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Abstract

We survey in detail extremal results on Davenport–Schinzel se-
quences and their generalizations, from the seminal papers of H. Dav-
enport and A. Schinzel in 1965 to present. We discuss geometric and
enumerative applications, generalizations to colored trees, and gener-
alizations to hypergraphs. Eleven illustrative examples with proofs
are given and nineteen open problems are posed.

1 Introduction

DS sequences. Why a survey on Davenport–Schinzel sequences? (We shall
abbreviate this term as DS sequences.) Two combinatorially oriented survey
articles have appeared, Stanton and Dirksen [55] and Klazar [29]. Both are
now outdated. Sharir and Agarwal [52] and Agarwal and Sharir [3] focus
on geometric applications. Survey and historic sections can be found also
in [27], [36], and [61], but the main goals of these works lie elsewhere. In
this survey we treat the subject in more details and more concisely, pose
many open problems, and present several combinatorially interesting and
often unexplored generalizations of the original problem. We concentrate on
its extremal side but we do discuss related enumerative aspects.

In Section 1 the classical Davenport–Schinzel’s extremal functions λs(n)
are introduced and several simple bounds on them are proved. Section 2 sur-
veys the extremal results on DS sequences which were obtained in the early
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period, before the superlinearity of λ3(n) was discovered in [21]. Section 3 ex-
plains the superlinear bounds on lengths of DS sequences. Section 4 presents
the generalization of DS sequences to any forbidden subsequence, which was
introduced in [1]. Section 5 describes various combinatorial situations where
DS sequences and their generalizations appear; we discuss geometric graphs,
colored trees, 0-1 matrices, ordered bipartite graphs, permutations, and set
partitions. In Section 6 we describe a further generalization of DS sequences,
or rather of the containment relation that defines them, to ordered hyper-
graphs; this section surveys some results of [33] and [35].

An s-DS sequence, where s ≥ 1 is an integer, is any finite sequence
u = a1a2 . . . al over a fixed infinite alphabet A satisfying two conditions:

1. For every i = 1, 2, . . . , l − 1 we have ai 6= ai+1, which means that u
contains no immediate repetition.

2. There do not exist s indices 1 ≤ i1 < i2 < · · · < is ≤ l such that
ai1 = ai3 = ai5 = · · · = a, ai2 = ai4 = ai6 = · · · = b, and a 6= b. That is,
u contains no alternating subsequence of length s.

We write DSs to denote the set of s-DS sequences. What are the elements
of the alphabet A is not important. We assume that we have in A all positive
integers 1, 2, . . ., the letters a, b, c, d, . . ., and perhaps some other symbols.
The set A∗ consists of all finite sequences over A. Two sequences from A∗

which have the same length and which differ only by an injective renaming
of the symbols, for example 121331 and 2c2aa2, are called isomorphic. For
our purposes isomorphic sequences are identical. Every element of A∗ is
isomorphic to a unique normal sequence. A sequence u is normal if it is over
the alphabet {1, 2, . . . , n} for some integer n > 0, every i ∈ {1, 2, . . . , n}
appears in u, and the first occurrences of 1, 2, . . . , n in u, if we scan u from
left to right, come in this order.

Example 1. There exist exactly ten normal 4-DS sequences u using at
most 3 symbols:

u = ∅, 1, 12, 121, 1213, 12131, 123, 1231, 1232, and 12321.

2

N and N0 denote the sets {1, 2, . . .} and {0, 1, 2, . . .}. We write [n],
n ∈ N, for the set {1, 2, . . . , n}, and [a, b], a, b ∈ N, a ≤ b, for the set
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{a, a + 1, . . . , b}. For two functions f, g : N → R, the asymptotic notation
f � g is synonymous to the f = O(g) notation and means that |f(n)| <
c|g(n)| holds for every n > n0 and a constant c > 0. The subscripts, such
as f �k g, indicate that c depends only on the mentioned parameters. The
notation f = o(g) means that f(n)/g(n) → 0 as n →∞.

Extremal functions λs(n). For a sequence u = a1a2 . . . al over A, we
write |u| to refer to its lentgh l. S(u) = {a1, a2, . . . , al} is the set of symbols
used in u, and ‖u‖ = |S(u)| is their number. Obviously, always |u| ≥ ‖u‖.
We define, for the integers s, n ≥ 1,

λs−2(n) = max{|u| : u ∈ DSs & ‖u‖ ≤ n}. (1)

The function λs−2(n) measures the maximum length of s-DS sequences using
at most n symbols. It is trivial that, for every n ≥ 1 and s ≥ −1, λs(n) < ∞,
λ−1(n) = 0, λ0(n) = 1, λ1(n) = n, λs(1) = 1 (for s ≥ 0), and λs(2) = s + 1.

The notation λs(n) for the maximum lengths of DS sequences was in-
troduced in 1986 by Hart and Sharir [21] and quickly became the standard
notation. The shift −2 in the index results from an important application
of DS sequences in geometry, which we exaplain in Section 2. All works on
DS sequences prior to 1986 use the original notation Ns(n) of Davenport and
Schinzel [14]; Ns(n) = λs−1(n). In the survey of these results in Section 2 we
use both the original and the modern notation.

Example 2 ([14]). We bound λs(n) in a rough way, determine λ2(n)
precisely, and bound λ3(n) in a finer way.

We begin with the bound

λs(n) ≤
(
n

2

)
s + 1 (2)

which holds for all n ≥ 1 and s ≥ 0. Suppose a sequence u = a1a2 . . . al

satisfies condition 1 (no immediate repetition) and ‖u‖ ≤ n, but its length

l exceeds the bound. Then among the l − 1 ≥
(

n
2

)
s + 1 two-element sets

{ai, ai+1}, some s+ 1 sets must coincide (by the pigeonhole principle), which
produces in u an alternating subsequence of length s + 2. This proves (2).

Let us prove now that for every n ≥ 1,

λ2(n) = 2n− 1.
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The sequences u = 1 2 . . . (n−1) n (n−1) . . . 2 1 show that λ2(n) ≥ 2n−1.
We prove the opposite inequality by induction on n. Certainly λ2(1) = 1. In
every u ∈ DS4 with ‖u‖ ≤ n and |u| = λ2(n) some symbol x appears only
once; it is easy to see that any symbol sandwiched in the closest repetition has
this property (and since |u| is maximum, there must be a repetition). Delete
x and, if necessary, one of its neighbours (to avoid creating an immediate
repetition). The sequence v obtained is a 4-DS sequence and ‖v‖ ≤ n − 1.
By induction, λ2(n) = |u| ≤ |v|+2 ≤ λ2(n−1)+2 = 2(n−1)−1+2 = 2n−1.

We prove that
λ3(n) � n log n.

Let u ∈ DS5 with ‖u‖ ≤ n and |u| = λ3(n). Note that the maximum length
implies ‖u‖ = n. For every x ∈ S(u) we set k(x) to be the number of
appearances of x in u. Only the first and the last appearance of x in u may
have equal neighbours, because equal neighbours of any middle appearance of
x would create the forbidden 5-term alternating subsequence. So by deleting
at most k(x) + 2 elements from u we get rid of all appearances of x and
create no immediate repetition. The sequence v obtained is a 5-DS sequence
and ‖v‖ ≤ n − 1. Thus λ3(n) = |u| ≤ |v| + k(x) + 2 ≤ λ3(n − 1) + k(x) +
2. Summing these inequalities over all x ∈ S(u), we obtain the inequality
nλ3(n) ≤ nλ3(n− 1) + λ3(n) + 2n, which we rewrite as

λ3(n)

n
− λ3(n− 1)

n− 1
≤ 2

n− 1
.

Summing these inequalities for 2, 3, . . . , n leads to the bound λ3(n) ≤ n(1 +
2(1−1 + 2−1 + · · ·+ (n− 1)−1)) � n log n. 2

2 The early period

The geometric origin of λs(n). Davenport and Schinzel introduced the
sequences, which now bear their names, in 1965 in [14]. They were led to
them by the following geometric problem. Suppose f1, . . . , fn : R → R
are n continuous functions such that the equation fi(x) = fj(x) has for
i 6= j at most s solutions x ∈ R. In other words, the graphs of any two
functions intersect in at most s points. The real line then splits uniquely into
l nonempty open intervals I1 = (−∞, a1), I2 = (a1, a2), I3 = (a2, a3), . . . , Il =
(al−1,∞) so that the pointwise minimum function f(x) = minj=1...n fj(x)
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coincides on each Ii with a unique function fj(Ii), 1 ≤ j(Ii) ≤ n, and j(Ii) 6=
j(Ii+1). (See Figure 1 in the next section for a very similar situation.) The
problem is how large the number l can be. It is easy to prove that the
sequence u = j(I1)j(I2) . . . j(Il) is an (s+2)-DS sequence. Thus if every pair
fi and fj, i 6= j, has at most s intersections, the number |u| = l of the distinct
portions of the graph of f can be bounded from above by λs(n). This is the
reason for the later −2 shift of s in λs−2(n) compared to DSs. However, in
[14] and all works prior to 1986, max{|u| : u ∈ DSs & ‖u‖ ≤ n} is denoted
by Ns−1(n) (or by N(s − 1, n)). For the reader’s convenience, in Section 2
we combine both notations. Simply remember that Ns(n) = λs−1(n).

A natural example of a system {fi} with |{x ∈ R : fi(x) = fj(x)}| ≤ s
for every fixed i 6= j is any system of distinct polynomials of degree at most
s. Or, as was the case in [14], any system of distinct solutions of a given
homogeneous linear differential equation with constant coefficients, of order
at most s + 1. The problem to determine or to bound the maximum number
l of the portions of the graph of f originated in control theory, and it was
communicated to Davenport and Schinzel by K. Malanowski ([14]). They
reduced geometry to combinatorics and asked about the values of Ns(n). In
[14] they proved that

(λs−1(n) =) Ns(n) ≤ n(n− 1)s + 1 (3)

(λ2(n) =) N3(n) = 2n− 1 (4)

(λ3(n) =) N4(n) < 2n(1 + log n) (5)

(λs−1(n) =) Ns(n) �s n · exp(10(s log s)1/2(log n)1/2). (6)

Their proofs of (3)–(5) are reproduced in Example 2. (We have slightly
corrected the proof of (3) to obtain the somewhat better bound (2). Of the
two proofs of (4) in [14], we present the second one, based on “an observation,
made to us by Mrs. Turan that (. . .) one of the integers (. . .) occurs only
once”.) They proved further that Ns(n) ≥ (s2 − 4s + 3)n − C(s) (s > 3 is
odd) and Ns(n) ≥ (s2 − 5s + 8)n − C(s) (s ≥ 4 is even). Modifying these
constructions, they obtained the bound N4(n) > 5n− c.

Davenport’s results. In the posthumously published paper [13] (edited
by Schinzel), Davenport improved (5) to N4(n) � n log n/ log log n. He
noted that the ratio N4(n)/n must have a finite limit or it must go to +∞,
because N4(m + n) ≥ N5(m) + N5(n) for every m and n (easy to see from
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the definition). He proved more specificly that

lim
n→∞

N4(n)

n
≥ 8.

Davenport’s third result is the inequality N4(lm + 1) ≥ 6lm − m − 5l + 2
(l,m ∈ N), which was “found in collaboration with J. H. Conway”. It
implies that N4(n) ≥ 5n − 8, with the strict inequality for odd n ≥ 13 and
even n ≥ 18. The note added in proof (apparently by Schinzel) says that Z.
Ko lba proved that N4(2m) ≥ 11m− 13.

