2n). It is easy to see that D1 and
D2 are Dyck words, shorter than D. By induction, they are good bracketings
and we have for them the corresponding bijections f1 and f2. Thus D is a good
bracketing in Dn, witnessed by the bijection f = f1 ∪ f2 ∪ {(1, j)}.

The enumeration result follows from Proposition 1.4.4. 2

We conclude that of the two equivalent decriptions of the same object, as a Dyck
word or as a good bracketing, the former is simpler and the latter explicitly (and
thus better) captures the inherent recursive structure.

Exercise 1.4.8. Devise another combinatorial proof of the previous result by
partitioning the words in {−1, 1}2n with n −1s and n 1s into n+ 1 blocks with
equal sizes, one of them being the good bracketings.

We switch to permutations with forbidden patterns. They add to rp trees,
Dyck words and good bracketings many more families counted by the Catalan
numbers. Here we present six. For n ∈ N symbol Sn denotes the set of n!
permutations of [n] = {1, 2, . . . , n}, i.e. the set of all n-tuples a1a2 . . . an with
{a1, a2, . . . , an} = {1, 2, . . . , n}, and S =

⋃
n≥1 Sn the set of all permutations.

For π ∈ Sm we write |π| = m. A permutation π = a1a2 . . . am ∈ Sm is contained
in a permutation ρ = b1b2 . . . bn ∈ Sn, written

π � ρ ,
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if there is a subsequence 1 ≤ i1 < i2 < · · · < im ≤ n of 1, 2, . . . , n (in particular,
m ≤ n) such that for every j, k ∈ [m] we have

aj < ak ⇐⇒ bij < bjk .

For example, 12 6� ρ if and only if ρ = n(n − 1) . . . 21. In more visual terms,
π � ρ if and only if in any graph (in the sense of graphs of real function) R of
ρ,

R = {(x1, y1), (x2, y2), . . . , (xn, yn)} ⊂ R2

where x1 < x2 < · · · < xn and yi < yj ⇐⇒ bi < bj , contains as a subset a
graph (in this sense) of π. In yet another way we express the containment by
the normalization n : N∗∗ → S, where N∗∗ are all finite injective sequences of
the natural numbers,

n(x1x2 . . . xk) = a1a2 . . . ak ∈ Sk such that xi < xj ⇐⇒ ai < aj .

Then π � ρ iff ρ has a subsequence whose normalization is π. For any k ∈ N
we define a mapping from S to N∗∗ by

a1a2 . . . am 7→ a1a2 . . . am + k := (a1 + k)(a2 + k) . . . (am + k) .

For any (possibly infinite) set of permutations X ⊂ S and n ∈ N we define

S(X) = {ρ ∈ S | ∀π ∈ X : π 6� ρ} and sn(X) = |S(X) ∩ Sn| ∈ N0 .

Thus sn(X) counts the permutations of 1, 2, . . . , n avoiding (not containing)
every permutation in X. If #X = 1 and X = {π}, we omit the curly brackets
and write just S(π) and sn(π). For example, sn(12) = sn(21) = 1 for every
n ∈ N. We determine the counting functions sn(π) for all six π ∈ S3. They turn
out to be all equal and, as the reader already rightly guesses, are equal to the
sequence of Catalan numbers. First we reduce by a symmetry argument the six
cases to just two.

Proposition 1.4.9 (not six but two cases). For

π ∈ {132, 231, 312, 213} and π ∈ {123, 321} ,

the four, respectively two, counting functions sn(π) coincide.

Proof. Consider the reversal and complement r, c : S → S,

r(a1a2 . . . an) = anan−1 . . . a1

and
c(a1a2 . . . an) = (n− a1 + 1)(n− a2 + 1) . . . (n− an + 1) .

From the definition of the containment we have that sn(π) = sn(r(π)) and
sn(π) = sn(c(π)) for every π ∈ S and n ∈ N. Since r(132) = 231, c(132) = 312,
r(c(132)) = 213 and r(123) = 321, the result follows. 2
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Exercise 1.4.10. In more details, why is it true that sn(π) = sn(r(π)) and
sn(π) = sn(c(π))? What group do r and c generate?

Proposition 1.4.11 (132-avoiding permutations). For every n ∈ N,

sn(132) = #{ρ ∈ Sn | ρ 6� 132} = cn+1 =
1

n+ 1

(
2n

n

)
.

Proof. Let sn = sn(132). We set s0 = 1. Then for every n ∈ N we have the
recurrence

sn =

n−1∑
i=0

sisn−1−i . (1.14)

It mirrors the bijection (we denote S0(132) = S(132) ∪ {∅})

f : S(132)→ S0(132)× S0(132), ρ 7→ (σ1, σ2) = (n(ρ1), n(ρ2)) ,

satisfying |ρ| = |σ1| + |σ2| + 1. Here for ρ ∈ S(132) ∩ Sn the (possibly empty)
ρi are given by ρ = ρ1nρ2. We check that f has the stated properties. Crucial
observation is that, since 132 6� ρ, ρ1 > ρ2. So we recover uniquely ρ from
(σ1, σ2) and f is injective. In the other way, for any pair (σ1, σ2) in S0(132)×
S0(132) with |σ1| = k and |σ2| = l, the permutation

(σ1 + l) (k + l + 1)σ2 ∈ S(132) ∩ Sk+l+1

and maps by f to (σ1, σ2), which shows that f is onto. The relation |ρ| =
|σ1|+ |σ2|+ 1 is obvious.

This decomposition and recurrence (1.14) are very similar but not identical
to Proposition 1.1.1 and recurrence (1.1) (see Exercise 1.4.12). Let S = S(x) =∑
n≥0 snx

n. Recurrence (1.14) says that

S − 1 = xS2, or xS2 − S + 1 = 0 , (1.15)

which should be compared with equation (1.3). Multiplying with x we get
(xS)2 − xS + x = 0 and see that xS = C, which gives the result sn = cn+1 =

1
n+1

(
2n
n

)
. 2

Exercise 1.4.12. We revisit recurrences (1.1) and (1.14). Let an, bn ∈ N be

given by the recurrences a1 = 1, an =
∑n−1
i=1 aian−i for n ≥ 2, b0 = 1 and

bn =
∑n−1
i=0 bibn−i−1 for n ≥ 1. Prove directly, without resorting to generating

functions, that bn = an+1.

Proposition 1.4.13 (123-avoiding permutations). For every n ∈ N,

sn(123) = #{ρ ∈ Sn | ρ 6� 123} = cn+1 =
1

n+ 1

(
2n

n

)
.
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Proof.
2

Corollary 1.4.14 (Catalan numbers everywhere). For all six π ∈ S3 and
n ∈ N,

sn(π) = #{ρ ∈ Sn | ρ 6⊃ π} = cn+1 =
1

n+ 1

(
2n

n

)
.

Proof.
2

1.5 Can (cn) satisfy a linear recurrence with con-
stant coefficients?

From recurrence (1.1) we derived simpler recurrence (1.6). Perhaps recurrence
(1.1) could be simplified even more and the Catalan numbers could be shown
to satisfy a linear recurrence of the form

cn = α1cn−1 + α2cn−2 + · · ·+ αkcn−k, n > n0 ≥ k ? (1.16)

Here the fixed k ∈ N is the order of the recurrence and all coefficients αi ∈ C
with αk 6= 0 are constants. Note that recurrence (1.6) has order k = 1 but the
coefficient α1 = α1(n) = 4n−6

n depends on n. Sequences satisfying recurrences
like (1.16) and their GFs are discussed in Chapter 5. We show that (cn) does
not belong to them.

Proposition 1.5.1. The Catalan numbers cn satisfy no linear recurrence with
constant coefficients, that is, no recurrence of the form (1.16).

Certainly, this is not an unexpected result. Its beauty lies in the various ways
one can prove it. We present four proofs, all of which but the last use properties
of rational generating functions that will be established in Chapter 5.

First proof, by 2-adic valuation

Proposition 1.1.3 says that odd values of cn are highly lacunary. Linear
recurrence sequences with constant coefficients cannot behave thus. By Propo-
sition 5.1.2 in Chapter 5 we may assume that the coefficients αi in equation
(1.16) all lie in the field of fractions Q. For α ∈ Q\{0} we denote by ord2(α) ∈ Z
the exponent of 2 in the prime factorization of α, the unique m ∈ Z such that
α = 2mβ where β ∈ Q can be expressed with both numerator and denominator
odd, and set ord2(0) = +∞. For example, ord2( 3

28 ) = −2. Recall two basic
properties of the function ord2 : Q→ Z ∪ {+∞} which it shares with all other
p-adic valuations ordp for prime numbers p:
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Exercise 1.5.2. Let α, β ∈ Q. Prove the following.

1. We have ord2(αβ) = ord2(α) + ord2(β).

2. Also, ord2(α + β) ≥ min(ord2(α), ord2(β)), with equality if ord2(α) 6=
ord2(β).

To prove Proposition 1.5.1 we assume for contradicion that equality (1.16)
holds for every n > n0 for some k ∈ N constant coefficients αi ∈ Q, αk 6= 0. We
write it symmetricly as

α0cn + α1cn−1 + · · ·+ αkcn−k = 0, n > n0 ,

where α0 := −1. Let

m = min
0≤i≤k

ord2(αi), thus m ≤ ord2(α0) = 0 .

We fix a j, 0 ≤ j ≤ k, such that ord2(αj) = m. Now we can certainly take
an N ∈ N larger that n0 and 2k and such that N − j is a power of 2. Then
none of the other numbers N − i, 0 ≤ i ≤ k and i 6= j, is a power of 2. By
Proposition 1.1.3, cN−j is odd but all other Catalan numbers cN−i in equality
(1.16) with n = N are even. Hence the minimum

min
0≤i≤k

ord2(αicN−i) = min
0≤i≤k

(ord2(αi) + ord2(cN−i))

is attained for the unique index i = j and, by Exercise 1.5.2,

+∞ = ord2(0) = ord2(
∑k
i=0 αicN−i) = ord2(αjcN−j) = ord2(αj) = m ≤ 0 ,

a contradiction. 2

Second proof, by irrationality of C(x)

By the results in Section 5.1, every linear recurrence sequence with constant
coefficients has a rational GF, that is, its GF is a ratio of two polynomials.
Thus equality (1.16) for (cn) would imply that C(x) is rational and therefore,
by formula (1.10),

√
1− 4x =

p(x)

q(x)
, for some p, q ∈ C[x]\{0} .

Thus
(1− 4x)q(x)2 = p(x)2 .

This is impossible: the degree of the left side is odd but the degree of the right
side is even. 2

This resembles the well known proof shown in calculus classes of irrationality
of the real number

√
2.
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Exercise 1.5.3. What are, in algebraic terms, the common features of the
above proof that

√
1− 4x 6∈ C(x) and the proof that

√
2 6∈ Q?

We may as well get contradiction from equation (1.11): if C(x) = p(x)
q(x) for two

(coprime) polynomials p, q ∈ C[x] then substituting x− x2 for x we get

x = C(x− x2) =
p(x− x2)

q(x− x2)
, or x · q(x− x2) = p(x− x2) .

Again, the left degree is odd but the right degree is even, a contradiction.
Polynomial substitution in fact preserves coprimality of two polynomials,

which once more shows that the above displayed equality is impossible:

Exercise 1.5.4. Prove that if p, q ∈ C[x] are coprime polynomials and r ∈ C[x]
is arbitrary but non-constant then the polynomials p(r(x)) and q(r(x)) remain
coprime.

Exercise 1.5.5. By Proposition 1.1.3 the sequence (cn mod 2) is not eventually
periodic: no a, b ∈ N exist such that cn ≡ cn+a modulo 2 whenever n > b. Extend
this from p = 2 to any prime modulus p.

Third proof, by asymptotic analysis

The first idea coming to the mind of an enumerative combinatorialist when
you ask her or him about a proof of Proposition 1.5.1 might be that the asymp-
totics cn ∼ cn−3/24n (Corollaries 1.3.8 and 1.3.10) is clearly incompatible with
power sums, the general explicit form for terms of linear recurrence sequences
with constant coefficients, and that’s it. However, to show it without handwav-
ing takes some effort.

What are power sums? We prove in Section 5.1 that if (cn) satisfies recur-
rence (1.16) then for every n > n0 we have equality

cn =

r∑
j=1

pj(n)γnj (1.17)

where r ∈ N, γj ∈ C\{0} are distinct numbers, and pj ∈ C[x] are nonzero
polynomials. It seems clear that cn ∼ cn−3/24n and expression (1.17) are for
n → ∞ incompatible, because the leading term in expression (1.17) is cnkγn

with c, γ 6= 0 and k ∈ N0. However, this really only seems; it holds only if the
maximum modulus |γj | is attained for one index j. If it is attained more often,
situation gets complicated. The correct leading term in expression (1.17) is, in
general,

cn = (d1z
n
1 + d2z

n
2 + · · ·+ dtz

n
t )nkγn +O(nk−1γn) (1.18)

where dj ∈ C\{0}, t ∈ N, k ∈ N0, zj ∈ C are distinct numbers with |zj | = 1,
and γ > 0 is the maximum modulus |γj |. In Lemma 1.5.7 below we show
that the coefficient (· · · ) of nkγn satisfies lim supn→∞ |(· · · )| > 0. Trivially,
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|(· · · )| ≤ |d1|+· · ·+|dt| = O(1) for every n. Thus intuition did not betray us and
expression (1.18) and hence expression (1.17) is incompatible with asymptotics
cn ∼ cn−3/24n of Corollary 1.3.10. 2

But it remains to prove the promised lemma. Examples like

1n + (−1)n ,

which is 2 for even n ∈ N0 but 0 for odd n ∈ N0, show that the coefficient (· · · )
may vanish on whole infinite arithmetic progressions. But we prove that on the
other hand it is bounded away from 0 for infinitely many n. We need the next
determinantal formula where we met again Alexandre-Théophile Vandermonde.

Exercise 1.5.6 (Vandermonde determinant). Suppose x1, x2, . . . , xn are
variables. Then

det (xj−1
i )ni,j=1 =

∏
1≤i<j≤n

(xj − xi) .

Lemma 1.5.7. Let t ∈ N, dj ∈ C\{0} and zj ∈ C with |zj | = 1 (zj lie on
the unit complex circle) for j = 1, 2, . . . , t, and let the t numbers dj be mutually
distinct. Then

lim sup
n→∞

|d1z
n
1 + d2z

n
2 + · · ·+ dtz

n
t | > 0 .

Proof. Suppose (for contradiction) that the limsup is 0,

lim
n→∞

(d1z
n
1 + d2z

n
2 + · · ·+ dtz

n
t ) = 0 .

So, denoting the linear combination (· · · ) by v(n), for every k ∈ N there is an
nk ∈ N with |v(nk +m)| ≤ 1

k for m = 1, 2, . . . , t. We express d1, . . . , dt in terms
of v(nk + 1), . . . , v(nk + t) by Cramer’s rule:

dj =
detM(j)

det(znk+m
l )tm,l=1

, j = 1, 2, . . . , t ,

where the t × t matrix M(j) in the numerator arises from the denominator
matrix by replacing in it the j-th column with the column (v(nk + 1), v(nk +
2), . . . , v(nk + t))T . By the definition of determinant, the triangle inequality,
and the assumption on v(nk +m), we have the bound

|detM(j)| ≤ t!

k
.

If we take out znk+1
l from the l-th column of the denominator matrix, it becomes

a Vandermonde matrix: in the l-th column there remain powers zm−1
l , m =

1, 2, . . . , t. By Exercise 1.5.6 and since the numbers zl are all distinct,

|det(znk+m
l )tm,l=1| =

∏
1≤l<l′≤t

|zl′ − zl| =: d > 0 ,
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a nonzero constant independent of k. Thus, for every j = 1, 2, . . . , t,

|dj | ≤
t!

dk
→ 0, k →∞ .

So dj = 0 (which contradicts the assumption that every dj is nonzero). 2

Exercise 1.5.8. Recall Cramer’s rule from linear algebra and its proof.

Exercise 1.5.9. What does the lemma say geometricly? What can be said
about the density of the n ∈ N with v(n) bounded away from 0?

Fourth proof, by algebra

I found this proof as the last one. With hindsight it seems to be the simplest
and most natural of the four. We assume that relation (1.16) holds and sub-

stitute in it explicit expressions cn−i = 1
n−i
(

2n−2i−2
n−i−1

)
= 1

n−i
(2n−2i−2)!
(n−i−1)!2 (formula

(1.7)). We multiply it by n(n−1)...(n−k)·(n−1)!2

(2n−2k−2)! , to cancel common factors and

denominators, and rearrange it. Using the Pochhammer symbol

(x)k := x(x− 1)(x− 2) . . . (x− k + 1), k ∈ N0, (x)0 := 1 ,

and setting α0 := −1, we obtain the resulting equation

k∑
i=0

αi · (̂n)k+1 · (2n− 2− 2i)2k−2i · (n− 1)2
i = 0

in which ·̂ · · signifies omission of the factor n − i. We regard n as an inde-
terminate and set n = 0. Then all summands vanish except for i = 0 that is
−(−1)k(−2)2k 6= 0. Hence the sum is a nonzero polynomial in n, with degree
at most 3k. It vanishes for every n > n0, which is impossible. 2

Exercise 1.5.10. Why is it impossible? (Cf. Exercise 1.3.6.)

1.6 Refining cn — the Narayana numbers

One can refine the count of rp trees, cn = 1
n

(
2n−2
n−1

)
, by many statistics. One

of the basic is the number of leaves where a leaf is a childless vertex. Thus we
define for k, n ∈ N and 1 ≤ k ≤ n,

the n, k-th Narayana number cn,k = the number of rp tress with

n vertices and k leaves .

We explain why cn,k are “Narayana” in Section 1.7. Clearly, cn =
∑n
k=1 cn,k

and c1,1 = 1 but cn,n = 0 for n > 1. The earlier picture on p. 2 shows that
c4,1 = c4,3 = 1 and c4,2 = 3. Is there a nice formula for cn,k? We reveal the
answer here, but prove it later.
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Proposition 1.6.1 (Narayana numbers). Let n ≥ 2 and 1 ≤ k ≤ n − 1.
There are

cn,k =
1

n− 1

(
n− 1

k

)(
n− 1

k − 1

)
rp trees with n vertices and k leaves.

It is easy to generalize the argument of Section 1.3 and to deduce for the bi-
variate GF counting rp trees by vertices and leaves a formula extending (1.10).
Compared to the univariate case, it is harder to extract from it an explicit
formula for coefficients. We defer it to Section 4.4.

We enrich the decomposition of Proposition 1.1.1 with the information about
leaves. For an rp tree T , the number of vertices is |T | and the number of leaves
is denoted by ‖T‖.

