Birch's theorem: if $f(n)$ is multiplicative and has a non-decreasing normal order then $f(n)=n^{\alpha}$

Martin Klazar*

June 23, 2016

1 Introduction

In 1967 B. J. Birch, later of the Birch and Swinnerton-Dyer conjecture fame, proved in [2] a most interesting result.

Theorem (Birch, 1967). The only multiplicative functions $f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$ that are unbounded and have a non-decreasing normal order are the powers of n, the functions $f(n)=n^{\alpha}$ for a constant $\alpha>0$.

Multiplicativity means that $f(m n)=f(m) f(n)$ for every two coprime numbers $m, n \in \mathbb{N}$ (thus $f(1)=1$ unless $f \equiv 0), \mathbb{N}=\{1,2, \ldots\}$, and the clause about a non-decreasing normal order means that a non-decreasing function $g: \mathbb{N} \rightarrow \mathbb{R}_{>0}$ exists such that for every $\varepsilon>0, \#\left(n \leq x \left\lvert\, \frac{f(n)}{g(n)} \notin(1-\varepsilon, 1+\varepsilon)\right.\right)=o(x)$ as $x \rightarrow+\infty$.

In this write-up I present the proof of Birch's theorem, as given in Birch [2] and Narkiewicz [13, pp. 98-102] (see also [14]). It is a beautiful proof in the erdősian style. To be honest, I started with the intention to correct two errors I thought I had discovered in the argument. Fortunately, in the process of writing everything clarified and the errors disappeared. Still, I will point out the two steps I struggled with. To the interested reader, much smarter than me, they will certainly pose no difficulty.

2 The proof with two conundrums

We use notation of [2], so let

$$
b(n)=\log f(n) \text { and } c(n)=\log g(n) .
$$

Birch [2, p. 149] writes just "If f is unbounded, then $g(n)$ tends to infinity with n, so we may suppose that $c(n)>0$ for all n." but Narkiewicz [13,

[^0]Lemat 2.5 on p. 98] gives more details. Assume for contrary that $g(n)$ has a finite limit $a>0$. Then, by the relation bounding f and g, there are constants $0<A<a<B$ such that for every $x>0$ and $n \leq x$ we have $A<f(n)<B$, with $o(x)$ exceptions. Let $E \subset \mathbb{N}$ be the exceptions; E has density 0 . Fix any $M>B$. Since f is unbounded, there is an $m \in \mathbb{N}$ with $f(m)>M / A$. The sets $\{n m+1 \mid n \in \mathbb{N}\}$ and $\{(n m+1) m \mid n \in \mathbb{N}\}$ have positive densities and thus so has $X=\{n \in \mathbb{N} \mid n m+1,(n m+1) m \notin E\}$. For any $n \in X$ we get the contradiction $B>f((n m+1) m)=f(n m+1) f(m)>A f(m)>M$.

Thus indeed $\lim g(n)=+\infty$. Changing finitely many values of $g(n)$ we may assume that always $g(n)>1$ and $c(n)>0$. By Birch [2], "Using the three conditions

$$
\begin{aligned}
& \text { given } \varepsilon>0,|b(n)-c(n)|<\varepsilon \text { for all but } o(x) \text { integers } n<x ; \\
& b(m n)=b(m)+b(n) \text { if }(m, n)=1 ; \\
& c(n) \geq c(m)>0 \text { for } n \geq m ;
\end{aligned}
$$

we gradually deduce more and more till everything collapses." Let $m, n \in \mathbb{N}$ and $\varepsilon>0$ be arbitrary with $|b(m)-c(m)|,|b(n)-c(n)|<\varepsilon$. We assume that $m, n \geq 2$. It follows that for any $\eta \in\left(0, \frac{1}{2}\right)$ there is an $S>0$ such that for every $R \geq S$ there are $s, t \in \mathbb{N}$ satisfying

$$
(1-\eta) R<s<R<t<(1+\eta) R, s \equiv t \equiv 1(\bmod m n)
$$

and

$$
|b(s)-c(s)|,|b(m s)-c(m s)|,|b(t)-c(t)|,|b(n t)-c(n t)|<\varepsilon
$$

(Only $o(R)$ of the integers $s \in((1-\eta) R, R)$ violate the first or the second lastly displayed inequality, and so for large R we certainly find there an $s \equiv$ $1(\bmod m n)$ satisfying both. The same for t.) From $b(m s)=b(m)+b(s)$ and $b(n t)=b(n)+b(t)$ we get