The results of Roselle and Stanton. (Recall that Ns(n) = λs−1(n).)
Roselle and Stanton proved in [56] that Ns(3) = 3s− 4 (for even s > 3) and
Ns(3) = 3s−5 (for odd s > 3). In [49] they proved that Ns(4) = 6s−13 (for
even s > 4) and Ns(4) = 6s−14 (for odd s > 4). Finally, in [48] they proved
that Ns(5) = 10s− 27 (for even s > 6; the case s = 6 contains an error) and
Ns(5) = 10s− 29 (for odd s > 5). In [48] also the bound N4(n) ≥ 5n− 8 is
proved (n ≥ 4). In [49] Roselle and Stanton gave the general bound (s > n)

Ns(n) ≥


(

n
2

)
s− F (n) s is even

(
n
2

)
s− F (n)− bn−1

2
c s is odd

 (7)

where F (n) = (2n3 + 9n2 − 32n + 9)/12 for odd n ≥ 3 and F (n) = (2n3 +
9n2 − 32n + 12)/12 for even n. For n = 3, 4, and 5 these bounds are sharp.

If n = o(s), the bounds (2) and (7) yield the asymptotics Ns(n) = (1 +

o(1))
(

n
2

)
s. But what if n is bigger?

Problem 1. The bounds (2) and (7) give

n3(1 + o(1))

3
< Nn(n) <

n3(1 + o(1))

2
.

What is the precise asymptotics of Nn(n)? 2

Further results. Peterkin [44] determined by computer the value N5(6) =
29 and found all 35 longest (normal) 6-DS sequences, corrected the value
N6(5) of Roselle and Stanton to 34 (they had the incorrect value 33), and
proved that N5(n) ≥ 7n− 13 (n > 5) and N6(n) ≥ 13n− 32 (n > 5).

Burkowski and Ecklund [12] found for small values of n, r, and d the
maximum lengths of d-DS sequences over n symbols, in which no symbol
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appears more than r times. MR reviewer N. G. de Bruijn wrote on [12]:
“. . . The following question was raised by D. J. Newman: Is there a word S
in some Φn,4 [5-DS sequences over n symbols] that contains each symbol at
least 5 times? The authors give an affirmative answer (but the proof seems
to be incomplete). . . .”

Dobson and Macdonald [16] obtained a slight improvement of (7). We
state one of their bounds: if n and r are even, then Nn+r(n) ≥ 1

6
(2n3 +

3n2(r− 2)− 2n(3r− 5) + 6r). For n > 2r + 2 this improves (7). Their other
bounds are similar.

Rennie and Dobson [46] derived the inequality(
n− 2 +

1

s− 3

)
·Ns(n) ≤ n ·Ns(n− 1) +

2n− s + 2

s− 3
. (8)

From it they could obtain good upper bounds on Ns(n) for small values of s
and n.

The next table, taken from Rennie and Dobson [46], gives specific bounds
for Ns(n) in the range 5 ≤ s ≤ 12 and 5 ≤ n ≤ 12. The upper bound is
obtained from (8). The lower bound is the larger of the lower bounds given
by Dobson and Macdonald or (shown in italic) by Roselle and Stanton in (7).

s 5 6 7 8
n
5 22 34 41 53
6 29 46–47 56–58 72–76
7 36–37 59–62 72–77 96–102
8 43–46 72–78 89–99 120–131
9 50–56 85–96 106–123 145–164
10 57–66 98–115 123–149 170–200
11 64–77 111–136 140–177 195–239
12 71–89 124–158 157–207 220–281
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s 9 10 11 12
n
5 61 73 81 93
6 85–88 102–105 115–117 132–135
7 110–119 134–143 152–159 176–184
8 140–154 170–186 192–207 223–240
9 170–193 210–234 236–261 276–303
10 201–236 250–287 284–321 332–373
11 232–283 291–345 332–387 392–450
12 263–334 332–408 381–458 452–534

Mills [40] proved the inequalities N4(k
2 + 5− j) ≥ 6k2− 2k + 16− 6j and

N4(k
2 + k + 5− j) ≥ 6k2 + 4k + 15− 6j, where 0 ≤ j < k. In [40] and [41]

he determined the values of N4(n) for n ≤ 21:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
N4(n) 1 4 8 12 17 22 27 32 37 42 47 53 58 64

n 15 16 17 18 19 20 21
N4(n) 69 75 81 86 92 98 104

The values of N4(n) form the sequence A002004 of the database [54]. The
formula N4(n) = 5n − 8, valid for 4 ≤ n ≤ 11, breaks down later, as noted
already by Davenport.

Szemerédi’s general bound. In 1974, Szemerédi [57] published a re-
markable result with a difficult proof: for n →∞,

Ns(n) �s n log∗ n. (9)

Here log∗ n is the smallest integer k > 0 such that ek > n, where e1 = e =
2.71828 . . . and ei+1 = eei . (Nothing changes if we replace e by any other
base b > 1.) The key part of Szemerédi’s proof is a decomposition lemma,
which is based on the doubly exponential upper bound in a particular case of
the classical Ramsey theorem (triples colored with two colors). The bound
(9) improved considerably both (6) and (5).

Mills’ article [41] and Stanton and Dirksen’s survey [55], both published
in 1976, mark the end of the early investigations of Ns(n) = λs−1(n). DS
sequences were dormant for the next 10 years.
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Figure 1: The lower envelope of plane segments.

3 Superlinear growth

New bounds on λ3(n): enigma solved. In the middle of 1980s, the im-
portance of DS sequences for combinatorial and computational geometry was
discovered, first by Atallah [7]. Or rather rediscovered, since the geometric
motivation was in the background from the very beginning, only compu-
tational geometry did not exist in the times of [14]. The functions λs(n),
s > 2, remained mysterious. Despite the effort invested in the proofs of (6)
and (9), the O(n) upper bounds were not in sight and the correct orders of
growth of λs(n) were unclear. Stanton and Dirksen conjectured in [55] that
λ3(n)/n →∞.

Example 3 ([52]). We illustrate the role of DS sequences in combina-
torial geometry by a classical example, which is very similar to the problem
in [14] (we discussed it in the beginning of Section 2) but is more recent.
Let S1, S2, . . . , Sn be n straight segments in the plane, none of them verti-
cal and no two of them overlapping. We regard them as graphs of n real
functions f1, . . . , fn which are now defined only on intervals. We consider
the pointwise minimum function f = mini fi. As before, f and fi define
a unique splitting of R into the intervals I1, I2, . . . , Il. The only difference
is that now f is undefined on some of the intervals, certainly on I1 and Il.
Again, for every i = 1, 2, . . . , l we write down the index j of the segment Sj

that forms in Ii the graph of f ; the intervals Ii with undefined f are ignored.
We obtain a sequence u over {1, 2, . . . , n}, |u| ≤ l − 2. In Figure 1, n = 3,
l = 10, and u = 21232313. The graph of f is the lower envelope of the system
{S1, . . . , Sn}, u is the minimazing sequence, and the length |u| is the com-
plexity of the lower envelope. The fact that every two (nonoverlapping) plane
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segments intersect in at most one point implies that u is a 5-DS sequence.
Thus the complexity of the lower enevelope has the bound |u| ≤ λ3(n). 2

Another geometric connection was recently studied by Alon and Onn [6].
Consider a set X of n points lying on the moment curve in Rd. The partitions
of X into p parts with mutually disjoint convex hulls then correspond to the
(d+2)-DS sequences (immediate repetitions are now allowed) which are over
{1, 2, . . . , p} and are of length n. See also Aviran and Onn [8].

New light on λ3(n) was shed by Hart and Sharir in 1986 in their break-
through article [21]. They proved that

nα(n) � λ3(n) � nα(n), (10)

where α(n) is the inverse Ackermann function, which is defined as follows.
The Ackermann function A(n) is the diagonal function A(n) = Fn(n) of the
hierarchy of functions Fi : N → N, i ∈ N, where F1(n) = 2n and Fi+1(n) =
Fi(Fi(. . . Fi(1) . . .)) with n iterations of Fi. The inverse Ackermann function
is then defined by α(n) = min{m ∈ N : A(m) ≥ n}. Alternative definitions
of the hierarchy and of A(n) can be found in the literature, but these hardly
affect the values of α(n). The function α(n) grows to infinity much more
slowly than log∗ n. (For further information on the role of very fast and
very slow functions in combinatorics and computer science, see Loebl and
Nešetřil [39].) The asymptotics (10) was not only an improvement upon
(9) for s = 4, but it settled almost completely the 20 years old riddle of
Davenport and Schinzel about the growth rate of λ3(n).

In [21], Hart and Sharir first translated 5-DS sequences to certain tree
objects called (generalized path) compression schemes; these are motivated
by data structures algorithms. They derived the new upper and lower bounds
for the compression schemes, and then translated the bounds back to 5-DS
sequences. Their proofs were inspired by some ideas and techniques of Tarjan
[58] who pioneered applications of α(n) in computer science. This method
gave bounds for both 5-DS sequences and compression schemes, but it was
technically complicated. Soon it turned out that the translation is not really
necessary and that one can work directly with DS sequences. This approach is
adopted in all subsequent works. (For information on compression schemes
and their relation to 5-DS sequences, see the book of Sharir and Agarwal
[52].) Komjáth [37] proved the superlinear lower bound λ3(n) � nα(n)
by a construction purely in terms of sequences. Wiernik and Sharir [64]
gave a simpler construction and, more importantly and remarkably, they
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proved that the 5-DS sequences produced by it can be realized as minimazing
sequences of appropriate systems of plane segments. Thus there do exist
systems of n plane segments whose lower envelopes have � nα(n) portions.
We come to the natural but open

Problem 2. Can every 5-DS sequence be realized as the minimazing
sequence of a system of plane segments? 2

In [52], the authors express their opinion that the correct answer is negative.
It is easy to realize every 5-DS sequence as the minimazing sequence of a
system of pseudosegments . These are graphs of continuous functions defined
on intervals, each two of them intersecting in at most one point.

Example 4 ([64, 52]). Following [52], we decribe the construction of [64]
proving λ3(n) � nα(n). One defines, by double induction, a two-dimensional
array S : N × N → A∗ of sequences. Before giving the precise inductive
definition, we have to say that the sequences S(k,m) have no immediate
repetition and are of the form

S(k,m) = u1v1u2v2 . . . uNvN ,

where every ui is a sequence of length m containing m distinct symbols,
and v1, . . . , vN are possibly empty intermediate sequences. The sequences ui

are called fans or m-fans and vi are called separating sequences . The key
property of fans is this: every symbol of S(k, m) appears in exactly one fan
and this is its leftmost appearance in S(k,m). The number N = N(k, m) will
be defined inductively in the construction. The sequences ui and vi depend
on k and m as well, of course, but to avoid cumbersome notation we do not
mark this dependence.

The first row k = 1 consists of the sequences S(1, m) = u1 = 12 . . . m,
and N(1, m) = 1. If the row k ≥ 1 is already defined, we define S(k +1, 1) to
be identical with S(k, 2), except that every 2-fan in S(k, 2) is now regarded
as two neighbouring 1-fans in S(k + 1, 1). Thus N(k + 1, 1) = 2N(k, 2).

Let now the whole row k ≥ 1 be already defined, as well as the sequences
in the row k + 1 up to the column m ≥ 1. Let the same hold for the values
of N(x, y). We define S(k + 1, m + 1) and N(k + 1, m + 1). We denote
w0 = S(k, N(k +1, m)). We set M = N(k,N(k +1, m)) and create M copies
w1, w2, . . . , wM of the sequence S(k + 1, m), renaming the symbols so that
no two of the M + 1 sequences w0, w1, . . . , wM share a symbol. We have as
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many copies of S(k + 1, m) as fans in w0, and any fan in w0 has as many
elements as S(k + 1, m) has fans. By duplicating the last term in every fan
in every wi, i = 0, 1, . . . ,M , we create sequences w′

i. We set

S(k + 1, m + 1) = w′
1w

′
2 . . . w′

M + w′
0 = w∗

1z1w
∗
2z2 . . . w∗

MzM ,

where the + indicates the following interleaving of w′
1w

′
2 . . . w′

M and w′
0, which

preserves the order of terms in both sequences. The elements of the first
N(k + 1, m)-fan of w′

0 are used to separate the twins on the ends of the
N(k + 1, m) m-fans of w′

1; this yields w∗
1. The sequence z1 consists of the

last term of the first fan of w′
0, followed by the first separating sequence of

w′
0. In the same way we use the second fan of w′

0 to separate the twins in w′
2,

which yields w∗
2, and so on. The resulting sequence S(k + 1, m + 1) has no

immediate repetition and its (m + 1)-fans are the old m-fans in w′
1, . . . , w

′
M ,

each enlarged by one term coming from the fans of w′
0. Thus

N(k + 1, m + 1) = N(k + 1, m) ·N(k,N(k + 1, m)).