Proposition 1.6.2. There is a bijection

f : T \T1 → T × T , T 7→ (T1, T2) ,

such that always |T | = |T1| + |T2| and ‖T‖ = ‖T1‖ + ‖T2‖, except for |T2| = 1
when ‖T‖ = ‖T1‖+ ‖T2‖ − 1 = ‖T1‖.

Proof. We use the decomposition of Proposition 1.1.1. One-vertex tree has
just one leaf. The number of leaves in T is the sum of their numbers in T1 and
in T2, except when T2 has just one vertex and does not contribute to ‖T‖. 2

We consider the bivariate GF C = C(x, y) ∈ C[y][[x]],

C = C(x, y) =
∑
T∈T

x|T |y‖T‖ =
∑
n,k≥1

cn,kx
nyk = xy + x2y + x3(y + y2) + . . . .

By Proposition 1.6.2,

C − xy = C · (C − xy + x), or C2 + (x− xy − 1)C + xy = 0 .

The quadratic formula gives

C(x, y) =
1 + xy − x−

√
(1 + xy − x)2 − 4xy

2
(1.19)

—this extends the formula (1.10) and specializes to it when y = 1. Compared
to C(x), the difficulty is now that we have more than two terms under

√
. . . and

cannot use the binomial theorem easily. Still, there is a way to extract the nice
formula of Proposition 1.6.1, and we explain it in Section 4.4 when we learn
more about algebraic manipulations with GFs.

We are used to the complementarity of binomial coefficients:(
n

k

)
=

(
n

n− k

)
because the k-element subsets of [n] are in bijection with their complements, the
(n−k)-element ones. Interestingly, the numbers cn,k enjoy the same symmetry.
We prove it by their GF.
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Proposition 1.6.3. Let n ≥ 2 and 1 ≤ k ≤ n− 1. Then

cn,k = cn,n−k ,

that is, there are as many rp trees with k leaves and n−k non-leaves as rp trees
with n− k leaves and k non-leaves.

Proof. To prove that cn,k = cn,n−k via C(x, y) means to show that C(x, y)
is invariant upon the substitution x := xy, y := y−1, with the exception of the
first monomial xy that turns in x. Applying it to the formula (1.19), we get

D(x, y) := C(xy, y−1) =
1− xy + x−

√
(1− xy + x)2 − 4x

2
.

It is easy to check the identity

(1 + xy − x)2 − 4xy = (1− xy + x)2 − 4x

(either side equals 1 + x2y2 + x2− 2xy− 2x− 2x2y), and thus indeed D(x, y) =
C(x, y)− xy + x. 2

Exercise 1.6.4. Find bijective proof for the identity cn,k = cn,n−k, based on
the combinatorial definition of cn,k.

By the combinatorial definitions, cn =
∑n−1
k=1 cn,k. So we have the binomial

identity

1

n

(
2n− 2

n− 1

)
=

1

n− 1

n∑
k=1

(
n− 1

k

)(
n− 1

k − 1

)
.

1.7 Stanley’s list and Valtr’s theorem

We call the list after its author, R. P. Stanley. In Section 1.4 we saw that the
Catalan numbers count besides rp trees also Dyck words. In fact, cn count very
many other families of structures. Stanley in [73, Exercise 6.19] collected 66
such Catalan problems. In [74] he has extended the list of Exercise 6.19 to the
(current) total of 207 items. Below we quote verbatim from Stanley’s list [73,
Exercise 6.19] and [74] and include every (c5 = 14)-th Catalan problem from it;
we put our skippings or remarks in square brackets, like [. . . ].

“
6.19. [1]–[3+] Show that the Catalan numbers Cn = 1

n+1

(
2n
n

)
count the number

of elements of the 66 sets Si, (a) ≤ i ≤ (nnn), given below. We illustrate
the elements of each Si for n = 3, hoping that these illustrations will make
any undefined terminology clear. (The terms used in (vv)–(yy)) are defined in
Chapter 7.) Ideally Si and Sj should be proved to have the same cardinality by
exhibiting a simple, elegant bijection φij : Si → Sj (so 4290 bijections in all).
In some cases the sets Si and Sj will actually coincide but their description will
differ.
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a. Triangulations of a convex (n+ 2)-gon into n triangles by n− 1 diagonals
that do not intersect in their interiors:

��@@

�
�
��

B
B
BB ��@@

�
��

��@@

@
@@

B
B
BB ��@@

�
��

�
�
�� ��@@

@
@@

[. . . ]

o. Ways of connecting 2n points in the plane lying on a horizontal line by
n nonintersecting arcs, each arc connecting two of the points and lying
above the points:

r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r������ �� ��� � �� ��� � �� ��� � ��� �� �
[. . . ]

cc. Permutations a1a2 . . . a2n of the multiset {12, 22, . . . , n2} such that: (i) the
first occurrences of 1, 2, . . . , n appear in increasing order, and (ii) there is
no subsequence of the form αβαβ:

112233 112332 122331 123321 122133

[. . . ]

qq. Partitions {B1, . . . , Bk} of [n] such that if the numbers 1, 2 . . . , n are
arranged in order around a circle, then the convex hulls of the blocks
B1, . . . , Bk are pairwise disjoint:

r r r r r r r r r r
r r r r r

�
��

T
TT

�
��

T
TT

[. . . ]

eee. Nonisomorphic (n+ 1)-element posets that are a union of two chains and
that are not a (nontrivial) ordinal sum, rooted at a minimal element:

r rr rh rr
r rh rr
r rh @

@r rr rh @
@r rr rh

25



[. . . , we move to [74]]

(sss) Plane trees for which every vertex has 0, 1, or 3 children, with a total of
n+ 1 vertices with 0 or 1 child

rrrr
rr r rr��SS
rr r rr��SS
rr r rr��SS
rrr r r��SS

[. . . ]

(g4) Dyck paths with n peaks such that there are no factors (consecutive steps)
UUU and UUDD

r r rr r r r�� �� ��AA AA AA

r r rr r r rr r�� �� ��AA AA AA

�� AA

r rr r r rr r r�� ��AA AA

�� ��AA AA

r rr r r rr r r�� ��AA AA

�� ��AA AA

r rr r r rr r rr r�
�� �
��

A
A
AA

AA
AA��

[. . . ]

(u4) Schröder paths as in Exercise 6.39(t) from (0, 0) to (2n, 0) with neither
peak nor level step at odd height

r rr rr r�
�� A

AA

r rr r rr r�
��AA��A

AA

rr rr r r�
��A
AA

rr rr rr ���AAA r r r r
[. . . ]

(i5) Ways of connecting n+ 1 points in the plane lying on a horizontal line by
noncrossing arcs above the line such that no arc connects adjacent points
and the right endpoints of the arcs are all distinct
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r r r r r r r r� �� � r r r r� � r r r r� � r r r r� �
[. . . ]

(w5) Sequences 1 ≤ a1 < a2 < · · · < an ≤ 2n such that ai ≤ 2i− 1

123 124 125 134 135

[added, the illustration is missing in [74], . . . ]

(k6) Sequences (a1, . . . , an) ∈ Nn for which there exists a distributive lattice of
rank n with ai join-irreducibles of rank i, 1 ≤ i ≤ n

300 210 120 201 111

[. . . ]

(y6) Number of distinct terms (monomials) appearing in the expansion of
∏n
i=1(x1+

x2 + · · ·+ xi)

x(x+ y)(x+ y + z) = x3 + 2x2y + xy2 + x2z + xyz

[. . . ]

(m7) 321-avoiding permutations w ∈ S2n+1 such that i is an excedance of w
(i.e., w(i) > i) if and only if i 6= 2n+ 1 and w(i)− 1 is not an excedance
of w (so that w has exactly n excedances)

4512736 3167245 3152746 4617235 5671234

[. . . ]

(a8) Arrays (
a1 a2 . . . ar−1 ar
b1 b2 . . . br−1

)
of integers, for some r ≥ 1, such that ai > 0, bi ≥ 0,

∑
ai = n, and

bi < ai + bi−1 for 1 ≤ i ≤ r − 1 (setting b0 = 0)(
1 1 1
0 0

) (
2 1
0

) (
2 1
1

) (
1 2
0

) (
3
)

[. . . ]
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(o8) Natural partial orderings <P of [n] such that if i <P k and i <Z j <Z k,
then i <P j

r r r
1 2 3 r
rr3
1

2

r
rr
2

3

1

r r
rCCC ���
1

2 3 rr
r
1

2

3

”

Exercise 1.7.1. Establish some of the 4290 bijections hinted to above.

Finitely many points in the plane form a convex chain if they all lie on
the graph of a convex function. In other words, the points p1 = (x1, y1), p2 =
(x2, y2), . . . , pn = (xn, yn) with x1 < x2 < · · · < xn form a convex chain if the
vectors p2 − p1, p3 − p2, . . . , pn − pn−1 are ordered counter-clockwisely. Convex
chains is a particular case of convex n-gons. The following remarkable theorem,
due to P. Valtr, places for the first time (as far as we know) the Catalan num-
bers in the context of random discrete geometry. By Pr(A |B) we denote the
probability of an event A conditioned by another event B, that is,

Pr(A |B) =
Pr(A ∩B)

Pr(B)
if Pr(B) > 0 .

If A ⊂ B, as will be the case here, then in fact Pr(A |B) = Pr(A)
Pr(B) .

Theorem 1.7.2 (Valtr, 1995). Let p1, p2, . . . , pn be n random and mutually
independent points in the unit square [0, 1]× [0, 1]. Then

Pr(the points pi form a convex chain | they already form a convex n-gon)

=
1

cn
=

1
1
n

(
2n−2
n−1

) .
Exercise 1.7.3. Prove Valtr’s theorem for n = 3.

But in the spirit of Stanley’s list we should provide an illustration of the case
c4 = 5. Here it is.

Proposition 1.7.4. Let p1, p2, p3, and p4 be four points, picked at random and
mutually independently in the unit square [0, 1]× [0, 1]. Then

Pr(they form a convex chain | they form a convex quadrangle) =
1

c4
=

1

5
.

Proof.
2
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Comments and references

The Catalan numbers were named after the Belgian and French mathemati-
cian Eugène Ch. Catalan (1814–1894). However, L. Euler investigated them
already in 1751 and they appeared in 1730s in the work of a Chinese scientist
and mathematician Ming Antu—see Pak [62] for more information on history
of cn. For more information on modular behaviour of the Catalan (and re-
lated) numbers consult Chen and Jiang [20], Eu, Liu and Yeh [31] and Kauers,
Krattenthaler and Müller [44] (and further references mentioned in these arti-
cles). An argument similar to but more complicated than that in the proof of
Proposition 1.1.6 was given by Villarino [80] to prove somewhat stronger bound
that has 6 instead of our 8. This is an example of the symbolic method when
combinatorial relations for counted structures are directly mirrored by relations
for generating functions. See Flajolet and Sedgewick [36], Goulden and Jackson
[39] and Bergeron, Labelle and Leroux [11] for more information. (named after
the French musician, mathematician and chemist Alexandre-Théophile Vander-
monde (1735–1796)) (named after the Scottish mathematician James Stirling
(1692–1770)) taken from Lando [48, Chapter 4.2]. Asymptotic relations of the
form

an ∼ cn−3/2An, n→∞ ,

occur surprisingly often, in enumerations of trees of various kinds but also for
many other objects. Bell, Burris and Yeats [10] explain this ubiquity. These
words are named after the German mathematician Walther F. A. von Dyck
(1856–1934). (named after the Swiss mathematician Gabriel Cramer (1704–
1752)) These are so called Narayana numbers (named after the Indian mathe-
matician Tadepali Venkata Narayana (1930–1987)). Valtr [78, 79] He has pub-
lished the material as a monograph on Catalan problems in [75]. , the paths are
named after the German mathematician Ernst Schröder (1841–1902)
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Chapter 2

Analytic intermezzo I.
Stirling’s formula for
factorial

The second chapter presents three proofs for the fundamental result in combi-
natorial asymptotics, Stirling’s formula for factorial. Let n! =

∏n
i=1 i for n ∈ N

and 0! := 1. Stirling’s formula reads:

n! =
(√

2π + o(1)
)√

n

(
n

e

)n
, n→∞ (2.1)

(Theorem 1.3.7). The proofs are based on the following integral representations.
For every n ∈ N0 one has

log(n!) =

∫ n+ 1
2

1
2

log x dx+ c1 +O(n−1) (2.2)

n! =

∫ +∞

0

e−xxn dx (2.3)

1

n!
=

1

2πi

∮
ez dz

zn+1
. (2.4)

These are remarkable formulas. Only the second represents n! directly, other
two have simple expressions in n!. The first is an asymptotic equality with an
unspecified constant c1 > 0. In the first integral the integrand does not depend
on the parameter n which appears in the integration path, and in the other two
integrals it is the other way around. In the third complex integral we integrate
over any positively oriented circle centered at the origin. In the next three
sections we deduce relation (2.1) from the three identities (2.2), (2.3) and (2.4)
in this order. We always start by proving the identity. In the last section we
give references and commments.
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2.1 Approximating sums with integrals

We prove identity (2.2). For n ∈ N0,

log(n!) =
∑n
m=1 logm .

Also, for m ∈ N, ∫ m+ 1
2

m− 1
2

log x dx = logm+O(m−2) (2.5)

because

(x log x− x)
∣∣m+ 1

2

m− 1
2

= m log

(
m+ 1

2

m− 1
2

)
+

log(m2 − 1
4 )

2
− 1

= m log

(
1 +

1

m− 1
2

)
+

log
(
1− 1

4m2

)
2

+ logm− 1

=
m

m− 1
2

− m

2
(
m− 1

2

)2 − 1 +O(m−2) + logm

=
− 1

2

2
(
m− 1

2

)2 +O(m−2) + logm = logm+O(m−2)

where we used the Taylor expansion log(1 + x) = x− x2

2 + x3

3 − · · · (|x| < 1) in

the form log(1 + x) = x − x2

2 + O(x3) (|x| ≤ 1
2 , say). Summing equation (2.5)

over m = 1, 2, . . . , n we get by Exercise 2.1.1 identity (2.2):

log(n!) =

n∑
m=1

(∫ m+ 1
2

m− 1
2

log x dx+O(m−2)

)
=

∫ n+ 1
2

1
2

log x dx+ c1 +O(n−1) .

Exercise 2.1.1. Justify that
∑n
m=1O(m−2) = c1 +O(n−1).

Evaluating the integral once more we have (again using the above Taylor
expansion of logarithm)

log(n!) =

∫ n+ 1
2

1
2

log x dx+ c1 +O(n−1)

= (n+ 1
2 ) log(n+ 1

2 )− (n+ 1
2 ) + c2 +O(n−1)

= n log n− n+ 1
2 log n+ c3 +O(n−1)

for some constants ci. So, by Exercise 2.1.2,

n! = exp (log n!) =
√
n

(
n

e

)n
exp

(
c3 +O(n−1)

)
=
(
c+O(n−1)

)√
n

(
n

e

)n
where c = exp(c3) > 0. This is formula (2.1), even with the error term o(1)
improved to O(n−1), but with yet undetermined constant c.

31



Exercise 2.1.2. Justify that exp
(
c+O(n−1)

)
= exp(c) +O(n−1) as n→∞.

To show c =
√

2π we derive a recurrence for the quantity

Wn :=

∫ π/2

0

(cosx)ndx, n = 0, 1, 2, . . . .

We have W0 = π
2 and W1 = 1. Integration by parts gives

Wn = sinx · (cosx)n−1|π/20 + (n− 1)

∫ π/2

0

sin2 x · (cosx)n−2 · dx .

= 0 + (n− 1)(Wn−2 −Wn)

(due to sin2 x = 1− cos2 x). So, for n ≥ 2,

Wn =
n− 1

n
·Wn−2 .

Thus

W2n =
(2n− 1)(2n− 3) . . . 1

2n(2n− 2) . . . 2
· π

2
=

(2n)!

(2nn!)2
· π

2

W2n+1 =
2n(2n− 2) . . . 2

(2n+ 1)(2n− 1) . . . 1
· 1 =

(2nn!)2

(2n+ 1)!

and the ratio is
W2n

W2n+1
=

(2n)!2(2n+ 1)

(2nn!)4
· π

2
.

Replacing the factorials with incomplete Stirling’s formulas we get that

W2n

W2n+1
∼ 2π

c2
.

It follows from the definition of Wn that Wn < Wn−1 < Wn−2. By the recur-
rence,

1 <
Wn−1

Wn
<
Wn−2

Wn
= 1 +

1

n− 1

and Wn−1

Wn
→ 1 as n→∞. Thus 2π

c2 ∼ 1 and c =
√

2π. 2

2.2 The gamma function

We prove the identity (2.3). Denoting the integral in it by In, we have I0 =
−e−x|+∞x=0 = 0− (−1) = 1. For n ≥ 1 integration by parts gives

In = (−e−x)xn|+∞x=0 −
∫ +∞

0

(−e−x)nxn−1, so In = nIn−1 .
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By induction, In = n! for every n ∈ N0.
We proceed to deduce Stirling’s formula. We make the substitution x =

n(1 + y),

n! =

∫ +∞

0

e−xxn dx = e−nnn+1

∫ +∞

−1

(
e−y(1 + y)

)n
dy .

This shifts the peak of the integrand from x = n to y = 0: it is easy to check
that e−y(1 + y) on [−1, 0] increases from 0 to 1, and on [0,+∞) it decreases
exponentially fast from 1 to 0+. Also,

e−y(1 + y) = e−y log(1+y) = e−y
2/2+y3/3−y4/4+... = e−y

2/2ey
3/3−y4/4+...

= e−y
2/2(1 +O(y3)), |y| < 1

2 .

We split the integration interval by a small δ = δ(n) > 0, which we determine
later, into three subintervals (δ → 0 fast enough so that nδ3 → 0):∫ +∞

−1

(
e−y(1 + y)

)n
dy =

∫ −δ
−1

. . . +

∫ δ

−δ
. . . +

∫ +∞

δ

. . .

= J1 +

∫ δ

−δ
e−ny

2/2(1 +O(ny3)) dy + J2

=
(
1 +O(nδ3)

) ∫ δ

−δ
e−ny

2/2 dy + J1 + J2

=
(
1 +O(nδ3)

)
(J3 − 2J4) + J1 + J2 ,

with

J3 =

∫ +∞

−∞
e−ny

2/2 dy =

√
2

n

∫ +∞

−∞
e−t

2

dt =

√
2π

n
, J4 =

∫ +∞

δ

e−ny
2/2 dy .

We used the classic evaluation of the Gauss integral
∫ +∞
−∞ e−t

2

dt =
√
π, which

we prove in the lemma below. We assume that nδ3 → 0 but nδ2 � 1 (by this
we mean that for a constant c > 0, nδ2 > c for every n ∈ N). It follows from
the above observations on e−y(1 + y) that then

|J1|, |J2| = O
(
e−nδ

2/2
)
,

and this estimate holds for |J4| as well.