$$
|c(m s)-c(m)-c(s)|,|c(n t)-c(n)-c(t)|<3 \varepsilon .
$$

We define by induction numbers $s_{0}<s_{1}<\ldots$ and $t_{0}<t_{1}<\ldots$ in \mathbb{N}, all congruent to 1 modulo $m n$, such that

$$
(1-\eta) S<s_{0}<S<t_{0}<(1+\eta) S
$$

and, for every $i, j \in \mathbb{N}_{0}$,

$$
(1-\eta) m s_{i}<s_{i+1}<m s_{i}, n t_{j}<t_{j+1}<(1+\eta) n t_{j}
$$

and

$$
\left|b\left(s_{i}\right)-c\left(s_{i}\right)\right|,\left|b\left(m s_{i}\right)-c\left(m s_{i}\right)\right|,\left|b\left(t_{j}\right)-c\left(t_{j}\right)\right|,\left|b\left(n t_{j}\right)-c\left(n t_{j}\right)\right|<\varepsilon .
$$

(In the previous claim we first set $R=S$ and get $s_{0}=s$, then we set $R=$ $m s_{0}(\geq S)$ and get $s_{1}=s$, and so on. Since $m \geq 2$ and $\eta<\frac{1}{2}$, we stay above S
and s_{i} increase. Similarly and more easily for t_{j}.) Then, as we know, for every $i \in \mathbb{N}_{0}$ one has

$$
\left|c\left(m s_{i}\right)-c(m)-c\left(s_{i}\right)\right|<3 \varepsilon .
$$

Monotonicity of c gives

$$
c\left(s_{i}\right)>c\left(m s_{i}\right)-c(m)-3 \varepsilon \geq c\left(s_{i+1}\right)-c(m)-3 \varepsilon
$$

and so $c\left(s_{h}\right)<c(S)+h c(m)+3 h \varepsilon$ for every $h \in \mathbb{N}$ by iteration. On the other hand, $s_{h}>(1-\eta)^{h+1} m^{h} S$ by iterating the above inequalities. Similarly for t_{j} we get $c\left(t_{k}\right)>c(S)+k c(n)-3 k \varepsilon$ for every $k \in \mathbb{N}$ and $t_{k}<(1+\eta)^{k+1} n^{k} S$.

Now if $h, k \in \mathbb{N}$ are such that $m^{h}>n^{k}$, equivalently $h \log m>k \log n$ (recall that $\log m \neq 0$), we may select $\eta>0$ so small that still

$$
(1-\eta)^{h+1} m^{h}>(1+\eta)^{k+1} n^{k}
$$

This implies that $s_{h}>t_{k}$ and $c\left(s_{h}\right) \geq c\left(t_{k}\right)$ (by monotonicity of c), hence $h c(m)+3 h \varepsilon>k c(n)-3 k \varepsilon$ and

$$
\frac{h}{k}>\frac{c(n)-3 \varepsilon}{c(m)+3 \varepsilon} .
$$

It follows that

$$
\frac{\log n}{\log m} \geq \frac{c(n)-3 \varepsilon}{c(m)+3 \varepsilon}
$$

(But how come? This is the first step I struggled with. Don't we assume that $h / k>(\log n) /(\log m)$? To combine inequalities by transitivity we would need this one be opposite!)

Nevertheless, we get

$$
\frac{c(n)}{\log n}-\frac{c(m)}{\log m} \leq 3 \varepsilon\left(\frac{1}{\log m}+\frac{1}{\log n}\right)
$$

and, changing the roles of m and n, the reverse inequality $\cdots \geq-3 \varepsilon \ldots$. So we have proved that

$$
\left|\frac{c(n)}{\log n}-\frac{c(m)}{\log m}\right| \leq 3 \varepsilon\left(\frac{1}{\log m}+\frac{1}{\log n}\right)
$$

whenever $|b(m)-c(m)|<\varepsilon$ and $|b(n)-c(n)|<\varepsilon$. This implies

$$
\left|\frac{c(n)}{\log n}-\frac{c(m)}{\log m}\right| \leq(|b(m)-c(m)|+|b(n)-c(n)|)\left(\frac{3}{\log m}+\frac{3}{\log n}\right)
$$

for all m, n. (But how come? This is the second step I struggled with. Let's say that the penultimate displayed inequality holds for every m, n as an equality for 3ε replaced with 2ε, and that we have m, n such that $|b(m)-c(m)|,|b(n)-c(n)|<$ $\varepsilon / 4$. The last two displayed inequalities then contradict each other!).