One can easily check that the key property of fans is preserved during this
step.

Note that S(k, m) uses exactly m ·N(k,m) symbols. Using the key prop-
erty of fans, it is easy to show by double induction that every S(k,m) is a
5-DS sequence. One can define, for details consult [64] or [52], a sequence
of numbers 1 ≤ m1 < m2 < · · · such that, writing nk for ‖S(k,mk)‖ =
mk · N(k,mk), the inequality |S(k,mk)| ≥ nkα(nk) − 3nk holds. (We owe
the superlinear growth of |S(k,mk)| to the duplications.) Hence, for every
k ∈ N,

λ3(nk) ≥ nkα(nk)− 3nk. (11)

A simple interpolation argument of [52] shows that

λ3(n) ≥ 1
2
nα(n)− 2n

holds for all n ∈ N. 2

Hart and Sharir [21] proved the lower bound in (10) with the constant 1
4
+o(1).

The constants achieved in the upper bound were 52+o(1) in [21] and 68+o(1)
in [52]. (The objective of these works was not really to obtain the best
constants.) Klazar [26] obtained the constant 4 + o(1) and in [31] he proved
that

λ3(n) < 2nα(n) + O(n
√

α(n)). (12)
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Problem 3. Does the limit

lim
n→∞

λ3(n)

nα(n)

exist? 2

If it exists, (11) and (12) show that it lies in the interval [1, 2].
We answer in positive the question from the MR review of Burkowski

and Ecklund [12] that we quoted in the previous section. We know that
λ3(n) > cn for large n for every constant c > 0. We deduce from it that for
every k ∈ N there exists a 5-DS sequence v in which every symbol appears
at least k times. Let v ∈ DS5 be such that |v| ≥ (k + 1)‖v‖ and ‖v‖ is as
small as possible. If some symbol a ∈ S(v) occurs in v less than k times, we
eliminate all a-occurrences by deleting at most k − 1 + 2 = k + 1 terms (as
in the third proof in Example 2) and obtain a sequence w ∈ DS5 such that
|w| ≥ (k + 1)‖w‖ and ‖w‖ ≤ ‖v‖ − 1. But w contradicts the minimality of
‖v‖. Therefore v has the stated property. Note that for k = 5 the sequence
v must use at least 22 symbols, because Mills’ table in Section 2 shows that
λ3(n) < 5n for n < 22.

Bounds on λs(n) for s > 3. The next obvious step was to extend the
new techniques to λs(n) for s > 3. Sharir in [50] proved the upper bound

λs(n) � nα(n)csα(n)s−3

and in [51] the lower bound

λ2s−1(n) �s nα(n)s−1.

Since λ2s(n) ≥ λ2s−1(n), this gives lower bounds for every λs(n).
This line of research culminated in 1989 in the long and technical work

of Agarwal, Sharir and Shor [4]. For s = 4 they proved the estimate

n2α(n) � λ4(n) � n2α(n). (13)

For s > 4 they obtained strong bounds as well but they could not match
completely the precision of (10) and (13). Their lower bound says that

λ2s(n) �s n2csα(n)s−1+Qs(n), (14)

13



where cs = 1/(s − 1)! and Qs(n) is a polynomial in α(n) of degree at most
s− 2. As for the upper bound, they proved that

λ2s+1(n) ≤ n2α(n)s−1 log(α(n))+C2s+1(n) and λ2s(n) ≤ n2α(n)s−1+C2s(n), (15)

where Ck(n) equals 6 and 11 for k equal to 3 and 4, respectively, C2s+1(n) =
O(α(n)s−1), and C2s(n) = O(α(n)s−2 log(α(n))). We remark that in these
bounds (and the whole [4]) log n denotes the binary logarithm with base 2,
whereas in Example 2 and (5) we have the natural logarithm.

Let us summarize the current best bounds on λs(n). Cases s ≤ 1 are
trivial. The formula λ2(n) = 2n−1 was proved by Davenport and Schinzel in
[14], see Example 2. The functions λ3(n) and λ4(n) grow, up to multiplicative
constants, as nα(n) and n2α(n), respectively, as proved by Hart and Sharir
[21] and Agarwal, Sharir and Shor [4]. The bounds (14) and (15) of [4]
estimate λs(n) for s > 4.

Problem 4. What are the exact speeds of growth of λ5(n) and λ6(n)?
And of the other λs(n) for s > 4? 2

By (14) and (15),

n2α(n) � λ5(n) � nα(n)(1+o(1))α(n)

and
n2(1+o(1))α(n)2/2 � λ6(n) � n2(1+o(1))α(n)2 .

Bounds on λs(n) found many applications in problems and algorithms of
computational geometry. We suggest to the interested reader works [3] and
[52] of Agarwal and Sharir for detailed information and many references. We
remark that the “Web of Science” [65] listed in the middle of the year 2002
more than 110 citations of [21], which documents the big impact of this work.

4 A generalization of λs(n) to any forbidden

subsequence

A containment of sequences. The extremal function λs(n) corresponds
to the (forbidden) alternating sequence ababa . . . of length s + 2. Now we
associate with every sequence, not just with the alternating ones, an extremal
function. For this we need to define a general containment of sequences.
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Recall that our sequences are finite and are over A, where A is an infinite
alphabet such that A ⊃ N and a, b, c, d, . . . lie in A. Recall that two sequences
u = a1a2 . . . al and v = b1b2 . . . bl of the same length are isomorphic, if for
some injection f : A → A we have ai = f(bi), i = 1, 2, . . . , l. This is an
equivalence relation and each class of isomorphic sequences contains exactly
one normal sequence (see the definition before Example 1). We shall refer
to elements of A by the leters a, b, c, d, . . . and to sequences over A by the
letters u, v, w, . . ..

Let u and v be two sequences. We say that u contains v and write u ⊃ v,
if u has a subsequence isomorphic to v. For example, u = a1a2 . . . al contains
abccba if and only if there are six indices 1 ≤ i1 < · · · < i6 ≤ l such that
ai1 = ai6 , ai2 = ai5 , ai3 = ai4 , and these are the only equality relations
among ai1 , . . . , ai6 . The containment is a nonstrict partial order on classes of
isomorphic sequences. If u does not contain v, we say that u is v-free.

The extremal function Ex(v,n). A sequence u = a1a2 . . . al is called
k-sparse if ai = aj, i > j, implies i−j ≥ k. In other words, in every interval in
u of length at most k all terms are distinct. For k = 2 we get the condition
1 from the definition of DS sequences. Recall that |u| is the length of a
sequence u and ‖u‖ is the number of symbols used in u.

Let v be any sequence and n ∈ N. We associate with v the extremal
function

Ex(v, n) = max{|u| : u 6⊃ v & u is ‖v‖-sparse & ‖u‖ ≤ n}. (16)

It extends λs(n): if als denotes the alternating sequence abab . . . of length s,
then λs(n) = Ex(als+2, n). The condition that u is ‖v‖-sparse is necessary
to ensure that Ex(v, n) < ∞; note that 12 . . . k12 . . . k12 . . . is an infinite
sequence that is k-sparse and contains no u with ‖u‖ ≥ k + 1.

Ex(v, n) was introduced, albeit in a different notation, in 1992 by Adamec,
Klazar and Valtr [1]. Ex(v, n) is always well defined because a modification
of the argument proving (2) gives

Ex(v, n) < ‖v‖ · (
(

n
‖v‖

)
(|v| − 1) + 1) �v n‖v‖. (17)

Before proceeding to further general properties of Ex(v, n), we derive two
specific bounds to convey to the reader the flavour of arguments used to
handle Ex(v, n), and we present a historical remark.

Example 5 ([26]). We determine Ex(abba, n) exactly and then prove a
linear upper bound on Ex(a1a2 . . . aka1a2 . . . ak, n).
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We prove that, for all n ∈ N,

Ex(abba, n) = 3n− 2

(cf. the next historical remark). The sequences

u = 1 2 1 2 3 2 3 4 3 4 5 4 . . . (n− 2) (n− 1) (n− 2) (n− 1) n (n− 1) n

show that Ex(abba, n) ≥ 3n−2. We prove the opposite inequality. For n = 1
it is true. For n > 1 we use induction on n. Let u = a1a2 . . . al be 2-sparse,
abba-free, and ‖u‖ ≤ n. Suppose first that some symbol a ∈ S(u) appears in
u at least four times. We select four indices 1 ≤ i1 < · · · < i4 ≤ l such that
ai1 = ai2 = ai3 = ai4 = a and aj 6= a for j ∈ [i2 + 1, i3 − 1]. A moment of
thought reveals that the symbol b = ai2+1 is distinct from a and appears in u
only once. Deleting ai2+1 and also ai2 if i3 = i2+2, we decrease ‖u‖ by one and
obtain by induction the even stronger bound |u| ≤ 3(n− 1)− 2 + 2 = 3n− 3.
Thus we may assume that every symbol appears in u at most three times,
which gives |u| ≤ 3n. If a = a1 appears in u three times, we can still apply
the deletion argument to b = a2 and conclude that |u| ≤ 3n − 3. The same
if a = al appears in u three times. If a1 = al = a, only a may be repeated in
u and |u| ≤ 2n− 1. Thus we may assume in addition that a1 6= al and both
symbols a1 and al appear in u at most twice. We conclude that |u| ≤ 3n− 2.

Let vk = a1a2 . . . aka1a2 . . . ak where a1, . . . , ak are k distinct symbols from
A. We prove that

Ex(vk, n) �k n.

Notice that Ex(v1, n) = n and Ex(v2, n) = λ2(n) = 2n − 1. Let k, n ∈ N
and k be fixed. We set K = (k − 1)4 + 1 and L = Ex(vk, K − 1) + 1.
The number L exists by the rough general bound (17). Let u be a k-sparse
sequence (‖vk‖ = k) with ‖u‖ ≤ n. We assume that |u| ≥ (2n + 1)L and
show that it implies u ⊃ vk. We split u into 2n + 1 disjoint intervals, each
of length at least L. One of these intervals, let us call it I, contains neither
the first nor the last appearance of any symbol a ∈ S(u) because these are
only at most 2n in number. If ‖I‖ < K, the definitions of L and |I| imply
I ⊃ vk and we are done. So ‖I‖ = |S(I)| ≥ K. By the property of I, every
a ∈ S(I) appears before I, in I, and after I. Applying twice the classical
Erdős–Szekeres lemma, which says that every sequence of (k−1)2+1 numbers
contains a monotone subsequence of length k, we see that there is a subset
Y ⊂ S(I) of k elements, Y = {y1, y2, . . . , yk}, such that y1, y2, . . . , yk appear
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before I in this order, in I in this or in the opposite oder, and after I also in
this or in the opposite order. But then two of the three orders agree, which
gives u ⊃ vk. Thus |u| ≥ (2n + 1)L always forces the containment u ⊃ vk.
We conclude that Ex(vk, n) < (2n + 1)L. 2

A historical remark. The author of this survey wondered from time to
time why for so long (until the apperance of [1]1) nobody tried to generalize
λs(n) and everybody followed so faithfully the original formulation of the
problem that forbids only alternating subsequences. The extension (16) of
(1) is relatively straightforward and Example 5 shows that with a modest
effort one can obtain for Ex(v, n) results of some interest. On the other
hand, to prove (6) or (10), say, is difficult. Of course, retrospect views are
often dubious. We will not delve into psychological speculations but we want
to present a little historical discovery.