Exercise 2.2.1 Prove in detail this estimate of J1, J2 and J4.

Hence, with δ = n−1/2+ε/3 for small ε > 0,∫ +∞

−1

· · · =
√

2π

n
+O

(√
nδ3
)

+O
(
e−nδ

2/2
)

=

√
2π

n
+O

(
n−1+ε

)
.
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Alltogether,

n! = e−nnn+1
(√

2π/n+O
(
n−1+ε

))
=
(
1 +O(n−1/2+ε)

)√
2πn

(
n

e

)n
.

2

Lemma 2.2.2 It is true that∫ +∞

−∞
e−t

2

dt =
√
π .

Proof. Since the integrand is a nonnegative even function, the result is equiv-
alent with I :=

∫ +∞
0

e−t
2

dt =
√
π/2 and I2 = π/4. By the Fubini theorem and

the substitution t = vu we have

I2 =

∫ +∞

0

e−t
2

dt

∫ +∞

0

e−u
2

du =

∫ +∞

0

(∫ +∞

0

e−t
2−u2

dt

)
du

=

∫ +∞

0

(∫ +∞

0

ue−u
2(1+v2) dv

)
du

=

∫ +∞

0

(∫ +∞

0

ue−u
2(1+v2) du

)
dv =

∫ +∞

0

dv

2(1 + v2)

= (arctan(+∞)− arctan(0))/2 = π/4 .

2

Guido Fubini (1879–1943) was an Italian mathematician.

Exercise 2.2.3 What does the Fubini theorem say? Where and how we exactly
used it in the calculation?

2.3 Cauchy’s formula

We prove the identity (2.4). We take Cauchy’s formula (for Cauchy’s personalia
see later)

an = [zn]f(z) =
1

2πi

∮
f(z)z−n−1 dz

for the coefficient of zn in the expansion f(z) =
∑
n≥0 anz

n of a function analytic
in a neighborhood of 0 in terms of the complex integral over a simple contour
encircling the origin, and apply it to the exponential function

f(z) = ez =
∑
n≥0

zn

n!

which is entire and has the coefficient of zn equal to 1/n!.
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Exercise 2.3.1 If these words make you feel uncomfortable, it is a good idea to
familiarize yourself with complex analysis and its use in asymptotics: Flajolet
and Sedgewick [36]. It is a wonderful world!

We take for the contour the circle z = reiθ with radius r > 0 and angle θ ∈
[−π, π):

1

n!
=

1

2πi

∫ π

−π

ere
iθ

(reiθ)n+1

d reiθ

dθ
dθ =

1

2π

er

rn

∫ π

−π
er(e

iθ−1)−niθ dθ .

The exponent has expansion r(iθ − θ2/2 +O(θ3))− niθ for θ close to 0, which
suggests to set r = n (thus the integration path will depend on n, after all). We
denote

f(n, θ) = n(eiθ − 1)− niθ = −nθ
2

2 + n(iθ)3

6 + · · · = −nθ
2

2 +O(nθ3), |θ| < 1
2 .

We split the integral very similarly to the previous proof. Let ϕ = ϕ(n) ∈ (0, π)
be a small angle such that nϕ3 → 0 but nϕ2 � 1. Then∫ π

−π
en(eiθ−1)−niθ dθ =

∫ ϕ

−ϕ
ef(n,θ) dθ +

∫ π

ϕ

(
ef(n,θ) + ef(n,−θ)

)
dθ

=

∫ ϕ

−ϕ
e−nθ

2/2(1 +O(nθ3) dθ + I

=
(
1 +O(nϕ3)

) ∫ ϕ

−ϕ
e−nθ

2/2 dθ + I

=
(
1 +O(nϕ3)

) (√
2π/n+O

(
e−nϕ

2/2
))

+ I ,

where we calculated the Gauss integral and estimated its tail exactly as in the
previous proof. As for I, if θ ∈ [ϕ, π] then∣∣∣ef(n,θ)

∣∣∣ =
∣∣∣ef(n,−θ)

∣∣∣ = en(cos θ−1) ≤ en(cosϕ−1) ≤ e−nϕ
2/2

(by the Taylor expansion of cosϕ for small ϕ > 0). Thus for |I| we have the
same bound as for the Gauss tail. Setting ϕ = n−1/2+ε/3 as before we get by a
very similar calculation the same estimate

1

n!
=

1

2π

en

nn

(√
2π

n
+O(n−1+ε)

)
=
(
1 +O(n−1/2+ε)

) 1√
2πn

( e
n

)n
.

2

2.4 Comments and references

Our exposition of the three proofs is based on de Bruijn [15] and Flajolet and
Sedgewick [36]. One can find in the literature and on the Internet many arti-
cles proving Stirling’s formula. For example, just the American Mathematical
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Monthly contains the articles by de Angelis [6], Blyth and Patak [12], Cole-
man [21], Diaconis and Freedman [25], Dutkay et al. [27], Feller [34], Impens
[43], Khan [45], Lou [50], Maria [53], Marsaglia and Marsaglia [54], Michel [56]
and [57], Namias [58], Nanjundiah [59], Neuschel [61], Patin [63], Pinsky [65],
Robbins [67], and Romik [68]. The book [36] contains five proofs of Stirling’s
formula. Three of them make use of the formulas (2.2), (2.3) and (2.4). What
are the representations of n! in the other two proofs?
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Chapter 3

0– 1 laws and the
Blatter–Specker theorem

Section 3.1 presents the general result (Theorem 3.1.1) of B. Bollobás and A.
Thomason that for every increasing (closed to supersets) property of subsets of
an n-element set X there exists a so called threshold function t = t(n): as n
goes to ∞, m = m(n)-element subsets of X for m much smaller than t almost
surely do not have the property, but those for m much larger than t almost
surely do. This applies to properties of graphs (Corollary 3.1.3). Key role in
the proof plays the Kruskal–Katona theorem (Theorem 3.1.8) from extremal
theory of set systems.

Section 3.2 deals with enumerative 0 – 1 laws for relational structures. These
assert that asymptotically (when the size of the universe goes to ∞) either al-
most all such structures have a certain property or almost all do not. R. Fagin
derived a simple asymptotic relation (Theorem 3.2.2) between labeled and unla-
beled count of relational structures. Their properties are best defined in terms
of formulae of mathematical logic, and we introduce and explain this approach
here. One of the earliest 0 – 1 laws of this type, from 1950, is due to R. Carnap
who states it at the end of his tract [18]. It is Theorem 3.2.10, a first-order
0 – 1 law for unlabeled count of relational structures with only unary predicates.
More famous is the result in Theorem 3.2.11, associated with the names of Ju. V.
Glebskij, D. I. Kogan, M. I. Liogon’kij and V. A. Talanov and the name of R.
Fagin: a first-order 0 – 1 law for numbers of general relational structures. To
simplify its exposition we prove in detail only the version for undirected simple
graphs (Theorem 3.2.12). The remarkable proof is an enumerative application
of the completeness theorem for the first-order logic (here without functions),
Theorem 3.2.13, which is due to K. Gödel. We follow the exposition in the
book [71] of J. Spencer, who by his own words was much inspired by R. Fagin’s
original article [33]. Unfortunately, both sources omit the crucial and most in-
teresting part of the proof, namely the proof of the completeness theorem itself.
We fill this lacuna and offer to the interested and patient reader a proof of
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Gödel’s Theorem 3.2.13.
Section 3.3

3.1 The Bollobás–Thomason theorem: thresh-
olds exist

For n ∈ N we will work with the sets [n] = {1, 2, . . . , n}, [n]0 = {0, 1, . . . , n} and
P([n]) = {X | X ⊂ [n]}. A property Q (of subsets of [n]) is any subset

Q ⊂ P([n]) .

One could call Q also a hypergraph with vertices [n]. We say that Q is non-
trivial if Q 6= ∅,P([n]), and that it is increasing (resp. decreasing or an ideal) if
for every A,B ∈ P([n]) with A ⊂ B, A ∈ Q implies B ∈ Q (resp. B ∈ Q implies

A ∈ Q). For any property Q and m ∈ [n]0 we define Qm = Q∩
(

[n]
m

)
where

(
[n]
m

)
denotes the set of m-element subsets of [n]. The ratio

Pm(Q) :=
|Qm|∣∣([n]
m

)∣∣ =
|Qm|(
n
m

)
is called the probability (of Qm) (it is the probability that a random element of(

[n]
m

)
has property Q). We allow that Q depends on n and consider sequences

Q = (Qn) = (Q1, Q2, . . . ) of properties Qn ⊂ P([n]). We say that t(n) ∈ [n]
is a threshold function for (Qn) if for any function m(n) ∈ [n]0 asymptotically
larger (resp. smaller) than t(n), the probability Pm(n)(Q

n) goes to 1 (resp. goes
to 0). The general result on existence of threshold functions is as follows.

Theorem 3.1.1 (Bollobás–Thomason, 1986). Let Q = (Qn) where every
property Qn ⊂ P([n]), n = 1, 2, . . . , is non-trivial and increasing. Then there
exists a function t : N → N, t(n) ∈ [n] for every n ∈ N, such that for every
function m : N→ N0, m(n) ∈ [n]0 for every n ∈ N,

lim
n→∞

m(n)

t(n)
= +∞⇒ lim

n→∞
Pm(n)(Q

n) = 1

and

lim
n→∞

m(n)

t(n)
= 0⇒ lim

n→∞
Pm(n)(Q

n) = 0

— t(n) is the threshold function for property Q.

Exercise 3.1.2. Statement of the theorem excludes the trivial increasing prop-
erties ∅ and P([n]). Could one include them?

We apply the theorem to graphs, which are systems of two-element sets (edges).
For m ∈ N0 and n ∈ N we let

G(m,n) =

(([n]
2

)
m

)

38



denote the set of all graphs on [n] with m edges. A property Q ⊂ P(
(

[n]
2

)
)

of graphs on [n] (a graph G (on [n]) is any subset G ⊂
(

[n]
2

)
) is non-trivial if

it is non-empty and some graph does not lie in it, and it is increasing if it is
closed to supergraphs (if G,H are graphs on [n] with G ⊂ H and G ∈ Q then
H ∈ Q). For example, connected graphs — graphs G on [n] such that [n] cannot
be partitioned in two blocks so that every edge in G lies completely in one block
— form an increasing and (for n > 1) non-trivial property.

Corollary 3.1.3. Every sequence Q = (Qn), n ∈ N, of non-trivial and increas-

ing graph properties Qn ⊂ P(
(

[n]
2

)
) has a threshold function, a function t(n),

1 ≤ t(n) ≤
(
n
2

)
, such that for every function m(n), 0 ≤ m(n) ≤

(
n
2

)
,

lim
n→∞

m(n)

t(n)
= +∞ (resp. = 0) ⇒ lim

n→∞

|Qn ∩G(m(n), n)|
|G(m(n), n)|

= 1 (resp. = 0) .

Proof. For n ∈ N let N = N(n) =
(
n
2

)
. After fixing a bijection between [N ] and(

[n]
2

)
we also have a bijection between P([N ]) and graphs on [n]. It follows that

the property RN ⊂ P([N ]) of subsets of [N ] corresponding to Qn is non-trivial
and increasing and, for any m(n) with 0 ≤ m(n) ≤

(
n
2

)
, Pm(n)(R

N ) equals to
the above displayed ratio. The result therefore follows from Theorem 3.1.1 (in
(RN ) for N not of the form N =

(
n
2

)
we let RN be any non-trivial and increasing

property of subsets of [N ]). 2

Exercise 3.1.4. Show that the property of graphs on [n] “to have exactly n
edges” has no threshold function. Find a property of graphs with threshold func-
tion t(n) = n.

We begin the proof of Theorem 3.1.1. Clearly, if Q ⊂ P([n]) is increasing
then Q is non-trivial if and only if ∅ 6∈ Q and [n] ∈ Q. Thus for non-trivial and
increasing Q we have P0(Q) = 0 and Pn(Q) = 1. We show that then Pm(Q) is
a non-decreasing function of m ∈ [n]0.

Proposition 3.1.5. Let n ∈ N and m ∈ [n]. If Q ⊂ P([n]) is increasing then

Pm−1(Q) ≤ Pm(Q) .

Proof. Double counting! We have, first grouping by A and then by B (B ⊂ [n]),

|Qm−1|(n−m+ 1) = |{(A,B) | A ∈ Qm−1, A ⊂ B, |B\A| = 1}| ≤ m|Qm|

(note that every B lies in Qm since Q is increasing). If |Qm| = 0 then also
|Qm−1| = 0 and the inequality holds as both probabilities are 0. If |Qm| > 0,

we get |Qm−1|
|Qm| ≤

m
n−m+1 and

Pm−1(Q)

Pm(Q)
=
|Qm−1|/

(
n

m−1

)
|Qm|/

(
n
m

) =
|Qm−1|
|Qm|

· n−m+ 1

m
≤ 1 .

2

We need the folowing representation of natural numbers.
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Proposition 3.1.6 (cascade form). For every m, k ∈ N there exists a unique
sequence of integers n0 > n1 > · · · > nl ≥ 1, l ∈ N0 and k − l ≥ 1, such that

m =

(
n0

k

)
+

(
n1

k − 1

)
+ · · ·+

(
nl
k − l

)
.

We call it the cascade form of m.

Proof. We initialize the variables i,M,K as i := 0,M := m,K := k, set ni
to the largest n ∈ N such that

(
n
K

)
≤ M , terminate if M −

(
ni
K

)
= 0, and else

actualize the variables by M := M−
(
ni
K

)
, i := i+1, K := K−1 and repeat. For

K = 1 the zero difference is always achieved and thus the algorithm terminates.
It is also clear that we get representation m =

∑l
i=0

(
ni
k−i
)
, k − l ≥ 1. We

leave the proof of the rest (the ni decrease and the cascade form is unique) as
Exercise 3.1.7. 2

Exercise 3.1.7. Prove that the ni generated by the above greedy algorithm
satisfy n0 > n1 > · · · > nl ≥ 1 and that the cascade form of m is unique.

For every k ∈ N we then can define the function fk : N→ N by

fk(m) =

(
n0

k − 1

)
+

(
n1

k − 2

)
+ · · ·+

(
nl

k − l − 1

)
where m =

∑l
i=0

(
ni
k−i
)

is the cascade form of m.
To prove Theorem 3.1.1 we need the following nice result from extremal

theory of set systems. For Q ⊂ P([n]) we define ∆(Q) ⊂ P([n]) by

∆(Q) = {A\{a} | a ∈ A ∈ Q} .

If Q = {F} and this is known from the context, we simplify ∆({F}) to ∆(F ).

Theorem 3.1.8 (Kruskal, 1963; Katona, 1968). Let n ∈ N, k ∈ [n] and

∅ 6= Q ⊂
(

[n]
k

)
. Then

|∆(Q)| ≥ fk(|Q|) .

Proof. (Frankl, 1984.) In the first part of the proof we formulate and prove
a lemma on exchange of two elements in edges of set systems. For n ∈ N with
n > 1, two distinct a, b ∈ [n] and A ⊂ [n] we define Aba := (A\{a}) ∪ {b}
if a ∈ A& b 6∈ A, and else leave Aba undefined. For j ∈ [n] with j > 1 and
Q ⊂ P([n]) we define

Sj(Q) = {Sj(A) = Sj,Q(A) | A ∈ Q}

where Sj(A) = A1
j if A1

j is defined and A1
j 6∈ Q, and Sj(A) = A else. Thus for

all A ∈ Q simultaneously we exchange j for 1 if it is possible and yields a new
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set, and else leave A as it is. Note that Sj(A) also depends on the set system
Q the set A belongs to. The lemma asserts that always

∆(Sj(Q)) ⊂ Sj(∆(Q)) .

We prove it by showing for every F ∈ Q the inclusion

∆(Sj(F )) ⊂ Sj(∆(Q)) .

On the left sides we have in fact Sj,Q and on the right sides Sj,∆(Q) but we
write just Sj and hope it will be always clear which of the two is meant. We
distinguish four cases. The first one is when j 6∈ F . Then Sj(F ) = F and for
every E ∈ ∆(F ) one has E ∈ ∆(F ) = Sj(∆(F )) ⊂ Sj(∆(Q)). The second case
is when j ∈ F & 1 ∈ F . Then again Sj(F ) = F and every E ∈ ∆(F ) with
1 ∈ E again lies in Sj(∆(F )) ⊂ Sj(∆(Q)), since E = Sj(E). If E ∈ ∆(F ) with
E = F\{1} then E lies in Sj(∆(Q)) too as Sj(F\{1}) = F\{1} = E because
(F\{1})1

j = F\{j} ∈ ∆(F ) ⊂ ∆(Q). The third case is when j ∈ F & 1 6∈ F

but still Sj(F ) = F because F 1
j ∈ Q. If E ∈ ∆(F ) with E = F\{j} then

E = Sj(E) and E lies in Sj(∆(F )) ⊂ Sj(∆(Q)). If E ∈ ∆(F ) with j ∈ E then
E = Sj(E) as E1

j ∈ ∆(F 1
j ) ⊂ ∆(Q) and so E ∈ Sj(∆(F )) ⊂ Sj(∆(Q)). The

final fourth case is when j ∈ F & 1 6∈ F and Sj(F ) = F 1
j because F 1

j 6∈ Q. For

E ∈ ∆(Sj(F )) = ∆(F 1
j ) with 1 ∈ E we take G = Ej1 ∈ ∆(F ). Thus E = G1

j .
If E ∈ ∆(Q) then E belongs to Sj(∆(Q)) since E = Sj(E). If E 6∈ ∆(Q) then
E = Sj(G) and again E belongs to Sj(∆(F )) ⊂ Sj(∆(Q)). If 1 6∈ E, that is
E = F\{j}, then E = Sj(E) and again E belongs to Sj(∆(F )) ⊂ Sj(∆(Q)).
The lemma is proven.

