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1 Introduction

In 1967 B. J. Birch, later of the Birch and Swinnerton-Dyer conjecture fame,
proved in [2] a most interesting result.

Theorem (Birch, 1967). The only multiplicative functions f : N→ R≥0 that
are unbounded and have a non-decreasing normal order are the powers of n, the
functions f(n) = nα for a constant α > 0.

Multiplicativity means that f(mn) = f(m)f(n) for every two coprime numbers
m,n ∈ N (thus f(1) = 1 unless f ≡ 0), N = {1, 2, . . . }, and the clause about a
non-decreasing normal order means that a non-decreasing function g : N→ R>0

exists such that for every ε > 0, #(n ≤ x | f(n)g(n) 6∈ (1 − ε, 1 + ε)) = o(x) as
x→ +∞.

In this write-up I present the proof of Birch’s theorem, as given in Birch [2]
and Narkiewicz [13, pp. 98–102] (see also [14]). It is a beautiful proof in the
erdősian style. To be honest, I started with the intention to correct two errors I
thought I had discovered in the argument. Fortunately, in the process of writing
everything clarified and the errors disappeared. Still, I will point out the two
steps I struggled with. To the interested reader, much smarter than me, they
will certainly pose no difficulty.

2 The proof with two conundrums

We use notation of [2], so let

b(n) = log f(n) and c(n) = log g(n) .

Birch [2, p. 149] writes just “If f is unbounded, then g(n) tends to infinity
with n, so we may suppose that c(n) > 0 for all n.” but Narkiewicz [13,
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Lemat 2.5 on p. 98] gives more details. Assume for contrary that g(n) has a
finite limit a > 0. Then, by the relation bounding f and g, there are constants
0 < A < a < B such that for every x > 0 and n ≤ x we have A < f(n) < B,
with o(x) exceptions. Let E ⊂ N be the exceptions; E has density 0. Fix any
M > B. Since f is unbounded, there is an m ∈ N with f(m) > M/A. The sets
{nm + 1 | n ∈ N} and {(nm + 1)m | n ∈ N} have positive densities and thus
so has X = {n ∈ N | nm + 1, (nm + 1)m 6∈ E}. For any n ∈ X we get the
contradiction B > f((nm+ 1)m) = f(nm+ 1)f(m) > Af(m) > M .

Thus indeed lim g(n) = +∞. Changing finitely many values of g(n) we may
assume that always g(n) > 1 and c(n) > 0. By Birch [2], “Using the three
conditions

given ε > 0, |b(n)− c(n)| < ε for all but o(x) integers n < x;
b(mn) = b(m) + b(n) if (m,n) = 1;
c(n) ≥ c(m) > 0 for n ≥ m;

we gradually deduce more and more till everything collapses.” Let m,n ∈ N
and ε > 0 be arbitrary with |b(m) − c(m)|, |b(n) − c(n)| < ε. We assume that
m,n ≥ 2. It follows that for any η ∈ (0, 12 ) there is an S > 0 such that for every
R ≥ S there are s, t ∈ N satisfying

(1− η)R < s < R < t < (1 + η)R, s ≡ t ≡ 1 (mod mn)

and

|b(s)− c(s)|, |b(ms)− c(ms)|, |b(t)− c(t)|, |b(nt)− c(nt)| < ε .

(Only o(R) of the integers s ∈ ((1 − η)R,R) violate the first or the second
lastly displayed inequality, and so for large R we certainly find there an s ≡
1 (mod mn) satisfying both. The same for t.) From b(ms) = b(m) + b(s) and
b(nt) = b(n) + b(t) we get

|c(ms)− c(m)− c(s)|, |c(nt)− c(n)− c(t)| < 3ε .

We define by induction numbers s0 < s1 < . . . and t0 < t1 < . . . in N, all
congruent to 1 modulo mn, such that

(1− η)S < s0 < S < t0 < (1 + η)S

and, for every i, j ∈ N0,

(1− η)msi < si+1 < msi, ntj < tj+1 < (1 + η)ntj ,

and

|b(si)− c(si)|, |b(msi)− c(msi)|, |b(tj)− c(tj)|, |b(ntj)− c(ntj)| < ε .

(In the previous claim we first set R = S and get s0 = s, then we set R =
ms0(≥ S) and get s1 = s, and so on. Since m ≥ 2 and η < 1

2 , we stay above S
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and si increase. Similarly and more easily for tj .) Then, as we know, for every
i ∈ N0 one has

|c(msi)− c(m)− c(si)| < 3ε .

Monotonicity of c gives

c(si) > c(msi)− c(m)− 3ε ≥ c(si+1)− c(m)− 3ε

and so c(sh) < c(S) + hc(m) + 3hε for every h ∈ N by iteration. On the other
hand, sh > (1− η)h+1mhS by iterating the above inequalities. Similarly for tj
we get c(tk) > c(S) + kc(n)− 3kε for every k ∈ N and tk < (1 + η)k+1nkS.

Now if h, k ∈ N are such that mh > nk, equivalently h logm > k log n (recall
that logm 6= 0), we may select η > 0 so small that still

(1− η)h+1mh > (1 + η)k+1nk .

This implies that sh > tk and c(sh) ≥ c(tk) (by monotonicity of c), hence
hc(m) + 3hε > kc(n)− 3kε and

h

k
>

c(n)− 3ε

c(m) + 3ε
.