Surprisingly, revisionists appeared already in the very beginning and it
was nobody else but Davenport and Schinzel who in 1965, besides the famous
[14], published also [15] hinting on a generalization of λs(n). The latter
forgotten note is missing in all bibliographies of DS sequences we know of
([3], [20, problem E20], [26], [52], [55], . . .) and probably is not refered to
anywhere. It is accesible in Davenport [9] where we found it. Davenport and
Schinzel derive in [15] an inequality on lentghs of subsequences of a 2-sparse
sequence. In the last paragraph they say:

The inequality is of some interest in connection with sequences
which, in addition to having no immediate repetition, satisfy some
prescribed “hereditary” conditions, that is, some condition which
if valid for a sequence is necessarily valid for every subsequence.
Take as an illustration the condition that the sequence contains
no subsequence

. . . , a, . . . , b, . . . , b, . . . , a, . . . (b 6= a) .

Then the length of any such a sequence is at most 2n(n − 1);
for we can apply (1) [they refer to the inequality] with m = 2, in
which case M ≤ 4. (Actually in this particular case the maximum
length is 3n− 2.)

1I learned about DS sequences in the fall of 1988 in the Prague combinatorial seminar
that was then led by J. Nešetřil and J. Matoušek. They suggested to us, a group of
undergraduate students of Charles University, to investigate generalizations of λs(n). This
eventually resulted in [1] and some other works.
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Nobody followed the hint then.
An almost linear bound on Ex(v,n). As for strengthening of (17),

Klazar [23] showed by a simple combinatorial argument that Ex(v, n) �v n2.
The main result of [23] says that if v is a sequence with ‖v‖ = k ≥ 2 and
|v| = l ≥ 5, then for every n ∈ N

Ex(v, n) ≤ n · k2l−3 · (10k)2α(n)l−4+8α(n)l−5

. (18)

If k = 1 or l ≤ 4, it is easy to show that Ex(v, n) �v n. This general bound
was derived by adapting the techniques from Sharir [50].

A slight generalization: Ex(v,k,n). One can investigate the more
general extremal function Ex(v, k, n), which is defined as the maximum
length of a v-free and k-sparse sequence u with ‖u‖ ≤ n. It is clear that
Ex(v, ‖v‖, n) = Ex(v, n) and Ex(v, k, n) = ∞ whenever k < ‖v‖ and n ≥ k
— the infinite sequence 12 . . . k12 . . . k12 . . . is k-sparse and does not contain
v. Thus one has to have k ≥ ‖v‖. For the asymptotics it brings nothing new
because, as proved in [1],

Ex(v, n) �v,k Ex(v, k, n) ≤ Ex(v, n) (19)

for every sequence v and every k ≥ ‖v‖; the latter inequality is trivial. As
for the precise values, in Klazar [28] it was proved that for n ≥ k ≥ 2,

Ex(abab, k, n) = 2n− k + 1 and Ex(abba, k, n) = 2n +
⌊
n− 1

k − 1

⌋
− 1.

For n ≤ k − 1 both functions equal to n.
As one expects, the asymptotic order of Ex(v, n) respects the containment

order of sequences:

u ⊂ v ⇒ Ex(u, n) �u,v Ex(v, n). (20)

For ‖u‖ = ‖v‖ this is triviality, since then even Ex(u, n) ≤ Ex(v, n). For
‖u‖ < ‖v‖ this follows immediately from the first bound in (19), and �
cannot in general be replaced with ≤.

Blow-ups. If a ∈ A and i ∈ N, we write ai for the sequence aa . . . a of i
a’s. We call u a chain if ‖u‖ = |u|, that is, u has no repetition. Obviously,
Ex(ai, n) = (i − 1)n for any i ∈ N and Ex(v, n) = min(|v| − 1, n) for any
chain v.
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In the extremal theory of sequences we want to determine, for as many se-
quences as possible, the extremal functions or at least their orders of growth.
At present our knowledge is still very fragmentary. The most succesful ap-
proach so far turned out to be the following one. We start with some se-
quences v1, . . . , vr and combine them, by a specific operation, into a new
sequence w. If certain conditions are satisfied, we can bound Ex(w, n) in
terms of the functions Ex(vi, n). We have found three such operations; two
are unary (r = 1) and one is binary (r = 2). They have two common features:
the resulting w always contains all vi and if Ex(vi, n) � n for all i = 1, . . . , r
then Ex(w, n) � n as well. We begin with one of the unary operations, the
blow-up.

Every sequence u expresses uniquely in the form u = ai1
1 ai2

2 . . . air
r , where

aj ∈ A, aj 6= aj+1, and ij ∈ N. The blow-up of u is any sequence isomorphic
to ak1

1 ak2
2 . . . akr

r , where k1 ≥ i1, k2 ≥ i2, . . ., kr ≥ ir. For example, 1221111
and a3b3a = aaabbba are blow-ups of al3 = aba.

If v is not a chain, then Ex(v, n) ≥ |1 2 . . . n| = n. On the other hand,
we mentioned above that for every chain u the function Ex(u, n) is eventually
constant. Thus the extremal function Ex(v, n) of every proper blow-up v of a
chain u grows substantially faster than Ex(u, n). There are reasons to believe
that, except of this trivial situation, blowing up a sequence cannot change
the asymptotics of its extremal function:

Problem 5. Prove (or disprove) that if u is not a chain and v is a blow-up
of u, then

Ex(v, n) �u,v Ex(u, n).

2

The lower bound Ex(v, n) ≥ Ex(u, n) is trivial.
Adamec, Klazar and Valtr [1] proved that the bound in Problem 5 often

holds. Namely, if a is a symbol and u, v sequences, then

Ex(a2u, n)− Ex(au, n) �au n and Ex(ua3v, n) �ua2v Ex(ua2v, n). (21)

By symmetry, also Ex(ua2, n) − Ex(ua, n) �ua n. Let v = ak1
1 ak2

2 . . . akr
r be

any blow-up of u = ai1
1 ai2

2 . . . air
r such that kj > ij implies ij ≥ 2 or j = 1

or j = r. Applying the bounds (21), it is easy to see that then Ex(v, n) �
Ex(u, n). Both extremal functions are then of the same asymptotic order.
For example, a4bc5ab2 and abc2ab have extremal functions with the same
asymptotic order.
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In Problem 5, it remains to settle the case when uav is not a chain and
is blown-up to ua2v (here u and v are nonempty sequences, u does not end
with a, and v does not begin with a). This operation is not covered by the
results (21) and whether it changes asymptotics is unknown. Surprisingly,
this does happen for certain tree generalizations of Ex(v, n), as shown by
Valtr in [61]. This is a contrary evidence showing that perhaps blow-ups
may change asymptotics.

Example 6 ([1]). We prove the first bounds of (19) and (21). We begin
with (19). Let v be a fixed sequence, k ≥ ‖v‖ be a number, and u be a
‖v‖-sparse and v-free sequence. It suffices to show that u has a k-sparse
subsequence w such that |w| �v,k |u|. We set w to be the longest k-sparse
subsequence of u. Let I be any of the intervals in u that are disjoint to w and
are maximal to this property. Suppose, for a while, that ‖I‖ ≥ 2k− 1. Then
there must be an a ∈ S(I) that differs from the k− 1 terms of w preceding I
and also from the k−1 terms of w following after I. Such an a could be added
to w, in contradiction with the maximality of w. Hence ‖I‖ ≤ 2k−2 for every
I. Thus |I| ≤ Ex(v, 2k− 2) for every I and |w| ≥ 1 + |u|/(1 + Ex(v, 2k− 2)).
This finishes the proof of the first bound in (19).

Now we prove that Ex(a2u, n) = Ex(au, n) + O(n), where the constant
in O depends on the sequence au. Let k = ‖a2u‖ and v be a k-sparse and
a2u-free sequence with ‖v‖ ≤ n. First, we show that there is a constant
c > 0 depending only on a2u and with the following property. For every
term x of v there is a k-sparse subsequence w of v avoiding x and of length
|w| ≥ |v| − c. In other words, x plus some other O(1) terms of v can be
deleted so that the k-sparseness is preserved. To prove it, we fix an arbitrary
interval I in v containing x and of length |I| = Ex(a2u, 3k − 3) + 1. So
‖I‖ ≥ 3k − 2 and there must be a subset Y ⊂ S(I), |Y | = k − 1, such
that every y ∈ Y is distinct from x, from the k − 1 terms preceding I, and
from the k − 1 terms following after I. We fix in I one appearance for each
y ∈ Y and we delete from v the rest of I. The resulting sequence w is clearly
k-sparse, x was deleted, and |w| ≥ |v| − (Ex(a2u, 3k − 3) + 2 − k). We can
set c = Ex(a2u, 3k − 3) + 2− k.

In this way we delete from v, one by one, the first appearances of all
x ∈ S(v). At most cn elements are deleted and the resulting subsequence
w is k-sparse. Clearly, w 6⊃ au because otherwise v ⊃ a2u would be forced.
Thus |v| ≤ |w| + cn ≤ Ex(au, n) + cn and Ex(a2u, n) ≤ Ex(au, n) + O(n).
Trivially, Ex(a2u, n) ≥ Ex(au, n). 2
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The two-letter theorem. If u has at most two symbols, then either
u ⊃ ababa and Ex(u, n) ≥ λ3(n) � nα(n), or u is contained in a blow-up of
abab. The main result of [1] says that for the latter u’s we have Ex(u, n) �u n.
We obtain the characterization ([1, Theorem 5]) that is in [61] called the two-
letter theorem: If ‖u‖ ≤ 2 then

Ex(u, n) �u n ⇐⇒ u 6⊃ ababa. (22)

It follows from (20) and from the discussion after Problem 5 that the proof of
(22) (given λ3(n) � nα(n)) reduces to proving that Ex(ab2a2b, n) � n. By
(21), this implies Ex(aibjakbl, n) �m n, where m = max(i, j, k, l), for every
choice of the exponents i, j, k, l ∈ N0.

More results and errors on blow-ups. In [36, p. 467] the first
author wrote: “However, it may be checked that the method [of Hart and
Sharir] (. . .) works for aibiaibiai as well and so Ex(aibiaibiai, n) = Θ(nα(n)).”.
However, after some time he realized that no matter how hard he tried he
could not recollect the proof anymore and therefore we have the following
problem.

Problem 6. Prove (or disprove) that Ex(v, n) �v nα(n) for every blow-
up v of ababa. That is, prove (or disprove) that

Ex(ab2a2b2a, n) � nα(n).

2

This is a special case of Problem 5. We are not done with the forbidden 5-
term alternating subsequence yet! The applications of the conjectural bound
Ex(aibiaibiai, n) �i nα(n) in [36, 3.2] must be considered as unproved.

A simpler proof of the two-letter theorem was given in Klazar [27]. In
particular, he proved that

7n− 9 ≤ Ex(ab2a2b, n) ≤ 8n− 7

and Ex(aibiaibi, n) < (1 + o(1))32i2 · n. The method of [27] was extended
in Klazar [25] to the blow-ups of the sequences vk of Example 5. In [25] he
proved that, for i ∈ N and k distinct symbols a1, a2, . . . , ak,

Ex(ai
1a

i
2 . . . ai

ka
i
1a

i
2 . . . ai

k, n) �i,k n. (23)
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Two general questions on the growth of Ex(v,n). Is the equivalence
(22) valid for sequences using more than two symbols? Klazar and Valtr
realized that the answer was “no”. A specific example is given in Klazar
[24]: u1 = abcbadadbcd 6⊃ ababa but Ex(u1, n) � nα(n). A more extremal
example in this direction is given in [31]:

u2 = abcbadadbecfcfedef 6⊃ ababa but Ex(u2, n) � n2α(n).

Thus the containment of al5 = ababa is not the sole cause of superlinearity.
These examples are obtained by showing that the constructions of [64] and
[4] produce sequences avoiding not only ababa and ababab, respectively, but
even u1 and u2. Some new construction might help to solve the following
problem.

Problem 7. We conjecture that for every constant c > 0 there exists a
sequence u such that

u 6⊃ ababa but Ex(u, n) � n2α(n)c

.

2

In other words, in view of (18), we conjecture that every extremal function
Ex(v, n) is majorized (for n > n0) by some Ex(u, n), u 6⊃ ababa. Below we
will see that u 6⊃ abab implies Ex(u, n) �u n.