Note that |Sj(Q)| = |Q| and |Sj(∆(Q))| = |∆(Q)| because the mapping
A 7→ Sj(A) is injective. This and the lemma implies that |∆(Q)| ≥ |∆(Sj(Q))|.
Also, replacement of Q with Sj(Q) does not change sizes of edges but increases
(if Sj(Q) 6= Q) the number of edges containig 1. Hence sufficiently many replace-
ments transform the given set system Q ⊂ P([n]) in a set system Q′ ⊂ P([n])
whose edges have the same sizes and satisfies |Q| = |Q′|, |∆(Q)| ≥ |∆(Q′)| and
Sj(Q

′) = Q′ for every j ∈ [n] with j > 1. The last property of Q′ is equivalent
with

E ∈ ∆(F ), F ∈ Q′, 1 6∈ F ⇒ E ∪ {1} ∈ Q′ .
Let k, n ∈ N and Q ⊂

(
[n]
k

)
be nonempty. In the second part of the proof

we establish the claimed inequality by induction on |Q| and k. For k = 1
and every |Q| it holds: |∆(Q)| = 1 and f1(|Q|) = 1. We assume that k ≥ 2,

|Q| =
∑l
i=0

(
ni
k−i
)

is the cascade form of |Q| and that the inequality holds for all
smaller k and any |Q|. By the above reduction of Q to Q′ we may assume that

E ∈ ∆(F ), F ∈ Q, 1 6∈ F ⇒ E ∪ {1} ∈ Q .

Let Q(1) = {F\{1} | 1 ∈ F ∈ Q}. We have

|∆(Q)| ≥ |Q(1)|+ |∆(Q(1))|

(Exercise 3.1.9). 2
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Exercise 3.1.9. Prove that for any system Q of k-element subsets of [n], k ≥ 2,
and with Q(1) = {F\{1} | 1 ∈ F ∈ Q} we have |∆(Q)| ≥ |Q(1)|+ |∆(Q(1))|. Is
it true for k = 1? For which other systems Q ⊂ P([n]) this bound holds?

Proposition 3.1.10. Let n, k ∈ N, n ≥ k + 1, An =
(
n
k

)
and Bn =

(
n
k−1

)
.

Then for x ∈ Z,

0 ≤ x ≤ An −An−1 = Bn−1

⇒ fk(An−1 + x) ≥ Bn−1 +
Bn −Bn−1

An −An−1
x = Bn−1 +

k − 1

n− k + 1
x .

Proof.
2

3.2 The GKLT–F theorem: enumerative first-
order 0– 1 laws

A type, or a signature, is any tuple S = (S1, . . . , Sk) ∈ Nk. A relational structure
R of type S on a set X, briefly an S-structure on X, is any k-tuple

R = (X1, . . . , Xk) where Xi ⊂ XSi = X ×X × · · · ×X (Si components)

is an Si-ary relation on X. So (as before, P(A) = {B | B ⊂ A})

{R | R is an S-structure on X} =

k∏
i=1

P(XSi) .

For example, an undirected simple graph with two-colored vertices 1, 2, . . . , n is a
(2, 1)-structure on [n] such that the binary relation is irreflexive and symmetric.
Clearly, the number l(|X|, S) of S-structures on a finite set X is given by

l(|X|, S) = 2
∑
i≥1 ui|X|

i

, ui = #{j ∈ [k] | Sj = i} ∈ N0 .

Two S-structures, R = (X1, . . . , Xk) on X and R′ = (X ′1, . . . , X
′
k) on X ′, are

isomorphic, written R ∼= R′, if a bijection F : X → X ′ satisfies

(a1, a2, . . . , aSj ) ∈ Xj ⇐⇒ (F (a1), F (a2), . . . , F (aSj )) ∈ X ′j , j = 1, 2, . . . , k .

The binary relation ∼= of isomorphism is an equivalence relation on the set of
S-structures on X. Unlabeled S-structure on X refers to an equivalence class
of ∼= while labeled S-structure on X refers to an individual S-structure on X,
regardless of isomorphism. We let u(|X|, S) denote the number of unlabeled
S-structures on a finite set X. We show that for |X| = n almost all equivalence
classes of ∼= have size close to n! and l(n, S) ∼ n! · u(n, S), except for S =
(1, 1, . . . , 1).
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Exercise 3.2.1. Find a formula for u(n, (1, 1, . . . , 1)) (k 1s).

Theorem 3.2.2 (Fagin, 1977). Let S = (S1, . . . , Sk) be a type different from
(1, 1, . . . , 1). Then

lim
n→∞

n! · u(n, S)

l(n, S)
= lim
n→∞

n! ·
∣∣∏k

i=1 P([n]Si)/∼=
∣∣∣∣∏k

i=1 P([n]Si)
∣∣ = 1

— for n → ∞ the number of labeled S-structures on [n] is asymptotic to the
number of unlabeled ones multiplied by n!.

The proof uses the next popular lemma.

Lemma 3.2.3 (Burnside, 1897; Frobenius, 1887). Let X be a finite set, G
be a finite group of bijections g : X → X, equivalence ∼ on X be defined by a ∼ b
iff a = g(b) for some g ∈ G, and for any g ∈ G let F (g) = |{a ∈ X | g(a) = a}|.
Then

|X/∼| = 1

|G|
∑
g∈G

F (g) .

Proof. It is clear that ∼ is an equivalence relation (Exercise 3.2.4). For a fixed
x ∈ X with x ∈ Bx ∈ X/∼, double counting gives

|G| = |{(g, y) ∈ G×X | g(x) = y}| = |Gx| · |Bx|

where Gx = {g ∈ G | g(x) = x}. The second displayed equality follows from
the fact that for any y ∈ Bx the sets My = {g ∈ G | g(x) = y} and Gx are
in bijection, given by g 7→ h−1g where h ∈ My is arbitrary but fixed. Thus
|Gx| = |G|/|Bx| and another double counting gives∑

g∈G
F (g) = |{(g, x) ∈ G×X | g(x) = x}| =

∑
x∈X
|Gx| = |G|

∑
x∈X

1

|Bx|

= |G| · |X/∼| .

2

Exercise 3.2.4. Check that the relation ∼ defined in the statement of the
lemma is an equivalence.

Exercise 3.2.5. For a random permutation π : [n]→ [n], what is the expected
number of fixed points? Note for fans of the probabilistic method: it is forbidden
to use linearity of expectation.

We prove Theorem 3.2.2. We may assume that S1 ≥ 2. For i, n ∈ N,
each permutation π : [n] → [n] induces a permutation πi : [n]i → [n]i via
πi((a1, . . . , ai)) = (π(a1), . . . , π(ai)). We denote by Ci(π) ∈ N the number of
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cycles of πi. Since for an (i)-structure on [n] the permutation π is its automor-
phism iff it is a union of some cycles of πi, we see that for a given permutation
π : [n] → [n] the number of labeled S-structures on [n] for which π is an
automorphism equals

N(π) := 2
∑
i≥1 uiCi(π)

where as before ui counts components i in S. By Lemma 3.2.3 (applied to

G = {(πS1 , . . . , πSk) | π : [n] → [n] a perm.} and X =
∏k
j=1[n]Sj ), for n ∈ N

we have a formula for the number of unlabeled structures:

u(n, S) =
1

n!

∑
π

N(π) =
1

n!

∑
π

2
∑
i≥1 uiCi(π)

and we need to prove that for n→∞,

n! · u(n, S)

l(n, S)
=
∑
π

2
∑
i≥1 ui(Ci(π)−ni) → 1 .

For π = idn, the identical permutation, Ci(π) = ni for every i and the summand
equals 1. We show that for any π 6= idn the sumand is negligible. 2

Let S = (S1, . . . , Sk) ∈ Nk be a signature and let S0 = 2. We introduce
a formal but quite general way of precise definitions for many classes of S-
structures on finite or infinite sets. The classes will consist of models of first-
order closed formulas. The formulas are special words (i.e., finite sequences of
symbols) over a countable alphabet A = A(S). The alphabet consists of three
auxiliary and seven logical symbols, k+1 predicate symbols V = {V0, V1, . . . , Vk}
(Vi has arity Si), where we write ‘V0’ also as ‘=’, and countably many symbols
N = {xi | i ∈ N} for variables:

A = { , ( ) ¬ ∨ ∧ → ↔ ∃ ∀ = V1 . . . Vk x1 x2 . . . }
= { , ( ) ¬ ∨ ∧ → ↔ ∃ ∀ } ∪ V ∪N

(since the comma ‘,’ belongs to A, we separate elements of A only by spaces,
and the two elipses ‘. . . ’ of course are not elements of A). The first ten symbols
are, respectively, comma, left bracket, right bracket, negation, disjunction, con-
juction, implication, equivalence, existential quantifier and general quantifier.
An atomic formula (of the language L(S)) is any word over A of the form

Vi(y1, y2, . . . , ySi) where i ∈ [k]0 and so Vi ∈ V , and y1, . . . , ySi ∈ N .

This word has 2Si + 2 symbols from A. For binary predicates, when Si = 2, we
use the synonymous notation y1Viy2 that saves three symbols. If S = (2, 3, 1)
then

x5 = x24 V3(x2) V2(x3, x3, x1) V1(x4, x4) x6V1x5 V0(x1, x2)

are examples of six atomic formulas from L(S). From now on we return to
using comma as a separator and hope that the reader will have no troubles to
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distinguish its usages belonging to the language L(S) over A from those that
are part of the metalanguage.

Formulas (of type S) or the language L(S) ⊂ A∗, where A∗ denotes the set
of all words over the alphabet A, is the smallest (to ⊂) subset L(S) of A∗ that
contains all atomic formulas and is closed to the production rules

x ∈ N, F, G ∈ L(S) ⇒ (¬F ), (F ∨G), (F ∧G), (F → G), (F ↔ G),

(∃xF ), (∀xF ) ∈ L(S)

(on the right side of ⇒ all commas belong to the metalanguage but all brackets
to L(S)).

Exercise 3.2.6. Prove that such (unique) smallest set L(S) ⊂ A∗ of formulas
exists.

It is clear that every formula is atomic or uniquely decomposes in one or two
simpler (that is, shorter) formulas, but one should prove it because for other
production rules generating other languages such decomposition need not hold.

Exercise 3.2.7. Prove that for every formula F ∈ L(S) there exist formulas
G,H ∈ L(S), variable x ∈ N , connective

◦ ∈ {∧,∨,→,↔}

and quantifier Q ∈ {∀,∃} such that F is atomic or

F is (¬G) or (G ◦H) or (QxG)

and this decomposition of F is unique (including the case of atomic F ).

For example, if S = (2) and we write ‘∼’ for ‘V1’ then the word ϕusg ∈ A(S)∗

with 30 symbols given as

((∀x1 (¬x1 ∼ x1)) ∧ (∀x1 (∀x2 (x1 ∼ x2 → x2 ∼ x1))))

is a formula in L(S). The formula ϕusg is built by connectives and quantifiers
from three atomic formulas and decomposes uniquely as (G∧H). It asserts (via
the standard intepretation which we discuss later) irreflexivity and symmetry
of the binary predicate V1. An S-structure with property ϕusg is an undirected
simple graph. But before turning to interpretation we need to deal with two
syntactic points.

We simplify brackets in a formula by omitting the outermost pair and ap-
plying two conventions. One orders the connectives and quantifiers according
to decreasing strength of bond: Q, ¬, ∧, ∨, → and ↔; we parse formulas with
missing brackets according to it. By another convention, without brackets we
understand connectives of the same strength or quantifiers as bracketed from
the right. For example, if H,G,F ∈ L(S) and x ∈ N then

∃x¬F ∨G means ((∃x (¬F )) ∨G)
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and not, for example, (∃x (¬ (F ∨G))), and

F → G→ H means (F → (G→ H)) .

The formula ϕusg thus simplifies to

∀x1 ¬x1 ∼ x1 ∧ ∀x1 ∀x2 (x1 ∼ x2 → x2 ∼ x1)

and the remaining brackets cannot be omitted without altering the intended
sense of ϕusg.

The second and more important point concerns occurrences of variables in
formulas. Let F ∈ L(S) and x ∈ N . We say that x has an occurrence in F if
some symbol of F (as a word in A∗) equals x; this is then an occurrence of x
in F . Clearly, only finitely many variables occur in any formula. For example,
x2 has three occurrences in ϕusg, x1 six and xn for n > 2 none. We distinguish
free and bound occurrences of x in F . One variable may have both. We define
them by induction on the decomposition of a formula (Exercise 3.2.7). If F is
atomic and equals Vi(y1, . . . , ySi) with Vi ∈ V and y1, . . . , ySi ∈ N , then the set
of variables having an occurrence in F is {y1, . . . , ySi} and all their occurrences
in F (Si in total) are free. Similarly, if F is ¬G or G ◦ H then all variables
having an occurrence in F are those having it in G or in H and the type of an
occurrence in G and H remains the same in F . Critically, if F is QxG then
the variables occurring in F are those occurring in G plus x, and we define all
occurrence of x in F as bound (regardless that before some might have been
free in G). A formula is closed if it has only bound occurrences of any variable.
For example, ϕusg is a closed formula but the formula (∃xx = x) ↔ x = x
(here x ∈ N), which is the same as ∃xx = x ↔ x = x, is not closed because
the last two occurrences of x are free.

We introduce interpretation of formulas and the symbols |=f and |=. Let
S ∈ Nk be a type, ϕ ∈ L(S) be a formula, R = (X1, . . . , Xk) be an S-structure
on a set X, let X0 = {(a, a) | a ∈ X}, and f : N → X be a mapping assigning
to any variable in A(S) an element in the universe X of R. We define the
relation between S-structures and formulas

R |=f ϕ

(its refutation is written as 6|=f ), in words R is a model for ϕ relative to f , by
induction on the decomposition of ϕ. If ϕ is atomic, equal to Vi(y1, . . . , ySi), we
set

R |=f ϕ ⇐⇒ (f(y1), . . . , f(ySi)) ∈ Xi .

If ϕ is ¬G then R |=f ϕ iff R 6|=f G. If ϕ is G ∨H then R |=f ϕ iff R |=f G or
R |=f H. If ϕ is G ∧H then R |=f ϕ iff R |=f G and R |=f H. If ϕ is G→ H
then R 6|=f ϕ iff R |=f G and R 6|=f H. If ϕ is G↔ H then R |=f ϕ iff R |=f G
if and only if R |=f H. This of course agrees with the standard interpretation
of the propositional connectives. Critically, if ϕ is ∃xG then we define

R |=f ϕ ⇐⇒ R |=g G for some g : N → X with g(y) = f(y) if y 6= x
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and for ϕ equal to ∀xG we define

R |=f ϕ ⇐⇒ R |=g G for every g : N → X with g(y) = f(y) if y 6= x .

The model relation in fact depends only on the free occurrences in ϕ.

Exercise 3.2.8. Prove that if f, g : N → X are such that f(x) = g(x) for
every variable x ∈ N with a free occurrence in ϕ then

R |=f ϕ ⇐⇒ R |=g ϕ .

Thus for closed ϕ the mapping f is completely irrelevant and we may define

R |= ϕ ⇐⇒ R |=f ϕ for any f .

We say then that R is a model of (the closed formula) ϕ. Model relation cannot
distinguish isomorphic structures.

Exercise 3.2.9. Prove that if R and R′ are two isomorphic S-structures and
ϕ ∈ L(S) is a closed formula then

R |= ϕ ⇐⇒ R′ |= ϕ .

Finally, if S ∈ Nk is a type, ϕ ∈ L(S) is a closed formula and n ∈ N is a number,
we define notation (the second definition is unambiguous by Exercise 3.2.9)

l(n, S, ϕ) = #(labeled S-structures on [n] such that R |= ϕ)

u(n, S, ϕ) = #(unlabeled S-structures on [n] such that R |= ϕ) .

This completes all definitions needed to understand statements of the three
Theorems 3.2.10, 3.2.11 and 3.2.12 below, but we still have not introduced all
tools needed for their proofs.

We give an example for the numbers l(n, S, ϕ) and u(n, S, ϕ). Let S = (2)
and as before we write ‘∼’ for ‘V1’. Consider the closed formula ϕmat ∈ L(S)
given as (we abbreviate ¬x = y by x 6= y)

¬∃x1 ∃x2 ∃x3 (x1 6= x2 ∧ x1 6= x3 ∧ x2 6= x3 ∧ x1 ∼ x2 ∧ x1 ∼ x3) .

We leave it to the interested reader to check as an exercise that

l(n, S, ϕusg ∧ ϕmat) =
∑
k≥0

(
n

2k

)
· (2k − 1)!!

u(n, S, ϕusg ∧ ϕmat) = 1 + bn/2c

where (−1)!! = 1 and (2k − 1)!! =
∏k
i=1(2i− 1) for k ∈ N is the odd factorial.
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Theorem 3.2.10 (Carnap, 1950). Let S = (1, 1, . . . , 1) (k unary predicates)
and ϕ ∈ L(S) be a closed formula. Then

lim
n→∞

u(n, S, ϕ)

u(n, S)
= lim
n→∞

|{R ∈ P([n])k | R |= ϕ}/∼= |
|P([n])k/∼= |

= 0 or 1

(here P([n])k = P([n]) × · · · × P([n]) with k components). In other words, for
n → ∞ the proportion of unlabeled S-structures on [n] with property ϕ goes
either to 0 or to 1.

Theorem 3.2.11 (Glebskij, Kogan, Liogon’kij and Talanov, 1969;
Fagin, 1976). Let S ∈ Nk be a type and ϕ ∈ L(S) be a closed formula. Then

lim
n→∞

l(n, S, ϕ)

l(n, S)
= lim
n→∞

∣∣{R ∈∏k
i=1 P([n]Si) | R |= ϕ}

∣∣∣∣∏k
i=1 P([n]Si)

∣∣ = 0 or 1

— for n→∞ the proportion of S-structures on [n] with property ϕ goes either
to 0 or to 1.

In particular, there is no way to define by a first-order formula a property of
S-structures holding asymptotically with probability, say, 1

3 .

Theorem 3.2.12 (version for graphs). Let ϕ be a closed formula of the
language L(S) where S = (2). Then (recall the closed formula ϕusg ∈ L(S)
defining undirected simple graphs)

lim
n→∞

l(n, S, ϕ ∧ ϕusg)
l(n, S, ϕusg)

= lim
n→∞

|{G ⊂
(

[n]
2

)
| G |= ϕ}|

2(n2)
= 0 or 1

— for n → ∞ the proportion of graphs on [n] with property ϕ goes either to 0
or to 1.

We think the reader understands our abused notation in the middle displayed
fraction (we defined |= only for relational structures).

Theorem 3.2.13 (Gödel, 1930). Let S ∈ Nk be a type and let T ⊂ L(S)
be a possibly infinite set of closed formulas. The theory T is consistent, free of
contradictions, if and only if there exists an S-structure R on a possibly infinite
set such that R |= T , that is, T has a model.
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3.3 The Friedgut–Kalai theorem: thresholds are
sharp

3.4 The Shelah–Spencer theorem: irrational ex-
ponents are not first order

3.5 The Blatter–Specker theorem: second-order
binary structures are periodic
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Chapter 4

Algebra of generating
functions

4.1 The ring of formal power series

The reader is certainly familiar with complex polynomials, finite linear combi-
nations C[[x]] = {f = f(x) =

∑d
n=0 anx

n | d ∈ N0, an ∈ C}. They form a
commutative ring with 1. The degree function deg : C[[x]] → N0 ∪ {−∞},
deg(f) = maxn with an 6= 0, deg(0) = −∞, has the properties that (i)
deg(fg) = deg f + deg g and (ii) deg(f + g) ≤ max(deg f, deg g), with equality
if deg f 6= deg g. Thus, by (i), C[x] has no zero divisors (but this is of course
already subsumed in the proof of (i)).