Nevertheless, we conclude the proof. Obviously, $\left|b\left(n_{i}\right)-c\left(n_{i}\right)\right| \rightarrow 0$ for a sequence $n_{1}<n_{2}<\ldots$. The last displayed inequality shows that the values $c\left(n_{i}\right) / \log n_{i}$ are bounded. Passing to a subsequence we get $\lim _{i} c\left(n_{i}\right) / \log n_{i}=$ α, with a finite limit α. Setting $n=n_{i}$ and letting $i \rightarrow \infty$ gives

$$
|c(m)-\alpha \log m| \leq 3|b(m)-c(m)| \text { and }|b(m)-\alpha \log m| \leq 4|b(m)-c(m)|
$$

for every $m \in \mathbb{N}$ (well, $m \geq 2$). Thus, given any $\varepsilon>0,|b(m)-\alpha \log m|<\varepsilon$ for all but $o(x)$ numbers $m \leq x$. Let $E \subset \mathbb{N}$ be the set of exceptional m; it has density 0 . We take any $m \in \mathbb{N}$. The set $X=\{n \in \mathbb{N} \mid(n, m)=1, n, m n \notin E\}$ has positive density. For any $n \in X$ we have

$$
|b(n)-\alpha \log n|,|b(m n)-\alpha \log (m n)|<\varepsilon
$$

So, by the additivity of the functions b and $\log , \varepsilon>|b(m n)-\alpha \log (m n)| \geq$ $|b(m)-\alpha \log m|-|b(n)-\alpha \log n|$ and $|b(m)-\alpha \log m|<2 \varepsilon$. As this holds for any $\varepsilon>0$, we get the desired equality

$$
b(m)=\alpha \log m \quad \text { or } \quad f(m)=m^{\alpha}
$$

for every $m \in \mathbb{N}$. We are done. Well, \ldots

3 Concluding remarks

How do we resolve the two conundrums? In the first we have three real quantities $a=h / k, b=(\log n) /(\log m)$, and $c=(c(n)-3 \varepsilon) /(c(m)+3 \varepsilon)$ and we know that $a>b \Rightarrow a>c$. From $b>a, a>c$ we would get $b>c$ by transitivity. However, in our situation also $a>b \Rightarrow a>c$ implies $b \geq c$, via a more subtle argument relying on the density of \mathbb{Q} in \mathbb{R}. The point is that we may select a larger than b and as close to b as we wish. Assume for contrary that $c>b$. Then we select a in-between as $c>a>b$, and $a>b \Rightarrow a>c$ gives $a>c$, a contradiction. Thus $b \geq c$. The second conundrum is more psychological and stems from assuming $\varepsilon>0$ to be a fixed thing. But if we drop it and regard ε as a variable on par with m, n, everything is clear. We know that $|b(m)-c(m)|,|b(n)-c(n)|<\varepsilon \Rightarrow\left|\frac{c(n)}{\log n}-\frac{c(m)}{\log m}\right| \leq 3 \varepsilon\left(\frac{1}{\log m}+\frac{1}{\log n}\right)$. Thus for $m, n \in \mathbb{N}$ (and $m, n \geq 2$) we just set $\varepsilon=|b(m)-c(m)|+|b(n)-c(n)|$ and the implication yields the stated conclusion (perturbing g a little bit we may assume that $|b(n)-c(n)|>0$ for every $n \in \mathbb{N})$.

Birch's article [2] is cited in $[1,3,4,6,7,8,9,10,11,13,14]$.
It all started when I read the recent preprint of Shiu [18] that reproves Segal's result $[16,17]$ that Euler's function $\varphi(n)$ does not have non-decreasing normal order, as a corollary of the next nice theorem.