Another attractive but at present hopeless question is whether nα(n) is
the smallest superlinear growth of extremal functions.

Problem 8. Is it true that for every sequence u either Ex(u, n) � n or
Ex(u, n) � nα(n)? 2

Is there an extremal function whose restrictions to two infinite subse-
quences of N have different orders of growth? Said more explicitly, we ask
if there exist a sequence u, two infinite subsequences 1 ≤ n1 < n2 < . . .
and 1 ≤ m1 < m2 < . . . of N, and two increasing functions f, g : N → R+

with f(n)/g(n) → ∞, such that f(ni) � Ex(u, ni) � f(ni) and g(mi) �
Ex(u, mi) � g(mi) as i →∞. Valtr [61, Proposition 3] shows that for every
sequence u,

lim sup
n→∞

Ex(u, n)

n
= ∞ =⇒ lim inf

n→∞

Ex(u, n)

n
= ∞.
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So in any case one cannot select g(n) = n. If u is irreducible, which means
that there is no nontrivial decomposition u = u1u2 with S(u1) ∩ S(u2) = ∅,
then it is easy to prove the stronger result that limn→∞ Ex(u, n)/n exists (it
may equal ∞).

Insertions and intertwinings. We proceed to the remaining two oper-
ations which compose w from v1, . . . , vr so that Ex(w, n) can be bounded in
terms of Ex(v1, n), . . . , Ex(vr, n). They constitute the main result of Klazar
and Valtr [36].

Let a and b be two distinct symbols and u1, u2, and v be three sequences.
The insertion of v in u = u1a

2u2 gives the sequence w = u(v) = u1avau2.
The intertwining of u = u1a

2u2a and b gives the sequence w = u[b] =
u1ab2au2ab. We can bound Ex(u(v), n) only under the assumption that
S(u1a

2u2) ∩ S(v) = ∅. Similarly, we can bound Ex(u[b], n) only under the
assumption that b 6∈ S(u1a

2u2a). The insertion is a binary operation in the
sense that it is determined completely by two sequences u, v and an immedi-
ate repetition . . . aa . . . in u. In the similar sense the intertwining is an unary
operation.

Let u = u1a
2u2 and v be two sequences with S(u) ∩ S(v) = ∅, and u(v)

arise by inserting v in u. If v is a chain, it is easy to see that Ex(u(v), n) ≤
Ex(u, n). If v is not a chain then, as proved in [36],

Ex(u(v), n) = Ex(u1avau2, n) �u,v Ex(v, Ex(u, n)). (24)

Let u = u1a
2u2a be a sequence, b be a symbol such that b 6∈ S(u), and

u[b] arise by intertwining u with b. Then, as proved in [36],

Ex(u[b], n) = Ex(u1ab2au2ab, n) �u Ex(u, n). (25)

By symmetry, we have the analogous statement for bau1ab2au2. The lower
bounds

Ex(u(v), n) �u,v max(Ex(u, n), Ex(v, n)) and Ex(u[b], n) �u Ex(u, n)

are immediate from (20). Simpler proofs of (24) and (25) were given in Valtr
[61]. Blowing-up u[b], we obtain from (25) for i, j ∈ N the bounds

Ex(u1abiau2abj, n) �u,i,j Ex(u, n)

(remember the condition b 6∈ S(u)).
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Linear sequences. It is natural (but difficult) to investigate the class
of the linear sequences

Lin = {v : Ex(v, n) � n}.

We have already met several members of it: abab (Example 2), abba and vk

(Example 5), ai and chains (trivial). On the other hand, ababa 6∈ Lin by
(10).

Problem 9. What are the elements of Lin? 2

The bounds (21), (24), and (25) give a simple method to obtain many
members of Lin: start with ai and by repeated blow-ups, insertions, and
intertwinings generate linear sequences. To formulate it more precisely, let L
be the smallest class of sequences that is closed on the isomorphism and has
the following closure properties: (i) for every i ∈ N, ai ∈ L; (ii) if au ∈ L
then aiu ∈ L for every i ∈ N, and if ua ∈ L then uai ∈ L for every i ∈ N;
(iii) if ua2v ∈ L then uaiv ∈ L for every i ∈ N; (iv) if u = u1a

2u2, v ∈ L
and S(u) ∩ S(v) = ∅ then u1avau2 ∈ L; and (v) if u = u1a

2u2a ∈ L and
b 6∈ S(u) then u1ab2au2ab ∈ L, and if u = au1a

2u2 ∈ L and b 6∈ S(u) then
bau1ab2au2 ∈ L. Then ([36]),

L ⊂ Lin.

Observe that, by the way of definition, L is closed to the containment and
to all blow-ups.

Problem 10. Decide if there is a sequence u ∈ Lin\L. 2

By (20), u ⊂ v ∈ Lin implies that u ∈ Lin. Hence we can characterize
Lin by means of the class of minimal nonlinear sequences

B = {u : u 6∈ Lin but v ∈ Lin whenever v ⊂ u & |v| < |u|}.

Namely, we have the equivalence u ∈ Lin ⇐⇒ ∀v ∈ B [v 6⊂ u]. Knowing
(effectively) B, we could hope to draw more information about Lin. Unfortu-
nately, at present we know only two significant properties of B: (i) ababa ∈ B
and (ii) B has at least two elements. The first property follows from the facts
that λ3(n) � nα(n) (by (10)), abab ∈ Lin (Example 2), ab2a ∈ Lin (Example
5), and aba2 ∈ Lin (trivial). As for (ii), it follows from the examples given
after the bound (23). Might B be infinite?

24



Problem 11. Is the set B of minimal nonlinear sequences finite or infi-
nite? 2

One might hope to prove the finiteness of the set B, which is an antichain to
the containment, by proving that the quasiordering (A∗,⊂) has no infinite
antichains at all. However, one can easily construct infinite antichains in
(A∗,⊂) and thus B still might be infinite. An infinite antichain is presented
by Klazar [24] who also determines certain well quasiordered subsets of A∗.

Interesting sequences in the class L. Let us return to the class L
of the sequences whose linearity we can prove. It is rich enough to contain
several interesting families of sequences. First we prove by induction on
|u| that every abab-free sequence u falls in L. If u is abab-free then u is
isomorphic to au1au2a . . . auk, where u1, . . . , uk are possibly empty sequences,
the sets S(ui) are mutually disjoint, and a 6∈ S(ui) for every i = 1, . . . , k.
By induction, ui ∈ L for every i = 1, . . . , k. Inserting in ak+1 the sequences
u1, . . . , uk, we conclude (applying k times the closure property (iv)) that
u ∈ L. Thus Ex(u, n) �u n for every abab-free sequence u. In particular,

DS4 ⊂ Lin.

Recall that u1 = abcbadadbcd 6∈ Lin and u1 6⊃ ababa. Thus DS5 6⊂ Lin.
Intertwinings and blow-ups yield an immediate proof of the two-letter

theorem: a3 ∈ L by (i), ab2a2b ∈ L by (v), and aibiaibi ∈ L (i ≥ 2) by (ii)
and (iii). Hence every ai1bi2ai3bi4 (ij ≥ 0) is linear.

Intertwinings bring in L sequences more complicated than abab-free se-
quences. Repeated intertwinings and blow-ups show that the sequence

u′ = 1 2 1 2 3 2 3 4 3 4 5 4 . . . (k − 2) (k − 1) (k − 2) (k − 1) k (k − 1) k

of Example 5 lies in L. Hence this longest abba-free 2-sparse sequence is linear
for every k, as well as its every blow-up. On the other hand, abcadbcd 6⊃ abba
but abcadbcd 6∈ L. At present we are not able to prove the linearity of all
abba-free sequences.

Similarly, intertwinings and blow ups show that for every k and i the
N -shaped sequence

uN(k, i) = 1i2i . . . (k − 1)iki(k − 1)i . . . 2i1i2i . . . (k − 1)iki

belongs to L and thus is linear. The bound

Ex(uN(k, i), n) �i,k n (26)
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is an important result of [36] and a considerable strengthening of (23).
It follows by a case analysis that every ababa-free sequence u with ‖u‖ ≤ 3

is contained in a blow-up of one of the three sequences v1 = ababcbc, v2 =
abcbabc, and v3 = abacacbc. All blow-ups of v1 and v2 are in L and thus
are linear; v1 is the k = 3 instance of the above u′ and v2 = uN(3, 1). But
v3 = abacacbc 6∈ L.

Problem 12. Is it true that Ex(abacacbc, n) � n? And what about the
blow-ups of abacacbc? 2

In fact, the minimal subsequences of v3 = abacacbc lying outside L are
abacabc, abcacbc, abacacb, and bacacbc. The first two are, up to the iso-
morphism, reversals of one another and hence have equal extremal functions.
The same holds for the last two sequences. Writing u for the reversal of u, we
have this partial characterization of the linear sequences over three symbols:
for ‖u‖ ≤ 3,

u and u contain none of {ababa, abacabc, abacacb} ⇒ Ex(u, n) �u n.

In the opposite direction we know only that ababa ⊂ u implies the nonlin-
earity of u.

5 Geometric graphs, colored trees, 0-1 ma-

trices, ordered bipartite graphs, permuta-

tions, and set partitions

Geometric graphs. Generalized DS sequences found interesting applica-
tions in the combinatorics of geometric graphs . These are particular planar
realizations of graphs: the vertices of a graph are represented by some points
in the plane lying in the general position and the edges are represented by
possibly crossing straight segments. Two edges of a geometric graph cross
if their relative interiors intersect, and they are parallel if they form two
opposite sides of a convex quadrilateral.

Katchalski and Last [22] proved, using the bound (4), that any geometric
graph with n vertices and no two parallel edges has at most 2n − 1 edges.
Valtr [60] lowered this bound to 2n− 2, which proves the conjecture of Y. S.
Kupitz from 1979; Figure 2 shows geometric graphs attaining this number of
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Figure 2: Geometric graphs with n vertices and 2n−2 edges, no two of them
“parallel”.

edges. (Another nice application of (4) in combinatorial geometry was given
by Edelsbrunner and Sharir in the article [17] with a self-explaining title.)
Applying the N -sequence bound (26), Valtr proved in [60] more generally
that every geometric graph with n vertices and no k pairwise parallel edges
has �k n edges. From this he derived that if k pairwise crossing edges are
forbidden, then the number of edges is �k n log n. (For these results see
also [61].) This improves the previous bound �k n log2k−6 n (for k > 2) of
Agarwal et al. [2] (based on the bound �k n log2k−4 n of Pach, Shahrokhi
and Szegedy [43]). Whether the bound �k n holds is open. It is known to
hold only for k = 2 (the classical case of planar graphs) and k = 3 ([2]).

Precisely speaking, the bounds �k n log2k−6 n of [2] and �k n log n of
[60] are in a sense incomparable. The former bound holds, as stated in [2],
for the more general representation of edges by curves (details are in [2] given
only for the case of segments). The latter stronger bound applies on the more
special representation by segments. In [59] Valtr extended it to the situation
when edges are represented by x-monotone curves, but the case of general
curves seems out of reach of his method.

For further applications of DS sequences in computational and combina-
torial geometry, see [3] and [52].

Colored trees. From the viewpoint of graph theory, sequences can be
regarded as undirected colored paths, where colors are the symbols used.
For example, abcabc is the path of six vertices v1v2 . . . v6 where v1 and v4

are colored a, v2 and v5 are colored b, and v3 and v6 are colored c. To
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work with more exciting objects, we regard colored paths just as special
cases of colored trees. Can one extend in a reasonable way the definition
(16) to colored trees? Can one prove for colored trees an analogue of, say,
λ2(n) = Ex(abab, n) = 2n− 1? We begin with the latter problem.

Let T (abab, n) be the maximum number of vertices in a tree T = (V, E)
that can be vertex-colored by at most n colors so that three conditions hold:

1. The coloring is proper, which means that no edge is monochromatic.

2. No subgraph of the colored tree T is a subdivision of the properly
2-colored 4-vertex path •−◦−•−◦ .

3. No subgraph of the colored tree T is a subdivision of the properly
2-colored 4-vertex star •−◦−•

•
.