By C[[x]] we denote the set of all formal infinite linear combinations with
coefficients in C of the powers 1 = x0, x = x1, x2, . . . of the variable x,

C[[x]] = {f = f(x) = a0 + a1x+ a2x
2 + · · · =

∑∞
n=0 anx

n | an ∈ C}

—we call them formal power series, fps. Two usual binary operations of addition
and multiplication on C[[x]] are∑∞

n=0 anx
n +

∑∞
n=0 bnx

n =
∑∞
n=0(an + bn)xn

and ∑∞
n=0 anx

n ·
∑∞
n=0 bnx

n =
∑∞
n=0 (

∑n
i=0 aibn−i)x

n .

This product of formal power series is sometimes called the Cauchy product; it
is named after the French mathematician Augustin-Louis Cauchy (1789–1857).
The Hadamard product, named after his compatriot Jacques Hadamard (1865–
1963), is defined by∑∞

n=0 anx
n �

∑∞
n=0 bnx

n =
∑∞
n=0 anbnx

n .

Exercise 4.1.1 Verify that C[[x]] = (C[[x]],+, ·) is a commutative ring with 1.
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It is clear that C[x] is a subring of C[[x]].
For f =

∑
n≥0 anx

n ∈ C[[x]] and n ∈ N0 we denote by [xn]f = an the
coefficient of xn, and for f 6= 0 we denote by ord(f) the smallest n ∈ N0 with
[xn]f 6= 0; we set ord(0) = +∞. It is easy to see that for every f, g ∈ C[[x]],

ord(fg) = ord(f) + ord(g) and ord(f + g) ≥ min(ord(f), ord(g)) ,

with equality if ord(f) 6= ord(g). Thus, by the first equation, C[[x]] has no zero
divisors.

Proposition 4.1.2 f ∈ C[[x]] is a unit (i.e., fg = 1 for some g ∈ C[[x]]) if
and only if ord(f) = 0.

Proof. If ord(f) > 0 then ord(fg) = ord(f) + ord(g) > 0 for every fps g, so f
is not a unit as ord(1) = 0. If ord(f) = 0 then f(x) = a0 +a1x+a2x

2 + . . . with
a0 6= 0. We seek a g(x) = b0 + b1x+ b2x

2 + . . . such that, for n = 0, 1, 2, . . . ,

[xn]fg = a0bn + a1bn−1 + · · ·+ anb0 = δn,0 (= 1 if n = 0 and = 0 else) .

This infinite system of equations in the unknowns b0, b1, . . . has a unique so-
lution: b0 = a−1

0 , and if we know b0, b1, . . . , bn−1 for n > 0 already then bn is
uniquely determined from the n-th equation by

bn = −a−1
0 (a1bn−1 + a2bn−2 + · · ·+ anb0) .

2

Later we express the (multiplicative) inverse f−1 = 1/f to f as a formal sum
of a geometric series.

Example 4.1.3 Since (1− x)(1 + x+ x2 + . . . ) = 1 and (1− x− x2)(1 + x+
2x2 + 3x3 + 5x3 + . . . ) = (1 − x − x2)

∑
n≥0 fnx

n = 1, where the Fibonacci
numbers fn follow the recurrence f0 = f1 = 1, fn = fn−1 + fn−2 for n ≥ 2, we
have inverses

1

1− x
=
∑
n≥0

xn and
1

1− x− x2
=
∑
n≥0

fnx
n .

Leonardo Pisano Bigollo (c. 1170–c. 1250), known as Fibonacci, was an Italian
mathematician. 2

We cannot divide by a fps f if (and only if) it has zero constant term: a0 =
[x0]f = 0. After embedding the ring C[[x]] in the field C((x)) of the formal
Laurent series (briefly fps), we can divide by every nonzero element;

C((x)) = {
∑+∞
n=k anx

n | k ∈ Z, an ∈ C} .

(Pierre A. Laurent (1813–1854) was a French mathematician.) Compared to
C[[x]], in a fps f we allow terms with negative exponents but only finitely many.
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The arithmetic operations + and · and the order and coefficient functions ord(·)
and [xn] extend from C[[x]] to C((x)) in the obvious way. It is easy to check that
(C((x)),+, ·) is a commutative ring with 1. Moreover, every nonzero f ∈ C((x))
has a unique expression as f = xkg where k ∈ Z and ord(g) = 0 (so g ∈ C[[x]]),
thus f is a unit and has the inverse f−1 = x−kg−1. Therefore (C((x)),+, ·) is a
field and we have the following.

Proposition 4.1.4 C((x)) is the field of fractions of C[[x]].

Recall that each commutative ring R with no zero divisors has a unique field of
fractions, a superfield F ⊃ R such that each a ∈ F is of the form a = b/c with
b, c ∈ R.

In Chapter 1 we saw that the GF C(x) =
∑
n≥1 cnx

n of the Catalan num-

bers satisfies the quadratic equation y2 − y + x = 0. Many GFs in enumerative
combinatorics are algebraic, i.e., are solutions of polynomial equations. Thus
solvability of such equations over C[[x]] or C((x)) comes up naturally in enu-
meration, and also in algebraic geometry, algebra and number theory. The field
C((x)) is not algebraicly closed; the simplest polynomial equation unsolvable
over it is y2 − x = 0. Indeed, ord(f2) is an even integer or +∞ for every
f ∈ C((x)) but ord(x) = 1. To be able to solve polynomial equations over
C((x)), we have to allow fractional exponents in the powers of x. We define

C〈x〉 = {
∑+∞
n=k anx

n/m | k ∈ Z,m ∈ N, an ∈ C}
= {f(x1/m) | m ∈ N, f(x) ∈ C((x))} .

These formal infinite linear combinations are called formal Puiseux series; they
are named after the French mathematician and astronomer Victor A. Puiseux
(1820–1883) but already Isaac Newton (1642–1727) was using them. The oper-
ations +, · and functions ord(·), [xk] extend to them naturally and (C〈x〉,+, ·)
is a field. Thus we have the extension of rings and fields

C[x] ⊂ C[[x]] ⊂ C((x)) ⊂ C〈x〉 .

The equation y2 − x = 0 is now solvable in C〈x〉: y = ±x1/2. The proof of the
following result is nontrivial and we refer for it to Fischer [35, Chapter 7].

Theorem 4.1.5 (Puiseux, 1850) C〈x〉 is the algebraic closure of C((x)).

Recall that each field F has a unique algebraic closure, a superfield F ⊃ F such
that (i) each element a ∈ F solves a polynomial equation with coefficients in F
and (ii) each polynomial equation with coefficients in F has a solution in F .

Exercise 4.1.6 Prove that each equation y2 − f(x) = 0, f(x) ∈ C〈x〉, has a
solution in C〈x〉.
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4.2 Formal convergence in C[[x]] and C((x))
We say that a sequence (f1, f2, . . . ) ⊂ C[[x]] of fps formally converges to a fps
f ∈ C[[x]] if

lim
n→∞

ord(f − fn) = +∞ .

In other words, for each k ∈ N0 the sequence of coefficients

([xk]f1, [x
k]f2, . . . ) ⊂ C

is eventually constant and equal to the coefficient [xk]f . We write

lim fn = lim
n→∞

fn = f .

Hopefully no confusion arises by using the same notation for the ordinary limit
of a sequence of real or complex numbers. The same definition of formal con-
vergence works in C((x)) and also all results on it we give below extend without
problems from C[[x]] to C((x)).

It is useful to express formal convergence in the analytic language of norms.
We define ‖ · ‖ : C((x))→ [0,+∞) by

‖f‖ = 2−ordf

(with the convention that 2−∞ = 0).

Exercise 4.2.1 Prove that for every f, g ∈ C((x)), (i) ‖f‖ ≥ 0, with equality
exactly for f = 0, (ii) ‖fg‖ = ‖f‖ · ‖g‖ and (iii) ‖f + g‖ ≤ max(‖f‖, ‖g‖), with
equality if ‖f‖ 6= ‖g‖.

Thus (C((x)),+, ·, ‖·‖) is a non-Archimedean normed field. (“non-Archimedean”
refers to the strengthening of the triangle inequality ‖f + g‖ ≤ ‖f‖ + ‖g‖.)
Clearly, lim fn = f means that ‖f − fn‖ → 0 as n → ∞, that is, lim fn =
f ⇐⇒ lim ‖fn − f‖ = 0.

Exercise 4.2.2 Prove that a sequence (fn) ⊂ C[[x]] formally converges (to
some fps f) if and only if it is Cauchy: for every ε > 0 there is an n0 ∈ N
such that

m,n > n0 ⇒ ‖fm − fn‖ < ε .

Does it remain true for fm − fn replaced by fn+1 − fn?

Formal limits commute with arithmetic operations:

Exercise 4.2.3 Verify that if f = lim fn and g = lim gn (where f, g, fn, gn ∈
C[[x]]) then f + g = lim(fn + gn) and fg = lim(fngn).

Hence the same holds for inverses: if the fps f is a unit and f = lim fn then for
n > n0 every fn is a unit and 1/f = lim(1/fn). Using formal convergence we
define infinite sums and infinite products of sequences of formal power series.
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Definition 4.2.4 Let (fn) ⊂ C[[x]] be a sequence of formal power series. We
define

∞∑
n=1

fn = lim
n→∞

(f1 + f2 + · · ·+ fn)

and similarly, assuming in adddition that ord(fn) > 0 for each n,

∞∏
n=1

(1 + fn) = lim
n→∞

(1 + f1)(1 + f2) . . . (1 + fn) ,

if the formal limits exist. If they exist we say that the infinite series, respective
product, formally converges.

The notational ambiguity f =
∑∞
n=0 anx

n causes no problem because the series∑∞
n=0 fn where fn = anx

n formally converges to f . In plane terms, formal
convergence of f =

∑∞
n=1 fn and f =

∏∞
n=1(1 + fn) means that for each k ∈ N0

the coefficient [xk]f is given by an expression in the coefficients in the fns
containing only finitely many terms, so the fps fn with n > n0 = n0(k) are
irrelevant.

Exercise 4.2.5 Explain why instead of considering
∏∞
n=1 fn for general fps fn

we may restrict to the case when each fn has constant term 1.

Proposition 4.2.6 Let (fn) ⊂ C[[x]]. Then∑∞
n=1 fn formally converges ⇐⇒ lim fn = 0 ,

which is the same as ord(fn) → +∞ or as ‖fn‖ → 0. The same holds for∏∞
n=1(1 + fn) (each fn has zero constant term).

Proof. Let k ∈ N0 and ord(fn)→ +∞. Then [xl]fn = 0 whenever n > n0 and
l ≤ k, hence the sequence ([xk]

∑n
i=1 fi =

∑n
i=1[xk]fi)n≥1 is constant for n > n0

and partial sums formally converge. The same holds for partial products because
for n > n0 we have [xk]

∏n
i=1(1+fi) = [xk]

∏n−1
i=1 (1+fi)+[xk]fn

∏n−1
i=1 (1+fi) =

[xk]
∏n−1
i=1 (1 + fi).

If ord(fn) 6→ +∞ then there is a k ∈ N0 such that ord(fn) = k for in-

finitely many n. Thus [xk]
∑n−1
i=1 fi 6= [xk]

∑n
i=1 fi and [xk]

∏n−1
i=1 (1 + fi) 6=

[xk]
∏n
i=1(1 + fi) for (the same) infinitely many n, and the sequences of partial

sums and partial products do not formally converge. 2

It is well known that
∑∞
n=1(−1)n+1/n = log 2 but that this sum can be changed

arbitrarily by permuting the sequence of summands (1,− 1
2 ,

1
3 ,−

1
4 , . . . ); the se-

ries is not absolutely convergent. This does not happen for formal convergence
which corresponds to absolute numeric convergence.
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Proposition 4.2.7 Let fn ∈ C[[x]] for n ∈ N and π : N→ N be a permutation
of N. Then

∞∑
n=1

fn =

∞∑
n=1

fπ(n)

whenever one of the series formally converges. The same holds for
∏∞
n=1(1+fn)

(each fn has zero constant term).

Proof. We prove it for products; the argument for sums is similar and eas-
ier. Suppose that k ∈ N and

∏∞
n=1(1 + fn) formally converges. Thus, by the

previous proposition, ord(fn) > k if n > n0. We take n1 large enough so that
{π(1), π(2), . . . , π(n1)} ⊃ {1, 2, . . . , n0} (clearly n1 ≥ n0). For n > n1 we then
have

ord
(∏n

i=1(1 + fi)−
∏n
i=1(1 + fπ(i))

)
= ord

(∏n0

i=1(1 + fi) · f
)
> k

because the fps f is a sum of nonconstant monomials in fis with i > n0. Thus∏∞
n=1(1 + fπ(n)) formally converges to the same limit as

∏∞
n=1(1 + fn). 2

Exercise 4.2.8 We have shown in effect that infinite sums and products of fps
satisfy the commutative law. Show that they are also associative and distributive.

We present several examples of infinite series and products of fps.

Example 4.2.9 If the fps f has zero constant term then

1

1− f
=

∞∑
n=0

fn .

The series formally converges because ord(fn) ≥ n, and the equality follows by
taking formal limit of the identity (1− f)(1 + f + f2 + · · ·+ fn−1) = 1− fn. In
particular, if f = a0 + a1x+ a2x

2 + . . . with a0 6= 0 then

1

f
=

1

a0

∞∑
n=0

(
−a−1

0 a1x− a−1
0 a2x

2 − . . .
)n

.

This is the promised expression of a multiplicative inverse as a sum of formal
geometric series. We can expres the same inverse element also as an infinite
product: if the fps f has zero constant term then

1

1− f
=

∞∏
n=0

(
1 + f2n

)
.

The product formally converges because ord(f2n) ≥ 2n, and the equality follows

from the previous identity as (1+f)(1+f2)(1+f4) . . . (1+f2n) =
∑2n

k=0 f
k+g

with ord(g) > 2n (each k ∈ N0 has exactly one expression as a sum of distinct
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powers of 2). Alternatively, since (1−f)(1+f) = 1−f2, (1−f2)(1+f2) = 1−f4,
(1− f4)(1 + f4) = 1− f8 and so on, multiplying the infinite product, which we

denote P , by 1− f we get the identity (1− f)P = (1− f2k)
∏
n≥k(1 + f2n). For

k →∞ the right side goes formally to 1, thus (1− f)P = 1. 2

A interesting fact is that the relation g = 1/(1− f) forces regular growth of the
coefficients in the fps g.

Proposition 4.2.10 Let a1, a2, . . . be nonnegative real numbers and the coeffi-
cients bn be defined by

1 +

∞∑
n=1

bnx
n =

1

1−
∑∞
n=1 anx

n
.

Then the limit limn→∞ b
1/n
n exists (it may be +∞).

Proof. A composition of n ∈ N is any tuple c = (m1, . . . ,mk) ∈ Nk with
m1 + · · · + mk = n; let C(n) be all compositions of n. We weight c by the
product w(c) = am1

. . . amk . Expanding the right side of the definition of bn
into a geometric series we see that

bn =
∑

c∈C(n)

w(c) .

If n = n1 + n2 and ci is a composition of ni then c = (c1, c2) (abusing notation
slightly) gives a composition of n. This correspondence is in fact injective and
w(c) = w(c1)w(c2). Hence

bn =
∑

c∈C(n)

w(c) ≥
∑

c1∈C(n1)

w(c1)
∑

c2∈C(n2)

w(c2) = bn1bn2 .

So bn ≥ bn1bn2 whenever n = n1 + n2—the sequence (bn) is supermultiplicative.
By Fekete’s lemma below, such sequences always posses the stated limit. 2

Exercise 4.2.11 Prove the next lemma and deduce from it the above result for
supermultiplicative sequences.

Lemma 4.2.12 (Fekete, 1927) If a1, a2, . . . are nonnegative real numbers such
that an1+n2

≥ an1
+ an2

whenever n = n1 +n2 (one says that the sequence (an)
is superadditive) then the limit limn→∞ an/n exists and may be +∞. The same
holds, with finite limits only, for subadditive sequences.

The result is due to the Hungarian mathematician Michael Fekete (1886–1957).

Exercise 4.2.13 Prove bijectively and by GF that the number of compositions
of n is

|C(n)| = 2n−1 .
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Example 4.2.14 By Example 4.2.9,

∞∏
n=0

(
1 + x2n

)
=

∞∑
n=0

xn .

This is one of the very many identities equaling an infinite product with an
infinite series. Possibly the most famous such identity (but we will discuss a
rival shortly) is Euler’s partition identity

∞∏
n=1

1

1− xn
=

∞∑
n=0

p(n)xn .

Here p(0) = 1 and for n ∈ N the partition function p(n) ∈ N counts so called
(integer) partitions of n, the expressions n = a1 + a2 + · · · + ak where ai ∈ N
and a1 ≥ a2 ≥ · · · ≥ ak. So p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7
and so on. The identity is due to the Swiss mathematician Leonhard Euler
(1707–1783).

From the miriads of partition
∏

=
∑

identities we quote just one more,
Euler’s pentagonal identity

∞∏
n=1

(1− xn) =

∞∑
n=−∞

(−1)nxn(3n+1)/2 = 1− x− x2 + x5 + x7 − x12 − x15 + . . .

We give a proof based on manipulations with fps in the proposition below.
The numbers 1, 2, 5, 7, 12, 15, . . . are so called pentagonal numbers; they can be
obtained as numbers of dots in certain pentagonal arrays, in the same way as
1, 3, 6, 10, . . . are triangular and 1, 4, 9, 16, . . . square numbers. 2

Exercise 4.2.15 Prove Euler’s partition identity.

Exercise 4.2.16 Deduce from Euler’s pentagonal identity the recurrence for
partition numbers

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + p(n− 15)− . . .

where p(m) = 0 if m < 0.

Exercise 4.2.17 Restate Euler’s pentagonal identity in terms of partitions.

Proposition 4.2.18 We prove Euler’s pentagonal identity

∞∏
n=1

(1− xn) = 1 +

∞∑
n=1

(−1)n(xn(3n+1)/2 + xn(3n−1)/2) .

Proof.
2
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Example 4.2.19 We give two more examples of
∏

=
∑

type identities, both
in fact outside the scope of formal convergence in C[[x]]. One of the greatest
discoveries of Euler says that∏

p

(
1− 1

ps

)−1

=

∞∑
n=0

1

ns
.