Theorem (Shiu, 2016; Segal, 1964). If $f: \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$ has a non-decreasing normal order, $f(n)=O(n)$, and $\sum_{n \leq x} f(n) \sim A x^{2} / 2$ and $\sum_{n \leq x} f(n)^{2} \sim$ $B x^{3} / 3$ as $x \rightarrow+\infty$ for some constants $A, B>0$, then $A^{2} \geq B$.

For $f(n)=\varphi(n)$ (which is $O(n)$) we have $A=\prod_{p}\left(1-p^{-2}\right)$ and $B=\prod_{p}(1-$ $2 p^{-2}+p^{-3}$) (see [18] for proofs of these average orders). Since $A^{2}<B$, we conclude that $\varphi(n)$ does not have non-decreasing normal order. It follows also from Birch's theorem, since $\varphi(n)$ is multiplicative (and unbounded). For results on sets where $\varphi(n)$ itself is monotonous see Pollack, Pomerance, and Treviño [15].

Finally, I was inspired by all this and the discussion at [19] to pose the following problem.

Problem (MK, 2016). Does $\varphi(n)$ have an effective normal order? That is, is there a function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $\varepsilon>0, \#\left(n \leq x \left\lvert\, \frac{\varphi(n)}{g(n)} \notin\right.\right.$ $(1-\varepsilon, 1+\varepsilon))=o(x)$ as $x \rightarrow+\infty$, and
one can compute $n \mapsto g(n)$ in time polynomial in $\log n$?

References

[1] J.-P. Allouche, M. Mendès France, and J. Peyrière, Automatic Dirichlet series, J. Number Theory 81 (2000) 359-373.
[2] B. J. Birch, Multiplicative functions with non-decreasing normal order, J. London Math. Soc. 42 (1967) 149-151.
[3] P. D. T. A. Elliott, On a conjecture of Narkiewicz about functions with nondecreasing normal order, Colloq. Math. 36 (1976) 289-294.
[4] P. D. T. A. Elliott, Probabilistic Number Theory. I. Mean-value Theorems, Springer-Verlag, New York-Berlin, 1979.
[5] P. D. T. A. Elliott, Arithmetic Functions and Integer Products, SpringerVerlag, New York, 1985.
[6] P. Erdős and C. Ryavec, A characterization of finitely monotonic additive functions, J. London Math. Soc. 5 (1972), 362-367.
[7] J.-M. de Koninck, Review of [5] and [12], Bull. Amer. Math. Soc. 18 (1988), 230-247.
[8] J.-M. de Koninck, N. Doyon, and P. Letendre, On the proximity of additive and multiplicative functions, Funct. Approx. Comment. Math. 52 (2015) 327-344.
[9] J.-M. de Koninck and F. Luca, Analytic Number Theory. Exploring the Anatomy of Integers, American Mathematical Society, Providence, RI, 2012.
[10] K. Kovács, On the characterization of additive and multiplicative functions, Studia Sci. Math. Hungar. 18 (1982) 1-11.
[11] L. Matthiesen, Correlations of the divisor function, Proc. Lond. Math. Soc. 104 (2012) 827-858.
[12] P. J. McCarthy, Introduction to Arithmetical Functions, Springer-Verlag, New York, 1986.
[13] W. Narkiewicz, Teoria liczb, Państwowe Wydawnictwo Naukowe, Warszawa, 1990 (in Polish).
[14] W. Narkiewicz, Number Theory, World Scientific Publishing Co., Singapore, 1983 (translated from the 1977 edition of [13] by S. Kanemitsu).
[15] P. Pollack, C. Pomerance, and E. Treviño, Sets of monotonicity for Euler's totient function, Ramanujan J. 30 (2013) 379-398.
[16] S. L. Segal, A note on normal order and the Euler φ-function, J. London Math. Soc. 39 (1964) 400-404.
[17] S. L. Segal, On non-decreasing normal orders, J. London Math. Soc. 40 (1965) 459-466.
[18] P. Shiu, On functions without a normal order, preprint, arXiv:1606.04533, June 2016, 4 pages.
[19] How hard is it to compute the Euler totient function?, http://mathoverflow.net/questions/3274/

Charles University, KAM MFF UK, Malostranské nám. 25, 11800 Praha, Czechia

[^0]: *klazar@kam.mff.cuni.cz