The condition 1 is the analogy of 2-sparseness. The condition 2 forbids
in T the color pattern abab and it requires, for the coloring f : V → N,
that there are no four distinct vertices v1, . . . , v4 ∈ V such that f(v1) =
f(v3) 6= f(v2) = f(v4) and the v1-v4 path contains, in this order, the vertices
v2 and v3. The condition 3 requires that there are no three distinct vertices
v1, . . . , v3 ∈ V such that f(v1) = f(v2) = f(v3) 6= f(v4) and the three vi-v4

paths are disjoint except for v4. For colored trees the conditions 1 and 2 alone
do not suffice to bound the number of vertices, as shown by arbitrarily large
properly colored stars. Therefore we add the condition 3. To reformulate it,
define for a color c and a colored tree T the tree T (c) as the smallest subtree
of T containing all c-colored vertices. The condition 3 then says that, for
every color c, in the tree T (c) all vertices with degrees at least 3 must be
colored c. Notice that if we restrict T to paths, then T (abab, n) coincides with
Ex(abab, n). This is due to the fact that the sequence abab is isomorphic to
its reversal.

Example 7 ([29]). We prove that for every n ∈ N,

T (abab, n) = 2n− 1. (27)

So if T ranges over the larger set of all trees, T (abab, n) still equals Ex(abab, n) =
λ2(n) = 2n− 1.

The lower bound T (abab, n) ≥ 2n−1 is achieved already on colored paths.
More strongly, we can color any tree U on 2n−1 vertices with n colors so that
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the conditions 1, 2, and 3 are satisfied: we color with 1 two arbitrary leaves
of U , then we color with 2 two arbitrary leaves of the uncolored subtree of
U , and so on until the whole U is colored.

We prove the opposite inequality T (abab, n) ≤ 2n − 1. Let T = (V, E)
be a tree and f : V → {1, 2, . . . , n} be a coloring satisfying the conditions
1, 2, and 3. We show that |V | ≤ 2n − 1. We may assume that n > 1
and that b(T ) = #{v ∈ V : degT (v) ≥ 3} > 0; else T is a path and
|V | ≤ Ex(abab, n) = 2n − 1. Formally, we proceed by induction on the sum
n + b(T ). We use the operation of smoothing out a vertex u of degree 1 or 2.
For degT (u) = 1 this is just the deletion of u. For degT (u) = 2 we delete u
and connect its two neighbours by an edge.

Observe that there is a vertex v in T with degree at least 3 and such that
T − v = P1 ∪ P2 ∪ . . . ∪ Pl ∪ C where l ≥ 2, every Pi is a path, and C is a
tree which may not be a path. First we show that f may be assumed to be
injective on the set V (T )\V (C) = {v}∪V (P1)∪ . . .∪V (Pl). If this is not the
case, then f(u1) = f(u2) for two distinct u1, u2 ∈ V (T )\V (C), and either (i)
{u1, u2} ⊂ {v}∪V (Pi) for some i or (ii) u1 ∈ V (Pi) and u2 ∈ V (Pj) for some
i 6= j. In the case (i), there must be a vertex u3 between u1 and u2 whose
color c = f(u3) does not appear elsewhere in T ; else we would have in T the
color pattern abab. Smoothing out u3 and, if necessary, one of its neighbours
(lest we create a monochromatic edge), we get rid of the color c and keep the
three conditions satisfied. By induction, |V | ≤ 2(n− 1)− 1 + 2 = 2n− 1. In
the case (ii) we may assume that the color c = f(u1) = f(u2) does not appear
elsewhere in T ; else we have the case (i) or the condition 3 is violated. If u1

has two neighbours, they have distinct colors for else we would have the abab
pattern. The same holds for u2. We get rid of c by smoothing out both u1 and
u2; this creates no monochromatic edge. The three conditions are satisfied
and we conclude again by induction that |V | ≤ 2(n− 1)− 1 + 2 = 2n− 1.

Thus we may assume that on the vertices in V (T )\V (C) no color is re-
peated. We transform the colored tree (T, f) into a new colored tree (T ∗, f∗)
by splitting the paths P1, . . . , Pl into individual vertices, assembling from
them a single colored path P , and joining P back to v. During the transfor-
mation every vertex keeps its color. The number of colors has not changed,
b(T ∗) = b(T ) − 1 because degT ∗(v) = 2, and (T ∗, f∗) clearly satisfies the
conditions 1 and 3. It remains to find an appropriate order for the vertices
in P so that (T ∗, f∗) does not contain the color pattern abab. Then we apply
the inductive assumption and conclude that |V (T )| = |V (T ∗)| ≤ 2n− 1.

To this end we define a binary relation R on the set of colors appearing in

29



V (P1)∪. . .∪V (Pl). We set aRb iff a 6= b and there is a path Q = (v0, . . . , vk) in
C∪{v}, v0 = v, such that, for some i < j, f(vi) = a and f(vj) = b. We show
that R is a strict partial ordering. First we prove that R is antisymmetric.
Suppose, for the contradiction, that aRb and bRa, witnessed by paths Q1 and
Q2, respectively. Let w be the merging vertex of Q1 and Q2. One case is that
a and b appear on Q1 in this order after w (if we go in the v-w direction),
and the same holds for the appearances of b and a on Q2. Since both colors
appear also in the paths Pi, we have a contradiction with the condition 3: w
should have both colors a and b. If this case does not occur (which includes
the possibility Q1 = Q2), then Q1 or Q2 must contain the pattern aba or bab.
But then (T, f) contains the pattern abab, which contradicts the condition
2. Thus R is antisymmetric. The transitivity of R can be proved by very
similar arguments which we omit.

R is a strict partial ordering. Any occurrence of the pattern abab in
(T ∗, f∗) would have to use two vertices of C ∪ {v} and two vertices of P .
We order the vertices in P in a linear extension of R so that if aRb then the
vertex in P colored a is closer to v than the vertex colored b. Then no abab
pattern can appear. 2

For a general sequence u ∈ A∗ with ‖u‖ > 1, we define T (u, n) as the
maximum number of vertices of a tree T that can be vertex-colored by at
most n colors so that three conditions hold:

1. Two distinct vertices with the same color have distance at least ‖u‖
edges.

2. No subgraph of the colored tree T is a subdivision of the path of |u|
vertices that is colored according to u.

3. No subgraph of the colored tree T is a subdivision of the properly
2-colored 4-vertex star •−◦−•

•
.

We keep the condition 3 and modify the first two conditions in the obvious
way. For ‖u‖ > 1 this works fine, T (u, n) < ∞. For u = ai the first
condition is void and for i ≥ 4 we would still have T (ai, n) = ∞ (consider
monochromatic stars). Therefore in the special case of u = ai we require the
coloring of T to be proper. We must not forget that after replacing sequences
by paths we lose the unique left-right order of terms. Forbidding a sequence
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Figure 3: The bound T (abba, n) ≥ 5n− 8 for n = 6.

u we forbid its reversal u as well. For u isomorphic to u, if T are restricted to
paths then T (u, n) = Ex(u, n). We say that then T (u, n) extends Ex(u, n).

This generalization of Ex(u, n) to colored trees, T (u, n), was considered
first in [26]. From the results on T (u, n) proved in Klazar [30] we mention
the extension of (18) to colored trees and the exact values (n > 1)

T (ai, n) =


(2i− 3)n− 2i + 4 . . . i ≥ 2 is even

(2i− 4)n− 2i + 6 . . . i ≥ 3 is odd

(recall that for the monochromatic i-path ai the coloring of T is required
to be proper). The next example shows that, unlike abab, T (abba, n) 6=
Ex(abba, n).

Example 8 ([62]). We show that T (abba, n) ≥ 5n− 8, in contrast with
Ex(abba, n) = 3n − 2. (Since abba is isomorphic to its reversal, T (abba, n)
extends Ex(abba, n).) We hope that the construction of (T, f) due to P.
Valtr and independently discovered also by Ch. Vogt, is clear enough from
its instance n = 6 visualized in Figure 3.

The coloring is proper, contains no subdivision of abba, and satisfies the
condition 3. In general the horizontal path has n vertices and the rays con-
tribute 4(n − 2) vertices. Together we have 5n − 8 vertices. In Valtr [62] a
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more general example is given showing that

T (aibiai, n) ≥ 9in−O(i + n).

2

In [26] and [29] we posed as a problem to show that T (abba, n) � n. This
was accomplished in [62] by Valtr who proved more generally that

T (aibiai, n) ≤ 24in.

Thus 5n− 8 ≤ T (abba, n) ≤ 48n.

Problem 13. Improve these bounds. Or, better, determine the function
T (abba, n) exactly. 2

The theory of tree extremal functions was much advanced by Valtr in [61]
and [63]. He introduced other generalizations of Ex(v, n) to colored trees,
which are better to work with than T (v, n), and he proved analogues of most
of the results that we described in the previous section. In particular, he
extended blow-ups, insertions, and intertwinings to colored trees. To discuss
properly his results would mean to write another Section 4; the interested
reader is refered for details to [61] and [63]. Here I only say that, contrary to
my original expectations, the behaviour of tree extremal functions often turns
out to be much different compared to Ex(v, n). For example, the two-letter
theorem for colored trees ([61], [63]) says: for ‖u‖ ≤ 2,

T (u, n) �u n ⇐⇒ u 6⊃ ababa & u 6⊃ ab2a2b.

In fact ([61], [63]), T (ab2a2b, n) � nα(n). Comparing this with (27), we see
that for colored trees blow-ups change asymptotics.

0-1 matrices and ordered bipartite graphs. Recall the notation
[n] = {1, 2, . . . , n} and [a, b] = {a, a + 1, . . . , b}. Füredi and Hajnal [18]
investigated the following class of extremal problems for 0-1 matrices. Let
N : [k] × [l] → {0, 1} and M : [m] × [n] → {0, 1} be two 0-1 matrices of
types k × l and m× n, respectively. We say that M contains N if there are
increasing injections f : [k] → [m] and g : [l] → [n] such that, for all i ∈ [k]
and j ∈ [l], M(f(i), g(j)) = 1 whenever N(i, j) = 1. In other words, M has
a (not necessarily contiguous) k × l submatrix that has 1 on every position
where N has 1, and that has 0 or 1 on every position where N has 0. It is
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convenient to write in the matrices blanks instead of zeros. Let f(m, n; N)
be the maximum number of 1’s in an m × n 0-1 matrix M not containing
N , and let f(n; N) = f(n, n; N). It is easy to see that for every N with
at most three 1’s one has f(n; N) � n. For four 1’s the situation is much
more complicated. Performing on N the obvious automorphisms preserving
f(n; N), one is left with 37 matrices N with four 1’s and no zero row or
column. Füredi and Hajnal investigated f(n; N) for each of these N . One of
their results related to DS sequences says that

nα(n) � f(n;
(

1 1
1 1

)
) � nα(n);

the upper bound is obtained from (10) by reduction to 5-DS sequences and
for the lower bound they give a construction of their own. They prove the
same lower and upper bounds for

N =

 1
1

1 1


and the upper bound f(n; N) � nα(n) for

N =

 1
1

1 1

 and N =


1

1
1

1

 .

In the end of [18] the authors pose a question whether f(n; P ) �P n holds
for all permutation matrices P . In [34] we pointed out that this conjec-
ture, if true, would imply the enumerative Stanley–Wilf conjecture (which
we formulate in a moment).

One can naturally reformulate the matrix setting in terms of ordered
bipartite graphs; these are bipartite graphs with linear orders on both parts.
M is understood as the bipartite graph G = ([n], [n+1, n+m], H) where, for
all i ∈ [m] and j ∈ [n + 1, n + m], {i, j} ∈ H iff M(i, j − n) = 1. The matrix
containment translates into the usual subgraph relation, with the important
additional condition that the linear orders of vertices are preserved. The
extremal function f(n;H) is defined as the maximum number |H| of the edges
of a bipartite graph G = ([n], [n + 1, 2n], H) such that G does not contain H.
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For a permutation p = a1a2 . . . ak of [k], the permutation bipartite graph Gp

is defined as

Gp = ([k], [k + 1, 2k], {{i, k + ai} : i = 1, 2, . . . , k}).