Here p = 2, 3, 5, 7, 11, 13, . . . runs through the prime numbers and s is a formal
variable. This famous identity holds on the formal level because multiplying
out the factors (1− 1/ps)−1 = 1 + 1/p2 + 1/p2s + . . . , the result is well defined
and gives

∑
n≥1 an/n

s with an counting the prime factorizations of n (expres-
sions of n as a product of powers of distinct primes), and always an = 1 due to
uniqueness of prime factorization. The identity is based on formal convergence
but in a ring different from C[[x]], the ring of formal Dirichlet series which we
will not introduce here. (Peter L. Dirichlet (1805–1859) was a German mathe-
matician, also a brother in law of the composer and musician Felix Mendelssohn
Bartholdy (1809–1847).)

Another Euler’s discovery is that

∞∏
n=1

(
1− x2

n2

)
=

∞∑
n=0

(−1)n(πx)2n

(2n+ 1)!
. (4.1)

Here π = 3.14159 . . . is the well known constant, defined for example by the
relation

∑∞
n=1 1/n2 = π2/6 (also due to Euler). The identity relates elements of

C[[x]] (the right side with the fps 1−x2/n2, n = 1, 2, . . . ) but it cannot use formal
convergence because the infinite product does not formally converge. However,
we can interpret the left side semiformally: after expanding it the coefficients
of x2, x4, x6, . . . are given by expressions with infinitely many terms—so formal
convegence is out of question—but these expressions are absolutely convergent
(numeric) series, which can be summed regardless of order (and conveniently
manipulated in other ways). For example, the coefficients of x2 and x4 come
out as the sums of the absolutely convergent infinite series

s2 = −
∑
n≥1

1

n2
and s4 =

∑
m>n≥1

1

m2n2
,

respectively. The identity thus claims, for example, that (6s2)2 = 120s4. We
will not develop semiformal convegence here. But we have to say that the
more standard interpretation of Euler’s identity (4.1) is as an equality between
functions, the righ side being of course sin(πx)/πx. 2

Exercise 4.2.20 If we change the − signs on the left side of (4.1) to +, after
multiplying out formally we see that on the right side it results in changing
exactly the signs of the terms with odd n. Thus we get another identity (actually
equivalent with the original one)

∞∏
n=1

(
1 +

x2

n2

)
=

∞∑
n=0

(πx)2n

(2n+ 1)!
.
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Is this a valid argument? Expansion of what function do we have on the right
side?

We put formal convergence in C((x)) in a wider context. In Section 4.1 we
mentioned two ways of completing a domain by adding solutions to hitherto
unsolvable equations, the field of fractions and the algebraic closure. Now we
encounter another construction of this sort; we show that the normed field
C((x)) is the metrical completion of the normed field of rational functions C(x).
This is analogous to obtaining the field of real numbers R by completing the
field of fractions Q. In fact, more apt analogy is with another completion of Q,
the field of p-adic numbers Qp.

The field of rational functions C(x) is the field of fractions of the ring of
complex polynomials C[x]. Thus

C(x) = {p/q | p, q ∈ C[x], q 6= 0} ,

factored by the equivalence relation

p1/q1 ∼ p2/q2 ⇐⇒ p1q2 − p2q1 = 0 .

There is a natural injective embedding of C(x) in C((x)), and we regard C(x) as
a subfield of C((x)). Due to the division algorithm, C[x] is a UFD (unique fac-
torization domain). The irreducible elements are exactly the linear polynomials
x−α, α ∈ C, and their associates, and the units in C[x] are exactly the nonzero
constant polynomials. So every nonzero r ∈ C(x) has the unique expression

r = r(x) = γ
∏
α∈C

(x− α)kα , γ ∈ C∗, kα ∈ Z ,

with only finitely many exponents kα 6= 0. We define the order of r(x) at α by

ordα(r) = kα

and set ordα(0) = +∞. It is useful to define also the order at infinity:

ord∞(r(x)) := ord0(r(1/x)) .

The order function on C(x) has the same two basic properties as the order
function on C((x)):

ordα(rs) = ordα(r) + ordα(s) and ordα(r + s) ≥ min(ordα(r), ordα(s)) ,

with equality if ordα(r) 6= ordα(s). In fact, for every r ∈ C(x) we have

ord0(r) = ord(r)

where the ord on the right side is the order function on C((x)).

Exercise 4.2.21 Show that for every nonzero r ∈ C(x),∑
α∈C∪{∞}

ordα(r) = 0 .
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Exercise 4.2.22 Prove Lüroth’s theorem, or look it up in the literature: if
C ⊂ K ⊂ C(x) is an intermediate field then either K = C or K is isomorphic
to the field C(x). The theorem is named after the German mathematician Jacob
Lüroth (1844–1910). For that matter, how do we know that the fields C and
C(x) are not isomorphic?

As with ord, we turn the order at α function into the norm ‖ · ‖α : C(x)→
[0,+∞) by

‖r‖α := 2−ordα(r)

(again ‖0‖α = 0). We omit the proof of the next proposition.

Proposition 4.2.23 For every α ∈ C ∪ {∞}, C(x) = (C(x),+, ·, ‖ · ‖α) is a
non-Archimedean normed field: for every r, s ∈ C(x),

1. ‖r‖α ≥ 0 and equality holds if only if r = 0,

2. (multiplicativity) ‖rs‖α = ‖r‖α · ‖s‖α and

3. (strong triangle inequality) ‖r + s‖α ≤ max(‖r‖α, ‖s‖α), with equality if
‖r‖α 6= ‖s‖α.

We all know that the field of fractions Q is not complete to the usual norm
|p/q|: some Cauchy sequences in it do not have limits. An example is the
sequence (an) ⊂ Q where a1 = 1, a2 = 2 and the next an are constructed by
repeatedly halving the initial interval [1, 2] so that always 2 lies between the
squares of the endpoints. Then (an) is Cauchy and its limit a = lim an should
satisfy a2 = 2 but there is no such element in Q.

We show that, similarly, C(x) is not complete with respect to the norm ‖·‖α.
For simplicity we restrict to the case α = 0 and use notation ‖ · ‖0 = ‖ · ‖. As
we know,

‖r‖ = 2−ord(r), r ∈ C(x) ⊂ C((x)) .

Proposition 4.2.24 Suppose that 0 ≤ n1 < n2 < . . . is an infinite sequence of
integers such that the length of the gaps ni+1 − ni is unbounded. Then

(xn1 , xn1 + xn2 , xn1 + xn2 + xn3 , . . . )

is a Cauchy sequence of polynomials that has no limit in C(x) (with respect to
the norm ‖ · ‖).

Proof. Let pi = xn1 + xn2 + · · · + xni . The sequence (p1, p2, . . . ) is Cauchy
because ‖pi − pj‖ < 2−ni if j > i. Note that if p, q ∈ C[x] and deg(p) < ord(q)
then ord(q − p) ≤ ord(q). Now let p/q ∈ C(x) be given. By the assumption,
there is an i such that ni > deg(p) and ni+1 − ni > deg(q). Then for j > i we
have∥∥∥∥pq − pj

∥∥∥∥ =

∥∥∥∥p− piq − (pj − pi)q
q

∥∥∥∥ = ‖1/q‖ · ‖(pj − pi)q − (p− piq)‖

= 2ord(q)2−ord((pj−pi)q−(p−piq)) ≥ 2ord(q)2−(ni+1+ord(q))

= 2−ni+1
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because ord((pj − pi)q) = ni+1 + ord(q) ≥ ni+1 > ni + deg(q) = deg(p − piq).
Thus ‖p/q− pj‖ ≥ 2−ni+1 for every j with j > i and the sequence (pi) does not
converge to p/q. 2

The combinatorial idea behind the previous example is that no sequence (an) ⊂
C with infinitely many nonzero terms and arbitrarily long intervals of zeros can
satisfy for n > n0 a linear recurrence with constant coefficients; hence the GF∑
n≥0 anx

n is not rational. This is exactly the case with
∑
i≥0 x

ni = lim pi(x)—
the limit is in C((x)) but not in C(x).

Exercise 4.2.25 What about the Cauchy sequences (in (C(x), ‖ · ‖))

(
∑n
i=1 x

i)n≥1, (
∑n
i=1 cix

i)n≥1 and (
∑n
i=1 fix

i)n≥1

where (ci) are the Catalan and (fi) the Fibonacci numbers. Do they have limits
in C(x)? If yes, what are they?

Each metric space (M,d) has a unique metrical completion, a metric super-
space N ⊃ M such that N is complete (every Cauch sequence in it converges)
and M is dense in N (every point in N is a limit of points in M). If M is a
field and the metric comes from a norm then N is a normed field as well. This
is the situation for C((x)) ⊃ C(x) with respect to the norm ‖ · ‖ = ‖ · ‖0. We
‘proved’ C((x)) to be complete in Exercise 4.2.2 and it is clear that already the
rational functions p(x)/xk, p ∈ C[x] and k ∈ N0, are dense in C((x)). Thus we
have the following.

Proposition 4.2.26 The normed field of formal Laurent series C((x)) is the
metrical completion of the field of rational functions C(x) with respect to the
norm ‖ · ‖ = ‖ · ‖0.

At the close of the section we show how formal Laurent series produce an-
other, important, complete normed field.

Proposition 4.2.27 For any prime number p, the normed field

Z((x))/(x− p)

is the metrical completion of the field of fractions Q with respect to the p-adic
norm ‖ · ‖p.

4.3 Differentiation, composition, exp and log

For f = f(x) =
∑
n≥k anx

n ∈ C((x)), the (formal) derivative of f is the fls

f ′(x) = df
dx =

∑
n≥k nanx

n−1 .

Formal differentiation has the familiar properties, which we leave for the inter-
ested reader to derive.
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Exercise 4.3.1 Let f, g ∈ C((x)) and α, β ∈ C. Show that

(αf+βg)′ = αf ′+βg′, (fg)′ = f ′g+fg′ and (f/g)′ = (f ′g−fg′)/g2 (g 6= 0) .

Hence (fk)′ = kfk−1f ′ for every f ∈ C((x)) and k ∈ Z, and f ′ = 0 iff f is
constant, i.e., [xk]f = 0 if k 6= 0. Differentiation commutes with formal limits.

Exercise 4.3.2 Let fn, f ∈ C((x)) and f = lim fn. Show that

f ′ = lim f ′n .

Thus we may always differentiate infinite series of fls term by term: (
∑
n≥1 fn)′ =∑

n≥1 f
′
n, if one of the series formally converges. The same holds for infinite

products of fps: in the convergent case, (
∏∞
n=1(1 + fn))′ = lim((1 + f1)(1 +

f2) . . . (1 + fn))′ (ord(fn) > 0).
Iterating the above Leibniz rule (the second formula in Exercise 4.3.1) we

get for every nonzero f1, f2, . . . , fk ∈ C((x)) the logarithmic derivative identity

(f1f2 . . . fk)′ =
∑k
n=1 f1 . . . fn−1f

′
nfn+1 . . . fk =

∑k
n=1 f

′
n/fn · f1f2 . . . fk ,

or

(f1f2 . . . fk)′

f1f2 . . . fk
=

k∑
n=1

f ′n
fn

.

(Gottfried W. von Leibniz (1646–1716) was a German mathematician and philoso-
pher.) It has the following infinite version.

Proposition 4.3.3 Let (fn) ⊂ C[[x]] be a sequence of fps such that each fn has
constant term 1 and ‖fn − 1‖ → 0 as n → ∞. Then the next infinite product
and series formally converge and( ∞∏

n=1

fn

)′
=

∞∑
n=1

f ′n
fn
·
∞∏
n=1

fn .

Proof. Take formal limit for k →∞ of the finite form of the identity. 2

The identity takes its name from the alternative derivation by differentiating
the logarithm of the product. We introduce formal logarithm later.

We present two applications of the logarithmic derivative identity, first for
the finite and then for the infinite version. We introduce for any nonzero poly-
nomial f ∈ C[x] the function

rad(f) = |{α ∈ C | f(α) = 0}| ,

which counts distinct roots of f (without multiplicity). It should be clear that
radf ≤ deg f and rad(gfn) = rad(gf) for every n ∈ N and g, f ∈ C[x]
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Theorem 4.3.4 (the Stothers–Mason theorem) If the polynomials a, b, c ∈
C[x] are pairwise coprime, not all constant and satisfy relation a+ b = c, then

max(deg a,deg b,deg c) ≤ rad(abc)− 1 .

Proof. Dividing a+ b = c by c (c 6= 0 by coprimality), setting f = a/c, g = b/c
and differentiating, we get the equations

f + g = 1 and f ′ + g′ = f · f
′

f
+ g · g

′

g
= 0 ,

which gives

−f
′/f

g′/g
=
b

a
.

We factorize a, b, c:

f =
a

c
=
α
∏

(x− αi)mi
γ
∏

(x− γi)oi
and g =

b

c
=
β
∏

(x− βi)ni
γ
∏

(x− γi)oi
,

where α, β, γ ∈ C are nonzero, the αi are distinct roots of a with multiplicities
mi ∈ N, and similarly for the βi and γi. Expressing f ′/f and g′/g by the
logarithmic derivative identity mentioned above, we get

b

a
= −

∑
mi/(x− αi)−

∑
oi/(x− γi)∑

ni/(x− βi)−
∑
oi/(x− γi)

.

If we multiply the denominator and the numerator on the right side by

N =
∏

(x− αi) ·
∏

(x− βi) ·
∏

(x− γi) ,

we get
b

a
= −N (

∑
mi/(x− αi)−

∑
oi/(x− γi))

N (
∑
ni/(x− βi)−

∑
oi/(x− γi))

=
Q

P
,

where the polynomials P,Q ∈ C[x] have degrees at most degN−1 = rad(abc)−1.
Since a, b are coprime, deg a ≤ degP ≤ rad(abc) − 1 and deg b ≤ degQ ≤
rad(abc) − 1. From a + b = c we deduce that deg c ≤ max(deg a,deg b) ≤
rad(abc)− 1 too. 2

The theorem is due, independently, to Stothers [77] and Mason [55]. Our proof
is taken from Lang [49, p. 194] who writes that it is due to Mason. The S.–M.
theorem has many applications, of which we mention here just the proof of the
FLT (Fermat’s last theorem, Pierre de Fermat (1601 or 1607–1665) was a French
lawyer and an amateur mathematician) for polynomials.

Corollary 4.3.5 If the polynomials a, b, c ∈ C[x], not all constant, satisfy rela-
tion an + bn = cn, n ∈ N, then n ≤ 2.
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Proof. We may assume that the polynomials a, b, c are coprime. Let d ≥ 1 be
their maximum degree. The S.–M. theorem: nd = max(deg an,deg bn,deg bn) ≤
rad(anbncn)− 1 = rad(abc)− 1 ≤ deg(abc)− 1 ≤ 3d− 1. So n ≤ 2. 2

For the exponent n = 2 we have infinitely many solutions, coming from the
bivariate identity (x2 − y2)2 + (2xy)2 = (x2 + y2)2.

For the second application of the logarithmic derivative identity we define
for n ∈ N the sum-of-divisors function

σ(n) =
∑
d |n

d .

For example, σ(7) = 1 + 7 = 8 and σ(20) = 1 + 2 + 4 + 5 + 10 + 20 = 42.

Exercise 4.3.6 Prove the identity

∞∑
n=1

xn

1− xn
=

∞∑
n=1

σ(n)xn .

The series on the left side (and similar expressions) is called Lambert series,
after Johann Ch. Lambert (1728–1777), a Swiss mathematician. You can guess
who discovered the next beautiful identity.

Proposition 4.3.7 For every n ∈ N we have the recurrence

σ(n) = σ(n− 1) +σ(n− 2)−σ(n− 5)−σ(n− 7) +σ(n− 12) +σ(n− 15)− . . . .

Here we subtract from n the pentagonal numbers (defined in Example 2 in the
previous section), σ(m) = 0 if m < 0 and if σ(0) appears on the right side (i.e.,
n is pentagonal) then we set σ(0) = σ(n− n) = n.

Proof. We denote by P ⊂ N the pentagonal numbers and apply the log-
arithmic derivative identity on Euler’s pentagonal identity

∏
n≥1(1 − xn) =

1 +
∑
n∈P s(n)xn, where s(n) ∈ {−1, 1} is the pentagonal sign of n. We get

x

(
1 +

∑
n∈P

s(n)xn
)′

= x
∑
n≥1

(1− xn)′

1− xn

(
1 +

∑
n∈P

s(n)xn
)
,

−
∑
n∈P

s(n)nxn =
∑
n≥1

nxn

1− xn

(
1 +

∑
n∈P

s(n)xn
)

=
∑
n≥1

σ(n)xn
(

1 +
∑
n∈P

s(n)xn
)
.

Applying [xn] to both sides, we get the recurrence in the equivalent form
−s(n)σ(n − n) = σ(n) − σ(n − 1) − σ(n − 2) + σ(n − 5) + σ(n − 7) − . . .
(in this equality, on the right side σ(m) = 0 if m ≤ 0). 2
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After differentiation we introduce another important operation on C((x)),
the (formal) composition of fls. It should be the formal counterpart of compo-
sition of functions. It is easy to see that for f, g ∈ C((x)) the infinite series∑

n∈Z
([xn]f)gn

formally converges if and only if

(i) ord(f) ≥ 0 and g = 0 or

(ii) f is arbitrary and 0 < ‖g‖ < 1 (i.e., 0 6= g ∈ xC[[x]]) or

(iii) [xn]f 6= 0 for only finitely many n (i.e., f is a Laurent polynomial) and
g 6= 0 is arbitrary.

Definition 4.3.8 If f, g ∈ C((x)) and (i) or (ii) holds then we say that g is
substituable in f and define the composition of f and g as the formal sum

f(g(x)) = f ◦ g =
∑
n∈Z

([xn]f)g(x)n .

Example 4.3.9 As we saw earlier, if ord(f) > 0 then

(1 + x+ x2 + . . . ) ◦ f = 1/(1− f) .

2

It is clear that x ◦ f = f ◦ x = f for every f ∈ C((x)), thus x is the neutral
element for ◦. The composition case (i) may seem trivial but the next exercise
shows its importance. The case (iii), which we omitted from the definition of
f ◦ g, is in fact used often in applications of field operation to fls, for example,
g2 for g ∈ C((x)) may be interpreted as x2 ◦ g. The problem with including
case (iii) in the definition of f ◦ g is that such extended composition ceases to
be associative, see Example 4.3.17 below.

Exercise 4.3.10 Let f ∈ C[[x]] and n ∈ N0. Show that

n![xn]f = ((d/dx)nf)(0)

where (d/dx)nf is the n-th formal derivative of f .