It follows that
log n

logm
≥ c(n)− 3ε

c(m) + 3ε
.

(But how come? This is the first step I struggled with. Don’t we assume that
h/k > (log n)/(logm)? To combine inequalities by transitivity we would need
this one be opposite!)

Nevertheless, we get

c(n)

log n
− c(m)

logm
≤ 3ε

(
1

logm
+

1

log n

)
and, changing the roles of m and n, the reverse inequality · · · ≥ −3ε . . . . So we
have proved that ∣∣∣∣ c(n)

log n
− c(m)

logm

∣∣∣∣ ≤ 3ε

(
1

logm
+

1

log n

)
whenever |b(m)− c(m)| < ε and |b(n)− c(n)| < ε. This implies∣∣∣∣ c(n)

log n
− c(m)

logm

∣∣∣∣ ≤ (|b(m)− c(m)|+ |b(n)− c(n)|)
(

3

logm
+

3

log n

)
for all m,n. (But how come? This is the second step I struggled with. Let’s say
that the penultimate displayed inequality holds for every m,n as an equality for
3ε replaced with 2ε, and that we havem,n such that |b(m)−c(m)|, |b(n)−c(n)| <
ε/4. The last two displayed inequalities then contradict each other!).
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Nevertheless, we conclude the proof. Obviously, |b(ni) − c(ni)| → 0 for a
sequence n1 < n2 < . . . . The last displayed inequality shows that the values
c(ni)/ log ni are bounded. Passing to a subsequence we get limi c(ni)/ log ni =
α, with a finite limit α. Setting n = ni and letting i→∞ gives

|c(m)− α logm| ≤ 3|b(m)− c(m)| and |b(m)− α logm| ≤ 4|b(m)− c(m)|

for every m ∈ N (well, m ≥ 2). Thus, given any ε > 0, |b(m) − α logm| < ε
for all but o(x) numbers m ≤ x. Let E ⊂ N be the set of exceptional m; it has
density 0. We take any m ∈ N. The set X = {n ∈ N | (n,m) = 1, n,mn 6∈ E}
has positive density. For any n ∈ X we have

|b(n)− α log n|, |b(mn)− α log(mn)| < ε .

So, by the additivity of the functions b and log, ε > |b(mn) − α log(mn)| ≥
|b(m)− α logm| − |b(n)− α log n| and |b(m)− α logm| < 2ε. As this holds for
any ε > 0, we get the desired equality

b(m) = α logm or f(m) = mα

for every m ∈ N. We are done. Well, . . .

3 Concluding remarks

How do we resolve the two conundrums? In the first we have three real quantities
a = h/k, b = (log n)/(logm), and c = (c(n) − 3ε)/(c(m) + 3ε) and we know
that a > b ⇒ a > c. From b > a, a > c we would get b > c by transitivity.
However, in our situation also a > b ⇒ a > c implies b ≥ c, via a more subtle
argument relying on the density of Q in R. The point is that we may select
a larger than b and as close to b as we wish. Assume for contrary that c > b.
Then we select a in-between as c > a > b, and a > b ⇒ a > c gives a > c,
a contradiction. Thus b ≥ c. The second conundrum is more psychological
and stems from assuming ε > 0 to be a fixed thing. But if we drop it and
regard ε as a variable on par with m,n, everything is clear. We know that

|b(m) − c(m)|, |b(n) − c(n)| < ε ⇒ | c(n)logn −
c(m)
logm | ≤ 3ε( 1

logm + 1
logn ). Thus for

m,n ∈ N (and m,n ≥ 2) we just set ε = |b(m) − c(m)| + |b(n) − c(n)| and the
implication yields the stated conclusion (perturbing g a little bit we may assume
that |b(n)− c(n)| > 0 for every n ∈ N).

Birch’s article [2] is cited in [1, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14].
It all started when I read the recent preprint of Shiu [18] that reproves Segal’s

result [16, 17] that Euler’s function ϕ(n) does not have non-decreasing normal
order, as a corollary of the next nice theorem.

Theorem (Shiu, 2016; Segal, 1964). If f : N → R≥0 has a non-decreasing
normal order, f(n) = O(n), and

∑
n≤x f(n) ∼ Ax2/2 and

∑
n≤x f(n)2 ∼

Bx3/3 as x→ +∞ for some constants A,B > 0, then A2 ≥ B.
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For f(n) = ϕ(n) (which is O(n)) we have A =
∏
p(1 − p−2) and B =

∏
p(1 −

2p−2 + p−3) (see [18] for proofs of these average orders). Since A2 < B, we
conclude that ϕ(n) does not have non-decreasing normal order. It follows also
from Birch’s theorem, since ϕ(n) is multiplicative (and unbounded). For results
on sets where ϕ(n) itself is monotonous see Pollack, Pomerance, and Treviño
[15].

Finally, I was inspired by all this and the discussion at [19] to pose the
following problem.

Problem (MK, 2016). Does ϕ(n) have an effective normal order? That is,

is there a function g : N → N such that for every ε > 0, #(n ≤ x | ϕ(n)g(n) 6∈
(1− ε, 1 + ε)) = o(x) as x→ +∞, and

one can compute n 7→ g(n) in time polynomial in log n ?
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