The question of Füredi and Hajnal asks if, for any fixed permutation p, every
G = ([n], [n + 1, 2n], H) not containing Gp as an ordered subgraph must have
� n edges.

Permutations. Alon and Friedgut [5] applied generalized DS sequences
to a problem in enumerative combinatorics. Let p = a1a2 . . . am and q =
b1b2 . . . bn be permutations of [m] and [n], respectively. We say that q contains
p if q has a subsequence bi1bi2 . . . bim , 1 ≤ i1 < i2 < . . . < im ≤ n, such that
bir < bis ⇐⇒ ar < as for every r and s. Else we say that q avoids p.
Let Sn(p) be the number of permutations of [n] avoiding p. The Stanley–
Wilf conjecture (stated, for example, in Bóna [10]) asserts that for any given
permutation p,

Sn(p) < cn (28)

holds for every n ∈ N and a constant c > 1 depending only on p. Using the
general bound (18), Alon and Friedgut proved for every p the upper bound

Sn(p) < βp(n)n, (29)

where βp(n) is an extremely slowly growing function defined in terms of α(n).
Using the N -sequence bound (26), they proved also that (28) holds for all
unimodal p. (Recall that p = a1a2 . . . am is unimodal if it first decreases
and then increases or vice versa.) Bóna [11] proved that (28) holds for all
permutations p of the form p = a1a2 . . . am = s1s2 . . . sk where the si’s are
decreasing sequences and, for every i, all terms of si are smaller than those
of si+1.

Example 9 ([34]). We give a simpler proof of the bound (29). We
translate the problem from permutations to ordered bipartite graphs G and
work with the above described extremal function f(n;G) and the permutation
graphs Gp. Let, for a permutation p, Gn(p) be the number of all ordered
bipartite graphs G = ([n], [n + 1, 2n], H) such that G 6⊃ Gp. Clearly,

Sn(p) ≤ Gn(p)

because now we count many more p-free objects. Let us suppose that we have
a bound f(n;Gp) < nγ(n), where γ(n) = γp(n) is a nondecreasing function.
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Let n ∈ N be fixed and m = dn/2e. We claim that

Gn(p) < 15mγ(m) ·Gm(p).

To prove this inductive inequality, we transform every G = ([n], [n+1, 2n], H)
counted by Gn(p) to a G ′ = ([m], [m + 1, 2m], H ′) counted by Gm(p). For
i ∈ [m] and j ∈ [m + 1, 2m], we let {i, j} ∈ H ′ iff in G the sets {2i − 1, 2i}
and {2j − 1, 2j} are connected by at least one edge. In other words, to
get G ′, we identify in G the vertices in each of the pairs (1, 2), (3, 4), . . . and
(n+1, n+2), (n+3, n+4), . . . and replace the arising multiple edges by simple
edges. Every edge of G ′ can be obtained in at most 22·2− 1 = 15 ways. Thus
if G ′ has e edges, there are at most 15e graphs G that transform to G ′. Also,
G 6⊃ Gp implies G ′ 6⊃ Gp, and therefore e ≤ f(m;Gp) < mγ(m). Hence
we obtain the inductive inequality. Iterating it until m = 1 and denoting
m0 = n, mi = dmi−1/2e, we obtain the bound

Sn(p) ≤ Gn(p) < 2·15
∑

i≥1
miγ(mi) < 2·15γ(n)

∑
i≥1

mi < 152nγ(n) =
(
225γ(n)

)n
.

We have obtained (29) with βp(n) = 225γp(n). If γp(n) is almost constant,
so is βp(n). To find such a γp(n), we reduce bipartite graphs to sequences. We
associate with every G = ([n], [n+ 1, 2n], H) the sequence u = N1N2 . . . Nn ∈
[n + 1, 2n]∗, where Ni is the (arbitrarily ordered) list of the neighbours of
i ∈ [n] in G. Let p be a fixed permutation of [k]. It follows that G 6⊃ Gp implies
u 6⊃ w where w = a1a2 . . . aka1a2 . . . ak . . . a1a2 . . . ak consists of 2k repetitions
of the segment of k distinct symbols a1, . . . , ak. The problem that u may not
be k-sparse is easily fixed: deleting at most k− 1 terms from the beginnings
of N2, N3, . . . , Nn, we obtain a subsequence v of u, |v| ≥ |u| − (k− 1)(n− 1),
which is k-sparse. Invoking (18), we obtain the required bound:

|H| = |u| ≤ (k − 1)(n− 1) + |v| < kn + Ex(w, n)

< kn + n · k2l−3 · (10k)2α(n)l−4+8α(n)l−5

=: nγp(n),

where l = 2k2. 2

Set partitions. From the viewpoint of algebraic combinatorics, se-
quences can be regarded as set partitions. For example, abcabc is the partition
of [6] in the blocks {1, 4}, {2, 5}, and {3, 6}. Generally, we assign to a se-
quence u = a1a2 . . . al of length l the partition P of [l] such that i and j are
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in the same block of P iff ai = aj. Then the set of blocks of mutually isomor-
phic sequences of length l corresponds bijectively to the set of all partitions of
[l]. Representing partitions by equivalence relations ∼, we can formulate the
containment of sequences ⊂ in the following way. A partition u = ([k],∼u) is
contained in another partition v = ([l],∼v), if there is an increasing injection
f : [k] → [l] such that the equivalence x ∼u y ⇐⇒ f(x) ∼v f(y) holds for
every x, y ∈ [k].

An important and interesting class of partitions is the noncrossing par-
titions . A partition P of [l] is noncrossing, if there are no four numbers
1 ≤ x1 < x2 < x3 < x4 ≤ l and no two distinct blocks B1 and B2 of P
such that x1, x3 ∈ B1 and x2, x4 ∈ B2. More briefly, P is noncrossing if it
does not contain abab = {{1, 3}, {2, 4}}. Noncrossing partitions and abab-
free sequences (4-DS sequences with 2-sparseness dropped) are two ways
of looking at the same thing. Simion [53] wrote an interesting survey of
results on noncrossing partitions and related topics. The seminal work in-
troducing noncrossing partitions was that of Kreweras [38], followed shortly
by Poupard [45]. In the same year 1972, Mullin and Stanton published
independently their article [42] on enumeration of 4-DS sequences. Other
enumerative works on 4-DS sequences are Roselle [47], Gardy and Gouyou-
Beauchamps [19], and Klazar [28]. See also Klazar [32] for a more general
approach to the enumeration of u-free set partitions.

Although one can read in the MR review of [31] (with the main result
(12)) that “The author improves previous results to show that the number
N5(n) [λ3(n)] of finite sequences . . .”, unfortunately, to my knowledge, no
significant enumerative results on 5-DS sequences are known. Some should
be discovered! In this connection it is interesting that Alon and Onn [6]
applied in an enumerative problem (of bounding the numbers of separable
partitions of points on the moment curve) the extremal bounds (2) and (7).

Problem 14. Let rl be the number of ababa-free partitions of [l]. In
other words,

rl = #{u : u 6⊃ ababa & |u| = l & u is normal}.

What can be said about the numbers rl? What is their asymptotics? 2

The numbers rl grow superexponentially. To see it, note that no partition
of [l] into blocks of at most two elements contains ababa = {{1, 3, 5}, {2, 4}}.
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Thus
rl ≥

∑
i≥0

(
l
2i

)
· (2i− 1)!!

where (2i− 1)!! = 1 · 3 · 5 · . . . · (2i− 1) and (−1)!! = 1.
Having in mind the variety of enumerative formulas for noncrossing par-

titions, we state the following problem.

Problem 15. Let sl be the number of abcabc-free partitions of [l]. In
other words,

sl = #{u : u 6⊃ abcabc & |u| = l & u is normal}.

What can be said about the numbers sl? What is their asymptotics? 2

The hypergraph bound (31) (proved in [33]) covers the partition case and
implies that sl < cl for a constant c > 1. It is easy to see that sk+l ≥ sksl for

every k, l ∈ N. Hence s
1/l
l tends to a finite limit.

6 Hypergraphs

A hypergraph containment. The containment of sequences discussed
through this survey is a special case of the hypergraph containment intro-
duced in Klazar [33]. In Section 6 we survey some of the results of [33] and
[35].

A hypergraph H = (Ei : i ∈ I) is a finite list of finite nonempty subsets
Ei of N = {1, 2, . . .}, which are called edges . The edges may be repeated (we
allow Ei = Ej for i 6= j). Simple hypergraphs have no repeated edges. The
elements of

⋃H =
⋃

i∈I Ei ⊂ N are called vertices . Hypergraphs include
partitions as a special case: partitions are the hypergraphs with mutually
disjoint edges. Now, for partitions we have the important notion of the
sequential containment. Could not it be “lifted” to hypergraphs? We propose
the following definition ([33, 35]).

A hypergraph H′ = (E ′
i : i ∈ I ′) is contained in another hypergraph

H = (Ei : i ∈ I), in symbols H′ ⊂ H, if there is an increasing injection
F :

⋃H′ → ⋃H and an injection f : I ′ → I such that the implication

x ∈ E ′
i =⇒ F (x) ∈ Ef(i)

37



holds for every vertex x ∈ ⋃H′ and every index i ∈ I ′. If H′ 6⊂ H, we say also
that H is H′-free. If H′ and H are partitions, the hypergraph containment
coincides with the sequential containment. To help the reader to get used to
the former, we give two examples. Let H1 = (E1, E2), E1 = E2 = {1}, be
the hypergraph consisting of the singleton edge {1} repeated twice. Then H
is H1-free iff H is a partition. Let H2 = ({1, 3}, {2, 4}). Then H = (Ei : i ∈
I) ⊃ H2 iff there are four vertices x1, . . . , x4 ∈

⋃H, x1 < x2 < x3 < x4, and
two (not necessarily distinct) edges Ei, Ej in H, i 6= j, such that x1, x3 ∈ Ei

and x2, x4 ∈ Ej. (H2-free hypergraphs generalize noncrossing partitions.)
Let F be a fixed hypergraph. One can ask two extremely natural ques-

tions. First, how many F -free hypergraphs are there. Second, how large
F -free hypergraphs may be. We discuss first the enumerative aspect and
then in more details the extremal aspect.

Exponential and almost exponential bounds. For a fixed hyper-
graph F and n ∈ N, we are interested in the number

a(F , n) = #{H : H is simple &
⋃H = [n] & H 6⊃ F}.

The simplicity of H is needed to make a(F , n) finite. The forbidden hy-
pergraph F , however, may be arbitrary, not necessarily simple. (If F =
H1 = ({1}, {1}) from the above example, a(F , n) counts the partitions of [n]
and equals to the nth Bell number.) One of the basic problems here is to
determine all hypergraphs F for which a(F , n) < cn for a constant c > 1.
The candidates for such F are the permutation hypergraphs Hp (with added
singleton edges); these are slightly modified graphs Gp. For a permutation
p = a1a2 . . . ak of [k] we define

Hp = ({i, k + ai} : i = 1, . . . , k).

For example, H1,3,2 = ({1, 4}, {2, 6}, {3, 5}). If a hypergraph F either (i)
has an edge with at least three elements or (ii) has two intersecting edges or
(iii) has two two-element edges E1 and E2 such that E1 < E2, then every
permutation hypergraph Hp is F -free. Thus for such an F we have

a(F , n) ≥ (bn/2c)! = exp((1
2

+ o(1))n log n)

and the numbers a(F , n) grow superexponentially. It is clear that F satisfies
neither of (i)–(iii) if and only if it is a disjoint union of several singleton edges
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and a hypergraph isomorphic to some Hp. We say briefly that F is of the
form Hp+singletons . For example, we may have

F = ({1}, {3}, {7}, {2, 9}, {4, 6, }, {5, 8}).

We conjecture that a(F , n) < cn if and only if, for some permutation p,
F = Hp+singletons. This strengthens the Stanley–Wilf conjecture.