Exercise 4.3.11 Show that composition from the right is an endomorphism of
the field C((x)): if f, g, h ∈ C((x)) and h is substituable in the fls on its left
then (f ± g) ◦ h = f ◦ h± g ◦ h, 1 ◦ h = 1 and (fg) ◦ h = (f ◦ h)(g ◦ h).

Exercise 4.3.12 Composition is continuous (i.e., commutes with formal lim-
its): if fn, gn, f, g ∈ C((x)) with f = lim fn, g = lim gn and f ◦ g is defined,
then fn ◦ gn is defined for n > n0 and

lim(fn ◦ gn) = f ◦ g .
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Exercise 4.3.13 Prove the formal chain rule: for f, g ∈ C((x)), (f ◦ g)′ =
(f ′ ◦ g)g′ if the compositions are defined.

We prove the expected property of formal composition, associativity. We expect
it on the base of our experience with composing functions and mappings, where
associativity holds trivially.

Proposition 4.3.14 Composition is associative, for f, g, h ∈ C((x)) one has

(f ◦ g) ◦ h = f ◦ (g ◦ h)

whenever the involved compositions are defined.

Proof. Since every f ∈ C((x)) is a limit f = lim fn of some Laurent polynomials
fn, by Exercise 4.3.12 it suffices to prove associativity of formal composition
just for them. Each Laurent polynomial f defines a mapping f∗ : C\{0} → C,
and the correspondence f 7→ f∗ is injective in the sense that if f∗ = g∗ on
infinitely many points x ∈ C then f = g. It is easy to see that formal and
functional composition commute: for every two Laurent polynomials we have
(f ◦ g)∗ = f∗ ◦ g∗ : C\A → C where A is finite and on the right side we
compose functions (if the formal composition is defined). Since composition of
functions is trivially associative, it follows that formal composition of Laurent
polynomials is associative. 2

Exercise 4.3.15 Give a purely formal proof that formal composition is asso-
ciative, without relying on composition of functions.

We establish the formal counterpart of inverse function.

Proposition 4.3.16 Let f ∈ C((x)). Then a g ∈ C((x)) exists with

f ◦ g = x

if and only if ord(f) = 1. The fls g is then uniquely determined, ord(g) = 1 as
well and f ◦ g = g ◦ f = x; we call g the compositional inverse of f and denote
it by

g(x) = f(x)〈−1〉 .

Proof. It is easy to check that ord(f ◦ g) = ord(f) · ord(g) if g 6= 0 and the
composition is defined. Thus if ord(f) 6= 1 then ord(f ◦g) 6= 1, and ord(f) = 1 is
a necessary condition for existence of a compositional inverse (we do not accept
x−1 ◦x−1 = x, more on this later). We show that it is also a sufficient condition;
let f(x) = a1x+ a2x

2 + . . . be a fls with a1 6= 0. We look for a g ∈ C((x)) with
ord(g) = 1, so g(x) = b1x+ b2x

2 + . . . with b1 6= 0, such that

f ◦ g =

∞∑
n=1

an(b1x+ b2x
2 + . . . )n = x .
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Expanding and comparing the coefficients of xn on both sides, we look for
solution in the unknown bn of the infinite system of equations

a1bn + pn(a1, . . . , an, b1, . . . , bn−1) = δ1,n, n = 1, 2, . . .

where pn(. . . ) are some integral polynomials in the stated variables; p1 is zero.
Again (as in the proof of Proposition 4.1.2) the system has a unique solution:
b1 = a−1

1 from the first equation and if b1, b2, . . . , bn−1 are already determined,
the n-th equation determines uniquely bn.

It remains to show that the right compositional inverse is also the left inverse.
This follows by associativity. If g is the right inverse of f and h that of g then

g ◦ f = (g ◦ f) ◦ (g ◦ h) = g ◦ ((f ◦ g) ◦ h) = x ,

and g is also the left inverse of f . 2

The left inverse is unique too: g ◦ f = h ◦ f ⇒ g = h, upon composing f 〈−1〉

from the right. The GF C(x) =
∑
n≥1 cnx

n of Catalan numbers satisfies the

quadratic equation x = C−C2 = (x−x2)◦C. It follows that C(x)〈−1〉 = x−x2

and

x = C(x)− C(x)2 = C(x− x2) =
∑
n≥1

cn(x− x2)n =
∑
n≥1

cnx
n(1− x)n ,

which is equivalent with the identity

n∑
k=1

(−1)k+1

k

(
2k − 2

k − 1

)(
n

k

)
= δ1,n .

Example 4.3.17 We consider the extended composition f ◦ g of f, g ∈ C((x)),
defined if one of the cases (i), (ii) or (iii) occurs, that is, exactly if the series
obtained by replacing xn in the expansion of f(x) with g(x)n formally converges.
This operation is not associative. Indeed, let

f(x) = C(x) =
∑
n≥1 n

−1
(

2n−2
n−1

)
xn, g(x) = C(x)〈−1〉 = x− x2 and h(x) = 1 .

Then all extended compositions below are defined but

(f ◦ g) ◦ h = x ◦ 1 = 1 6= f ◦ (g ◦ h) = f ◦ 0 = 0 .

2

Exercise 4.3.18 In the example, the three fps define functions analytic in a
neighborhood of 0: f in the disc with radius 1

4 and g, h are even entire. How
come that their composition is not associative? Aren’t we composing functions?

Exercise 4.3.19 Where does the proof of Proposition 4.3.14 fail for the fps
f = C(x), g = C(x)〈−1〉, h = 1?
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In view of Propositions 4.3.14 and 4.3.16, we have the following.

Proposition 4.3.20 Let P1 = {f ∈ C((x)) | ord(f) = 1}. Then (P1, ◦) is a
non-commutative group.

4.4 Composition of GF: exponential GF and the
Lagrange inversion formula

4.5 Effective computation of modular reductions

4.6 More on algebra in C[[x]] and C((x))
For a finite tuple of natural numbers t = (t1, . . . , tl) ∈

⋃
i≥0 Ni we use notation

|t| = t1 + t2 + · · ·+ tl. The empty tuple t = ∅ for l = 0 has |t| = 0. We say that
a sequence (an) ⊂ K in a field K satisfies a catalanian recurrence if there is a
finite set S ⊂ K such that for every index n = 1, 2, . . . we have equality (empty
product here is 1)

an =
∑

0≤|t|≤n, t 6=(n)

cn,tat1at2 . . . atl , cn,t ∈ S .

Thus a1 = c1,∅, a2 = c2,∅ + c2,(1)a1 + c2,(1,1)a
2
1, and so on.

Proposition 4.6.1 Let a sequence (an) ⊂ K satisfy a catalanian recurrence,
with coefficients in a finite set S ⊂ K.

1. If R ⊂ K is a subring such that K is a field of fractions of R then there
exists an element e ∈ R such that enan ∈ R for every n ∈ N.

2. If K = (K, | · |) is a normed field then there exists a constant c > 1 such
that |an| ≤ cn for every n ∈ N.

Proof. 1. Induction on n. For every x ∈ S there is an r ∈ R with rx ∈ R. The
product d ∈ R of all these r (now we use finiteness of S) has the property that
dx ∈ R for every x ∈ S. It follows from the catalanian recurrence satisfied by
(an) that if d2i−1ai ∈ R for i = 1, 2, . . . , n− 1 then d2n−1an ∈ R as well. Thus
e = d2 works.

2. We bound the growth of an by a simpler majorant catalanian sequence,
which we resolve by its GF which satisfies a quadratic equation. Let d =
max |e|, e ∈ S. We take the sequence (bn) ⊂ R≥0 defined by the catalanian
recurrence

bn =
∑

0≤|t|≤n, t 6=(n)

dbt1bt2 . . . btl
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(b1 = d). It follows by induction on n that |an| ≤ bn for every n ∈ N. Let
B = B(x) =

∑
n≥1 bnx

n. The recurrence translates to the equation

B =
d

(1− x)(1−B)
− dB − d, or (1 + d)B2 −B +

dx

1− x
= 0 .

So, since B(0) = 0,

B(x) =
1− (1− x)−1/2(1− (1 + 2d)2x)1/2

2(1 + d)
.

As we noted earlier, |
(±1/2

n

)
| ≤ 1 for every n ∈ N0. Newton’s binomial theorem

gives that

|an| ≤ bn = [xn]B(x) <
(n+ 1)(1 + 2d)2n

2(1 + d)
< (2(1 + 2d)2)n .

Thus c = 2(1 + 2d)2 works, d being the maximum norm of an element in S. 2

Proposition 4.6.2 Let K be a field and f(x) =
∑
n≥0 anx

n ∈ K[[x]] be a fps
that is algebraic over K(x). Then there exists an m ∈ N0 such that the shifted
sequence of coefficients

(bn) = (an+m), n = 1, 2, . . . ,

satisfies a catalanian recurrence.

Proof. There are polynomials p0, p1, . . . , pk ∈ K[x], k ∈ N and pk 6= 0,

such that
∑k
i=0 pi(x)f(x)i = 0. We assume that k is minimum and reexpand

P (x, y) =
∑k
i=0 pi(x)yi by the binomial theorem as

P (x, y + z) =

k∑
i=0

qi(x, y)zi, qi ∈ K[x, y] .

Since q1(x, y) =
∑k
i=1 ipi(x)yi−1, q1 is nonzero and has y-degree k − 1, which

implies that q1(x, f(x)) 6= 0. Thus we may set m = ord(q1(x, f(x))) ∈ N0. We
split f as f(x) = u(x) + xmv(x) where u(x) = a0 + a1x + · · · + amx

m and
v(x) =

∑
n≥m+1 anx

n−m =
∑
n≥1 bnx

n. In

0 = P (x, f) = P (x, u(x) + xmv(x)) =

k∑
i=0

qi(x, u(x))ximv(x)i

the polynomial q1(x, u(x)) has order exactly m because ord(u(x)−f(x)) ≥ m+1
and hence ord(q1(x, u(x)) − q1(x, f(x))) ≥ m + 1. Therefore in the last sum
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every summand with i ≥ 1 has order at least 2m, and so must have q0(x, u(x)).
Dividing by x2m we get the identity

0 =

k∑
i=0

ri(x)v(x)i, ri ∈ K[x], r1(0) 6= 0 .

Equating the coefficient of xn for n = 1, 2, . . . on the right side to zero, we get
a catalanian recurrence for the sequence (bn) = (an+m) of coefficients in v(x).
Indeed, that coefficient equals

[xn]r0(x) +

k∑
i=1

∑
j≥0

[xj ]ri(x)
∑

tl∈N, t1+···+ti=n−j

bt1bt2 . . . bti ,

where always tl ≤ n, the only term involving tl = n is [x0]r1(x) · bn, and the
coefficients in the recurrence attain only finitely many values as the ri(x) are
polynomials. 2

Exercise 4.6.3 What is the point of the manipulation producing the shift m?
Could not we obtain some recurrence for (an = [xn]f(x)) directly from the initial
equation P (x, f(x)) = 0?

Theorem 4.6.4 (convergence of algebraic fps) Suppose that K = (K, | · |)
is a normed field and f(x) =

∑
n≥0 anx

n ∈ K[[x]] is a fps that is algebraic over
K(x). Then f(x) is convergent: there is a constant c > 1 such that

|an| ≤ cn, n ∈ N .

Proof. This follows by combining part 2 of Proposition 4.6.1 and Proposi-
tion 4.6.2. Indeed, if for some m ∈ N0 and c > 1 one has |an+m| ≤ cn for every
n ∈ N, then there is a d > 1 such that |an| < dn for every n ∈ N. Namely,
d = max{|a1|, |a2|, . . . , |am|, c}. 2

Theorem 4.6.5 (Eisenstein, 1851) Let K be a field, R ⊂ K be a subring
such that K is a field of fractions of R, and f(x) =

∑
n≥0 anx

n ∈ K[[x]] be a
fps that is algebraic over K(x). Then there exists an element e ∈ R such that
enan ∈ R for every n ∈ N. In other words,

f(ex)− a0 ∈ R[[x]] .

Proof. This follows by combining part 1 of Proposition 4.6.1 and Proposi-
tion 4.6.2. Indeed, if for some m ∈ N0 and e ∈ R one has enan+m ∈ R for every
n ∈ N, then there is a d ∈ R such that dnan ∈ R for every n ∈ N. Namely, d is
the product of the m denominators for a1, a2, . . . , am, and e. 2

The theorem was announced in [30] by the German (Prussian) mathematician
Gotthold Eisenstein (1823–1852). He stated it for the case R = Z and K = Q
in the following single sentence; his note contains no proof.
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(. . . ) In jeder Reihen-Entwicklung dieser Art, wenn sie nur aus einer
algebraischen Funktion stammt, mag dieselbe übrigens explicite oder
implicite gegeben sein, kommen in sämmtlichen Coëfficienten, so fern
dieselben rational sind, als nothwendige Nenner, d. h. als solche,
die sich nich weiter gegen Faktoren des Zählers fortheben lassen,
stets nur eine endliche Anzahl ganz bestimmter Primfaktoren und
deren Potenzen vor; es sind dieser Primzahlen zugleich die Divisoren
einer aus der algebraischen Gleichung, der die Funktion Genüge
leistet, leicht zu bildenden characteristischen Zahl, nämlich ihrer
dem speciellen Werthe x = 0 entsprechenden von Gauß so gennan-
ten Determinante, welche bekanntlich nicht verschwiden darf, wenn
die Reihen-Entwicklung überhaupt möglich sein soll; endlich kann
statt x immer ein solches Vielfache von x gesetzt werden, daß alle
Coëfficienten der Reihe in ganze Zahlen übergehen. (. . . )

The first published proof is due to Eduard H. Heine (1821–1881), a German
mathematician, two years later in [42]; by then Eisenstein, not yet 30, suc-
cumbed to tuberculosis. (We have learned about Heine’s work from Allouche
[5].) Our proof is a reworked proof from Cassels [19, Chapter ?].

4.7 Comments and references
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Chapter 5

Rational generating
functions

5.1 Generalities

We have to prove that wlog αi ∈ Q. This is based on the useful fact that
the coefficients in the recurrence may be taken from the field containing the
sequence; we apply the lemma for the extension Q ⊂ C. The lemma follows
from the next result that every system of linear equations with more unknowns
than equations has a nontrivial solution.

Exercise 5.1.1. Let K be a field and
∑n
i=1 ai,jxi = 0, j = 1, 2, . . . ,m and

ai,j ∈ K, be a system of m (homogeneous and linear) equations with n un-
knowns, where n > m. Prove that the system has a solution xi ∈ K with not all
xi zero.

Proposition 5.1.2. Let K ⊂ L be an extension of fields, (an) ⊂ K be a
sequence, and α1, . . . , αk ∈ L be k coefficients, not all zero, such that

k∑
i=1

αian+i = 0, for every n > n0 .

Then some k coefficients β1, . . . , βk ∈ K exist, not all zero, such that

k∑
i=1

βian+i = 0, for every n > n0 .

Proof. Let U = {x ∈ Kk |
∑k
i=1 αixi = 0}. Clearly, U is a vector sub-

space of the k-dimensional vector space Kk over K, and U 6= Kk. Thus if
bj = (bj,1, . . . , bj,k) ∈ U , j = 1, 2, . . . , l, form the basis of U , then l < k. By
the previous exercise there is a (β1, . . . , βk) ∈ Kk with not all βi = 0 such
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that
∑k
i=1 βibj,i = 0 for every j = 1, 2, . . . , l. Thus

∑k
i=1 βibi = 0 for every

(b1, . . . , bk) ∈ U . Since every k-tuple (an+1, . . . , an+k) with n > n0 lies in U ,
β1, . . . , βk are the desired coefficients. 2

5.2 The transfer matrix method

5.3 Counting lattice points in polytopes

A polyhedron M ⊂ Rd is a set defined by finitely many linear inequalities,

M = {x ∈ Rd |
∑d
j=1 ai,jxj ≥ bi, i = 1, 2, . . . , k} ,

where ai = (ai,1, ai,2, . . . , ai,d) ∈ Rd are k given vectors and bi ∈ R are k given
numbers. If we allow in the definition of M also inequalities ≤ and equalities
=, we get again polyhedra.

Exercise 5.3.1 Why? What about strict inequalities >?

Geometricly, M is an intersection of k closed halfspaces. A polytope is a bounded
polyhedron. A well known fact is that polytopes are exactly convex hulls of finite
sets:

P ⊂ Rd is a polytope ⇐⇒ P = conv(V )

:= {
∑l
i=1 λivi | λi ≥ 0 &

∑l
i=1 λi = 1} ,

where V = {v1, . . . , vl} ⊂ Rd are l given points. The above expression
∑l
i=1 λivi

(plus the restriction λi ≥ 0 &
∑l
i=1 λi = 1) for a point of P is the convex

combination of the points v1, . . . , vl. If a point vj is a convex combination of
other points in V , we may omit it from V without diminishing conv(V ).

Exercise 5.3.2 Why?

The unique minimum subset V ′ ⊂ V such that P = conv(V ) = conv(V ′)
consists of the vertices of P .

Exercise 5.3.3 Prove that v ∈ P ⊂ Rd is a vertex of the polytope P if and only
if there is a closed halfspace H ⊂ Rd such that H ∩ P = {v}.

We say that the polytope P is a lattice polytope, respectively a rational polytope,
if the vertices of P lie in Zd, respectively in Qd. For n ∈ N0 and a set M ⊂ Rd
we define the n-th blow-up of M as

nM := {nx = (nx1, nx2, . . . , nxd) | x ∈M} .

The main goal of the section is to deduce the next theorem.
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Theorem 5.3.4 (Ehrhardt, 1960) Let P ⊂ Rd be a rational polytope and
m > 0 be an integer such that mP is a lattice polytope. Then the counting
function

fP (n) := |Zd ∩ nP |, n ∈ N0,

is a rational quasipolynomial in n with period m. In particular, if P is a lattice
polytope then fp(n) is a rational polynomial in n

For example, the denumerant pA(n), A = {1, 2}, which counts partitions of n
into parts 1, 2, is clearly given by pA(n) = bn/2c + 1. But also pA(n) = fP (n)
for the polytope P ⊂ R2,

P = {x ∈ R2 | x1 + 2x2 = 1, xi ≥ 0} = conv({(1, 0), (0, 1/2)}) .

Indeed, pA(n) = fP (n) = n/2 + 1 for even n and n/2 + 1/2 for odd n, a rational
quasipolynomial with period 2.