To prove our conjecture, it is enough to prove a(Hq, n) < cn for every
permutation q; every Hp+singletons is contained in an appropriate Hq.

Problem 16. Prove (or disprove) that for any given permutation p,

a(Hp, n) < cn

holds for every n ∈ N and a constant c > 1. 2

In [33] we proved, using (18), a slightly weaker bound: for every permutation
p there is an almost constant function βp(n) defined in terms of the inverse
Ackermann function α(n), such that

a(Hp, n) < βp(n)n. (30)

Note that this strengthens (29) (and our strengthening of (29) in Example
9) because now we count many more p-free objects. In [33] we also proved,
using the N -sequence bound (26), that the exponential bound in Problem
16 holds for certain permutations: if p = a1a2 . . . ak first dicreases and then
increases, or if p−1 first increases and then dicreases, then

a(Hp, n) < cn (31)

for all n ∈ N and a constant c > 1. Note that this gives an exponential
upper bound on the numbers sl of Problem 15 (p = 1, 2, 3). Can the reader
give a reasonably simple direct proof of it?

Summarizing, we have the enumerative alternative

a(F , n)


< βp(n)n . . . F ⊂ Hp for some p

> n(1/2+o(1))n . . . F 6⊂ Hp for every p,

 (32)

we conjecture that βp(n) may be replaced with a constant, and can prove
this for some particular permutations p.
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Two hypergraph extremal functions. For a hypergraph H = (Ei :
i ∈ I), we denote by v(H) = |⋃H| the number of vertices, by e(H) = |I|
the number of edges, and by i(H) =

∑
i∈I |Ei| the number of vertex-edge

incidences. For a fixed hypergraph F and n ∈ N, we define two extremal
functions

He(F , n) = max{e(H) : H 6⊃ F & H is simple & v(H) ≤ n}
Hi(F , n) = max{i(H) : H 6⊃ F & H is simple & v(H) ≤ n}.

The simplicity of H is again needed that He(F , n) and Hi(F , n) be well
defined. The forbidden F may be arbitrary. Obviously, He(F , n) ≤ Hi(F , n)
for every F and n. In most cases we have, up to a constant factor, also the
opposite inequality:

Example 10 ([35]). Suppose that no two edges E1 and E2 of F satisfy
E1 < E2. Let p = v(F) and q = e(F) > 1 (the case q = 1 is trivial). Then
for every n ∈ N,

Hi(F , n) ≤ (2p− 1)(q − 1) ·He(F , n). (33)

For the proof suppose that H is a simple and F -free hypergraph with
v(H) ≤ n. We transform H in a new hypergraph H′. If E = {v1, v2, . . . , vs}
is an edge of H, v1 < v2 < · · · < vs, we keep it if s < p. If s ≥ p,
we replace E with t = b|E|/pc new edges {v1, . . . , vp}, {vp+1, . . . , v2p}, . . . ,
{v(t−1)p+1, . . . , vtp}. The new edges have each p elements and are mutually
separated in the way that is excluded in F . The new hypergraph H′ may
not be simple. Therefore we define a simple hypergraph H′′ by keeping from
every family of repeated edges of H′ only one edge. We observe two things:
(i) no edge of H′ is repeated more than q − 1 times and (ii) H′′ is F -free.
If (i) were false, there would be q distinct edges E1, . . . , Eq in H such that
|⋂q

i=1 Ei| ≥ p. But this implies the contradiction F ⊂ H. As for (ii), since
the new p-element edges born from an edge E of H are separated, every copy
of F in H′′ may use for every E only at most one of them. But then it would
be a copy of F in H as well, which is again impossible. Both observations
and the definitions of H′ and H′′ imply

i(H) ≤ (2p− 1) · i(H′)

p
≤ (2p− 1)(q − 1) · i(H′′)

p

≤ (2p− 1)(q − 1) · e(H′′)

≤ (2p− 1)(q − 1) ·He(F , n).
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The inequality (33) holds, for example, for all permutation hypergraphs
F = Hp. On the other hand, there exists a class of somewhat singular
hypergraphs F for which Hi(F , n) 6� He(F , n). For F = ({1}, {2}) one can
quickly show that He(F , n) = 1 but Hi(F , n) = n. More generally, in [35]
we have shown that if F = ({1}, {2}, . . . , {k}) then He(F , n) = 2k−1 − 1
(n ≥ k − 1) and Hi(F , n) = (k − 1)n− (k − 2) (n is large enough).

Problem 17. Is it true that for every F 6= ({1}, {2}, . . . , {k}) one has
the estimate Hi(F , n) �F He(F , n)? 2

Linear and almost linear bounds on Hi(F ,n). In [33] we proved, by
means of (18), an extremal analogue of (30): for every permutation p,

Hi(Hp, n) < n · γp(n) (34)

where γp(n) is defined in terms of α(n) and thus grows to infinity extremely
slowly. (This proof now may be simplified by means of the inequality (33).)
Similarly, in [33] we proved, by means of (26), that if p = a1a2 . . . ak is a
permutation that first dicreases and then increases, or if p−1 first increases
and then dicreases, then

Hi(Hp, n) �p n. (35)

Problem 18. Prove (or disprove) that for every permutation p we have
Hi(Hp, n) �p n. 2

We have seen already in Example 9 that the extremal problem is, in a
sense, more fundamental than the enumerative problem. This holds also
on the hypergraph level: in [33] we prove first the bounds (34) and (35) and
from them we derive, respectively, the bound (30) and (31) as corollaries. The
derivation uses a variant of the inductive argument presented in Example 9.
In the same vein, the bound in Problem 18 implies the bound in Problem 16.

What is the extremal analogue of (32)?

Problem 19. Identify the class of hypergraphs Ψ such that

He(F , n), Hi(F , n)


< n · γF(n) . . . F ∈ Ψ

> n · δF(n) . . . F 6∈ Ψ
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holds. Here the functions γF(n) and δF(n) grow to infinity, any γF(n) is
defined in terms of α(n) and thus is almost constant, and any δF(n) is much
faster than any γF(n). 2

Unlike in enumeration, now we cannot hope to replace every γF(n) with a
constant. This, of course, comes as no surprise. By a reduction to 5-DS
sequences, it is easily shown ([35]) that for F = ({1, 3}, {1, 5}, {2, 4}, {2, 6})
one has He(F , n) � nα(n). This F is an example of a star forest . These
are simple hypergraphs F with only two-element edges, with no cycles, and
with the components forming stars such that all centers of the stars precede
all endvertices. In [35] we proved that for every star forest F ,

Hi(F , n) < n · γF(n) (36)

where γF(n) is an almost constant function defined in terms of α(n). Note
that by (33), it suffices to prove this bound for He(F , n). So, in Problem
19, the class Ψ must contain all star forests. Does it consist only from star
forests? Since star forests generalize permutation hypergraphs Hp, the bound
(36) generalizes the bound (34). However, (34) can be probably improved to
a � n bound.

One more almost linear bound and back to abab. In the definition
(16), if expressed in terms of partitions, the number of vertices is maximized
over all v-free partitions u with at most n edges (and u is moreover ‖v‖-
sparse). For partitions H we have v(H) = i(H) but the proper measure of
size for hypergraphs is i(H). We generalize the approach of (16) as follows.
Suppose that F is a fixed partition with q = e(F) > 1. Then for every F -free
hypergraph H (really every, even not simple) we have the inequality ([35])

i(H) < (q − 1)v(H) + e(H) · γF(e(H)) (37)

where γF(n) is an almost constant function defined in terms of α(n). The
bound (37) is an extension of (18) to hypergraphs. We can also apply (37)
to bound Hi(F , n) (almost linearly) in terms of He(F , n) in situations when
(33) does not apply.

We conclude our survey by returning to the pattern abab alias •−◦−•−◦
alias ({1, 3}, {2, 4}).

Example 11 ([33, 35]). We prove that, denoting abab = ({1, 3}, {2, 4}),
for every n > 1,

He(abab, n) = 4n− 5 and Hi(abab, n) = 8n− 12.
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We begin with the case when G is a simple abab-free graph with the vertex
set [n] (so G has only two-element edges). We prove by induction on n that
e(G) ≤ 2n − 3. For n = 2 this is true. Let n > 2 and deg(1) ≥ 2; for
deg(1) = 1 induction immediately applies. We split [n] into two overlapping
intervals I1 = [k] and I2 = [k, n], where k is the largest vertex in [2, n − 1]
adjacent to 1. The restrictions of G to I1 and I2 are simple abab-free graphs
and every edge of G, except possibly of {1, n}, lies in I1 or in I2. By induction,

e(G) ≤ 1 + 2|I1| − 3 + 2|I2| − 3 = 2(|I1|+ |I2|)− 5 = 2n− 3.

In the graph case, e(G) ≤ 2v(G)− 3.
Let now H be a simple abab-free hypergraph with the vertex set [n]. We

look at the big edges of H having 3 and more vertices. We claim that after
deleting from each of them its first and last vertex, the resulting sets lie in
[2, n−1] and are mutually disjoint. The former claim is clear. If the resulting
sets were not disjoint, we would have two distinct edges E1, E2 in H and five
not necessarily distinct vertices v1, . . . , v5 ∈

⋃H such that v2 < v3 < v4,
v1 < v3 < v5, {v1, v3, v5} ⊂ E1, and {v2, v3, v4} ⊂ E2. Moreover, we may
assume that v1 6= v2 or v4 6= v5 because E1 6= E2 (H is simple). But then H
contains abab, a contradiction. Thus the resulting sets must be disjoint and
their number is at most n− 2, which bounds the number of big edges in H.

Not forgetting singleton edges, we conclude that

e(H) ≤ n + (2n− 3) + (n− 2) = 4n− 5

i(H) ≤ n + 2(2n− 3) + (n− 2) + 2(n− 2) = 8n− 12.

The abab-free hypergraphs

({i}, {j, j + 1}, {1, k}, {1, j, j + 1} : i ∈ [n], j ∈ [2, n− 1], k ∈ [2, n])

show that these bounds are tight. 2

Interestingly, the previous proof needs only small adjustments to work also
for the forbidden hypergraph abba = ({1, 4}, {2, 3}). For n > 1 we have
He(abba, n) = 4n − 5 and Hi(abba, n) = 8n − 12 as well. This should be
compared with the situation for sequences and colored trees when abab and
abba have different extremal functions.
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[11] M. Bóna, The solution of a conjecture of Stanley and Wilf for all layered patterns,
J. Comb. Theory, Ser. A, 85 (1999), 133–140. [Zbl 919.05002 and MR 99i:05005.]

44



[12] F. J. Burkowski and E. F. Ecklund, Jr., Exclusion sequences with regularity
conditions. In: F. Hoffman et al. (editors), The Fifth Southeastern Conference on
Combinatorics, Graph Theory and Computing, Boca Raton 1974 (USA), Congressus
Numerantium X, Utilitas Mathematica Publishing, Inc., Winnipeg, 1974; pp. 261–
266. [Zbl 313.05004 and MR 52#2901.]

[13] H. Davenport, A combinatorial problem connected with differential equations II,
Acta Arithmetica, 17 (1971), 363–372. [Zbl 216.30204 and MR 44#2619.]

[14] H. Davenport and A. Schinzel, A combinatorial problem connected with dif-
ferential equations, American Journal of Mathematics, 87 (1965), 684–694. [Zbl
132.00601 and MR 32#7426.]

[15] H. Davenport and A. Schinzel, A note on sequences and subsequences, Elemente
der Mathematik, 20 (1965), 63–64. [Zbl 132.25101 and MR — not reviewed.]

[16] A. J. Dobson and S. O. Macdonald, Lower bounds for the lengths of Davenport–
Schinzel sequences, Utilitas Mathematica, 6 (1974), 251–257. [Zbl 299.05010 and MR
50#9781.]

[17] H. Edelsbrunner and M. Sharir, The maximum number of ways to stab n
convex nonintersecting sets in the plane is 2n−2, Discrete Comput. Geom., 5 (1990),
35–42. [Zbl 712.52009 and MR 90k:52019.]
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