5.4 Comments and references
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Chapter 6

Analytic intermezzo II.
Asymptotics via complex
analysis

6.1 Comments and references
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Chapter 7

Lattice walks

7.1 Random (?) walks in Zd and other graphs

A (simple undirected) graph
G = (V,E)

has a finite or infinite set V of vertices and a set E ⊂
(
V
2

)
= {e ⊂ V | |e| = 2}

of edges. A walk w in G is a finite or infinite sequence of vertices (n ∈ N0)

w = (v0, v1, . . . , vn) ⊂ V or w = (v0, v1, . . . ) ⊂ V

such that {vi−1, vi} ∈ E for every i ∈ [n] or for every i ∈ N. The length of w is
n in the former case and ∞ in the latter. For example, every vertex v ∈ V is a
walk in G with length 0. Injective walk with i 6= j ⇒ vi 6= vj is called a path.
The vertices v0 and vn are, respectively, the starting and the final vertex of w.
For v ∈ V and n ∈ N0 we denote by

dn = dn(v,G) ∈ N0 and an = an(v,G) ∈ N0 ,

respectively, the number of walks w in G with length n ∈ N0 and v0 = v, and
the number of those of them with v0 = vj = v for some j > 0 (i.e., revisitting
its starting vertex v). The degree deg v = degG v ∈ N0 ∪ {∞} of a vertex v ∈ V
in G is the number of neighbours of v in G and equals to the cardinality

degG v = |{{v, u} | u ∈ V } ∩ E| .

If all degrees in G are finite and the same, equal to an r ∈ N0, we call graph G
r-regular.

Basic graphs for this section are, for d ∈ N, the countable 2d-regular graphs
Zd of nearest neighbours among the lattice points in Rd,

Zd = (Zd, E) where {a, b} ∈ E ⇐⇒
d∑
i=1

|ai − bi| = 1 .
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That is, {a, b} is an edge in Zd if and only if

a− b ∈ {(±1, 0, 0, . . . , 0), (0,±1, 0, 0, . . . , 0), . . . , (0, 0, . . . , 0,±1)}

(we can move from a to b and back by a unit step in the direction of one of the
d coordinated axes). For every vertex v ∈ Zd, every d ∈ N and every n ∈ N0 we
clearly have

dn(v,Zd) = (2d)n .

In 1921, the Hungarian mathematician G. Pólya in [66] posed and answered
the following original and intriguing question, which was the starting point of
the new probabilistic discipline of random walks. A man aimlessly and ran-
domly wanders (“Irrfahrt”) in a rectangular net of streets (“Straßennetz”), as
is the one in the city New York. From the point of view of probability calculus
(“Wahrscheinlichkeitsrechnung”), how likely is it that he returns to the starting
point (crossroad)? We model the net of streets and crossroads with the graph Zd
where New York has d = 2. The answer G. Pólya found is that for d = 1, 2 the
wanderer always, with probability 1, sooner or later returns to the start, but in
dimensions d ≥ 3 with a positive probability he never returns to the start. Now
we state these results precisely and prove them. We cast them enumeratively,
without invoking (and defining) probability.

Proposition 7.1.1 (wandering in Z2). Consider any starting vertex in Z2,
say the origin 0 = (0, 0). Then

lim
n→∞

an(0,Z2)

dn(0,Z2)
= lim
n→∞

an
dn

= lim
n→∞

an
4n

= 1 .

Vaguely restated, random walk in Z2 returns to the start with probability 1.

Proof. Let w = (v0, v1, . . . , vn) be a walk in Z2 with v0 = 0 and length n ∈ N0.
We define two more quantities counting walks w starting at 0: bn is the number
of w with vn = 0 and cn (no Catalan numbers now) is the number of w with
vn = 0 and vj 6= 0 for 0 < j < n. We set c0 = 0. Clearly, for n ∈ N we have
an ≤ dn, cn ≤ bn ≤ dn and dn = 4n. Pigeonholing the walks counted by an by
their first revisit of 0 at step j, we see that

an =

n∑
j=0

cjdn−j , or
an
4n

=

n∑
j=0

cj
4j
≤ 1

for every n ∈ N0 (an ≤ 4n). Thus it suffices to show that

∞∑
j=0

cj
4j

= 1 .

The GFs B(x) :=
∑
n≥0

bn
4nx

n = 1 + . . . and C(x) :=
∑
n≥0

cn
4nx

n = x2

4 + . . .
satisfy the relation

B(x) =
1

1− C(x)
=
∑
k≥0

C(x)k
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—split a walk counted by bn by its returns to 0 into k segments. This relation
also holds for the real functions B(x) and C(x) if x ∈ [0, 1) because both power
series have radii of convergence ≥ 1 (bn, cn ≤ 4n). Now it suffices to show that

lim
x→1−

B(x) = +∞ .

Indeed, then by the above relation limx→1− C(x) = 1. But by easy Abel’s
Theorem 7.1.5 below, limx→1− C(x) = C(1). Thus C(1) = 1, which is the
above required infinite series evaluation. To show that limx→1− B(x) = +∞,
it suffices to prove, again by Theorem 7.1.5, that B(1) = +∞. We show it by
computing bn. Clearly, bn = 0 for odd n (Exercise 7.1.2). For even lengths,

b2n =

n∑
j=0

(2n)!

j! j! (n− j)! (n− j)!
=

(
2n

n

) n∑
j=0

(
n

j

)2

=

(
2n

n

)2

.

The first equality follows by considering all positions of the j steps of w to
the right, which force the same number j of steps to the left and the same
number n− j for steps up and for steps down, thus the multinomial coefficient(

2n
j, j, n−j, n−j

)
. The last equality follows from the well known binomial identity∑n

j=0

(
n
j

)2
=
(

2n
n

)
(Exercise 7.1.3). We know from Corollary 1.3.10, say, that(

2n
n

)
∼ cn−1/24n with a constant c > 0. Hence the n-th summand in B(1) for

even n is ∼ cn−1 and

B(1) =

∞∑
n=0

bn
4n

=

∞∑
n=0

(
2n

n

)2

4−2n = +∞

because
∑
n−1 = +∞. 2

Exercise 7.1.2. Why does every walk in Z2 starting and finishing at the same
vertex have an even length?

Exercise 7.1.3. Prove that for every n ∈ N0,

n∑
j=0

(
n

j

)2

=

(
2n

n

)
.

Exercise 7.1.4. Prove Proposition 7.1.1 in dimension one,

lim
n→∞

an(0,Z1)

dn(0,Z1)
= lim
n→∞

an(0,Z1)

2n
= 1 .

Theorem 7.1.5 (easy Abel’s theorem). If a power series

U(x) =
∑
n≥0

unx
n ∈ R[[x]]
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converges for every x ∈ [0, R), where 0 < R < +∞, and has all un ≥ 0 then
always

lim
x→R−

U(x) =

∞∑
n=0

unR
n (=: U(R))

—no matter whether the limit and the sum are finite or +∞.

Proof. For every N ∈ N,

N∑
n=0

unR
n ≤ lim

x→R−
U(x) = lim

x→R−

∞∑
n=0

unx
n ≤

∞∑
n=0

unR
n .

The first inequality follows from nonnegativity of un and the fact that for every
n ∈ N0, limx→R−

xn

Rn = 1. The second inequality follows just from nonnegativity
of un. Sending N → +∞ gives the theorem. 2

We turn to wandering on streets of a city in dimension d = 3. This might
be one of the cities that Marco Polo describes to Kublai Khan in the book [16],
perhaps the city Hypatia.

Proposition 7.1.6 (wandering in Z3). We again start wandering at the ori-
gin 0 = (0, 0, 0). Then

lim
n→∞

an(0,Z3)

dn(0,Z3)
= lim
n→∞

an
6n

< 1 .

Vaguely restated, random walk in Z3 returns to the start with probability smaller
than 1 (and with positive probability disappears in infinity without return).

Proof. We define the quantities bn and cn and the generating functions B(x)
and C(x) like before in the proof of Proposition 7.1.1, so B(x) :=

∑
n≥0

bn
6nx

n

and C(x) :=
∑
n≥0

cn
6nx

n. The argument does not change, but now we have to

show that B(1) < +∞, i.e. that the series
∑
n≥0

bn
6n converges. Then since as

before B(x) = 1
1−C(x) and B(1) = limx→1− B(x) and C(1) = limx→1− C(x) by

Theorem 7.1.5, we get C(1) = limx→1− C(x) < 1. By this we are done as, like
before, C(1) equals to the above displayed limit.

We prove convergence of
∑
n≥0

bn
6n . For odd n again bn = 0. We upperbound

b2n/6
2n. Like in the proof of Proposition 7.1.1,

b2n
62n

=
1

62n

∑
j,k∈N0, j+k≤n

(2n)!

j! j! k! k! (n− j − k)! (n− j − k)!

=

(
2n

n

)
4−n

∑
···

[
1

3n

(
n

j, k, n− j − k

)]2

.

Here j is the number of steps of the walk to the right, k the number of steps up
and n− j − k the number of steps back. The numbers in [· · · ]s sum up to 1, by
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the multinomial expansion 3n = (1 + 1 + 1)n =
∑
x+y+z=n

(
n

x, y, z

)
, x, y, z ∈ N0.

Thus by Exercises 7.1.7 and 7.1.8,∑
···

[· · · ]2 ≤ max
x,y,z∈N0, x+y+z=n

1

3n

(
n

x, y, z

)
=

1

3n

(
n

x0, y0, z0

)
where (m ∈ N) (x0, y0, z0) equals (m, m, m) if n = 3m, (m + 1, m, m) if
n = 3m+ 1 and (m+ 1, m+ 1, m) if n = 3m+ 2. By Exercise 7.1.9, always(

n

x0, y0, z0

)
� 3n

n
.

Since
(

2n
n

)
4−n ∼ cn−1/2, c > 0, we get the bound

b2n
62n
� n−1/2n−1 = n−3/2 .

Hence

B(1) =
∑
n≥0

bn
6n

=
∑
n≥0

b2n
62n
�
∑
n≥1

1

n3/2
< +∞ .

2

Exercise 7.1.7. If α1, . . . , αk ≥ 0 are real numbers with
∑k
i=1 αi = 1 then

k∑
i=1

α2
i ≤ max

1≤i≤k
αi .

Exercise 7.1.8. If a > b ≥ 0 are integers with a ≥ b+ 2 then

a! b! > (a− 1)! (b+ 1)! .

Exercise 7.1.9. Show that (m ∈ N) for n = 3m, n = 3m+ 1 and n = 3m+ 2,
respectively,

n!

m!3
� 3n

n
,

n!

(m+ 1)!m!2
� 3n

n
and

n!

(m+ 1)!2m!
� 3n

n
.

Exercise 7.1.10. Prove Proposition 7.1.6 for any dimension d ≥ 3,

lim
n→∞

an(0,Zd)
dn(0,Zd)

= lim
n→∞

an(0,Zd)
(2d)n

< 1 .
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7.2 Selfwavoiding walks in the honeycomb lat-
tice

7.3 Algebra of power series and lattice paths

Comments and references

N. H. Abel proved his Theorem ?? in [1, Lehrsatz IV] and inequality (Exer-
cise ??) in [1, Lehrsatz III]. His paper was republished as a booklet in 1890’s,
is today accessible on-line and worth reading.
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Hints and solutions to some
exercises

Exercise 1.1.4. Deutsch and Sagan [24] proved that if A ⊂ N is the set of
numbers that may have in its ternary expansion digit 2 only on the rightmost
place, and if for n ∈ A the number of 1s in this expansion, the rightmost place
not counted, is denoted r(n), then cn ≡ (−1)r(n) modulo 3 for n ∈ A and cn ≡ 0
else.

Exercise 1.3.1. C − x = x
∑
k≥1 C

k. What quadratic equation this gives?

Exercise 1.3.2. This is an ODE with separated variables.

Exercise 1.3.3. The first ≤ is equality only for n = 1 and the second ≤ only
for n = 2, so for every n ∈ N at least one of them is strict and compose to <.

Exercise 1.3.4. Bound the binomial coefficient
(

2n−2
n−1

)
both from above and

below by expanding (1 + 1)2n−2.

Exercise 1.3.5. For example, the GF A = A(x) of rp trees such that every
vertex has 0 or 5 children satisfies the equation A− x = xA5.

Exercise 1.3.6. The argument is correct because the set of specializations for
α, β is not just infinite but has the grid form N × N, an infinite set times an
infinite set.

Exercise 1.3.11. By Theorem 1.3.9 the ratio has asymptotics cn1/6
(

4
3

)n
.

Exercise 1.5.4. Use Bachet’s identity: αp+ βq = 1 for some α, β ∈ C[x].

Exercise 1.5.5. The eventual periodicity of cn modulo p would mean that, in
the ring (Z/pZ)[[x]], C(x) mod p = a(x)/b(x) where a, b ∈ (Z/pZ)[x]. Bring it
to contradiction by tools of this proof.

Exercise 1.7.3. Turn the square upside down.

Exercise 2.1.1. Bound the remainder
∑
m≥n+1m

−2 by
∫ +∞
n

x−2 dx.

Exercise 2.1.2. Use the expansion expx =
∑∞
i=0 x

i/i!.

Exercise 3.1.2. Empty properties Qn = ∅ are fine, for such n just set t(n) = n,
say. But if Qn = P([n]) for infinitely many n then (Qn) does not have threshold
function (consider m(n) = 0).
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[13] M. Bóna, Combinatorics of Permutations, CRC Press, Boca Raton, FL,
2012.

[14] B. Bollobás and A. Thomason, Threshold functions, Combinatorica 7
(1986), 35–38.

[15] N. G. de Bruijn, Asymptotic Methods in Analysis, North-Holland, Amster-
dam, 1957.

[16] I. Calvino, Invisible Cities

[17] P. J. Cameron, Notes on Counting: An Introduction to Enumerative Com-
binatorics, preprint, 2010, 217 pp. [Available from the author’s homepage.]

[18] R. Carnap, Logical Foundations of Probability, The University of Chicago
Press, Chicago, Ill., 1950.

[19] J. W. S. Cassels, Local Fields, Cambridge University Press, Cambridge, UK,
1986.

[20] Y.-G. Chen and W. Jiang, Catalan numbers modulo a prime power, Integers
13 (2013), Paper No. A36, 4 pp.

[21] A. J. Coleman, A simple proof of Stirling’s formula, Amer. Math. Monthly
58 (1951), 334–336.

[22] L. Comtet, Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht,
1974.

[23] A. De, P. Kurur, Ch. Saha and R. Saptharishi, Fast integer multiplication
using modular arithmetic, SIAM J. Comput. 42 (2013), 685–699.

[24] E. Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers
and related sequences, J. Number Theory 117 (2006), 191–215.

[25] P. Diaconis and D. Freedman, An elementary proof of Stirling’s formula,
Amer. Math. Monthly 93 (1986), 123–125.

[26] Peter G. Doyle and J. Laurie Snell, Random walks and electric networks,
MAA, Washington, DC, 1984.

[27] D. E. Dutkay, C. P. Niculescu and F. Popovici, Stirling’s formula and its
extension for the gamma function, Amer. Math. Monthly 120 (2013), 737–
740.

[28] H. M. Edwards, Roots of solvable polynomials of prime degree, Expo. Math.
32 (2014), 79–91.

[29] G. Eisenstein, Allgemeine Auflösung der Gleichungen von den ersten vier
Graden, J. Reine Angew. Math. 27 (1844), 81–83.

84
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Catalan, Eugéne, 1, 75, 85

number, 2, 1–29, 75, 85
Chicago, 82
complement (c), 16
containment of permutations (�), 15
continued fraction, 7
convex chain, 28
counting function, 6
Cramer, Gabriel, 21, 22

rule, 21, 22

depth-first search, 13

Diaconis, Persi, 82
distributive lattice, 27
Doyle, Peter G., 82
von Dyck, Walther F. A., 12, 14, 26

path, 26
word (Dn), 12, 12–15

factorial (n!), 30
Fagin, Ronald, 37, 41, 83
Florida, 82
formula (L(S)), 43

closed, 45
Frankl, Peter, 40, 83
Frobenius, Georg, 42

Glebskij, Jurij V., 37
Gödel, Kurt, 37, 38, 47
good bracketing (Bn), 12, 14, 14
graph, 39, 74

edge in, 74
vertex in, 74

Harary, Frank, 83
Hungary, 75
Hypatia (an invisible city), 77
hypergeometric sequence, 11
hypergraph, 38

Illinois, 82
isomorphism

of relational structures (∼=), 41
of rp trees, 2

Katona, Gyula O. H., 37, 40, 83
Koblitz, Neal, 84
Kogan, Dmitrij I., 37
Kruskal, Joseph B., 37, 40, 83
Kublai Khan, 77
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labeled S-structure, 41
leaf, 22
Liogon’kij, M. I., 37
Lyons, Russell, 84

MAA (The Mathematical Association
of America), 81, 82

Manin, Jurij I., 84
Marco Polo, 77
multiset, 25

[n] = {1, 2, . . . , n}, 9
Narayana, Tadepali V., 22, 23

number, 22
N, the natural numbers, 2
N0, the natural numbers with zero, 3
natural tree, 5
New York, 75, 84
Newton, Isaac, 9

binomial theorem, 9
normalization (n), 16

occurrence (of a variable in a formula),
44

bound, 45
free, 45

odd factorial, 46

partial ordering, 28
partition of a set, 25
path in a graph, 74
Peres, Yuval, 84
permutation (S,Sn), 15
PIO algorithm, 6
PIO formula, 6
plane tree, 26
Pochhammer, Leo A., 22

symbol, 22
Pólya, György (George), 75, 81, 85

wandering in Zd, 75–78
poset, 25
power sum, 20
property, 38

decreasing or an ideal, 38
increasing, 38
non-trivial, 38

probability of, 38

rational function, 7, 11
relational structure, 41
reversal (r), 16
root of a tree, 1
rooted tree, 1
rp (rooted plane) tree, 1, 14

San Diego, 86
Schröder, Ernst, 26

path, 26
set of children, 2
Shelah, Saharon, 85
Shoenfield, Joseph R., 85
Snell, Laurie J., 82
Specker, Ernst, 37
Spencer, Joel, 37, 85
Springer, Julius, 81, 84, 85
Stanley, Richard P., 1, 24, 28

list, 24–28
Stirling, James, iv, 1, 11

formula for factorial, iv, 1, 11, 11,
30–36

Talanov, V. A., 37
Taylor, Brook, 31

expansion, 31
Thomason, Andrew, 37, 38, 82
threshold function, 38, 38
tree, 1
triangulation of a convex polygon, 25
type (signature), 41

unlabeled S-structure, 41
USA (The United States of America),

86

Valtr, Pavel, 1, 28, 85
theorem, 28

Vandermonde, Alexandre-Théophile, 9,
10, 21

convolution identity, 9
determinant, 21

walk in a graph, 74
length, 74
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starting and final vertex, 74
Washington, DC, 81, 82
Wilf, Herbert S., 86
Woess, Wolfgang, 86

0 – 1 law, 37, 41
Ziegler, Günter M., 81
Zilber, Boris, 84
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