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In the twelfth lecture we cover Chapter III.4. Distribution of additive func-
tions and mean values of multiplicative functions in G. Tenenbaum’s book [6],
up to page 511.

Chapter III.4. Distribution of additive functions and mean values of
multiplicative functions

The following are Theorems 4.1 (Erdős–Wintner, 1939) and 4.2 (Delange),
Lemma 4.3, Theorems 4.4 (Delange), 4.5 (Halász), 4.6 (Wirsing) and 4.7, Lem-
mas 4.8, 4.9 (Gallagher), 4.10 (Montgomery–Wirsing) and 4.11, Corollary 4.12,
Lemma 4.13 and Theorems 4.14 (Hall and Tenenbaum, 1991) and 4.15 (Erdős
and Kac, 1939; Rényi and Turán, 1958) in [6].

Theorem 1 An additive function f : N → R has a limiting distribution ⇐⇒
there is an R > 0 such that the three series (a)

∑
|f(p)|>R

1
p , (b)

∑
|f(p)|≤R

f(p)2

p

and (c)
∑
|f(p)|≤R

f(p)
p simultaneously converge. If it is the case then the char-

acteristic function of the limit law is given for any τ ∈ R by the convergent
product

ϕ(τ) =
∏
p

(1− 1/p)
∑
ν≥0

exp(iτf(pν))/pν .

The limit law is pure, and it is continuous iff
∑
f(p)6=0

1
p = +∞.

This theorem is from [2].
In the following D = {z ∈ C : |z| ≤ 1} is the unit complex disc.

Theorem 2 Let g : N → D be multiplicative. (i) If the mean value M(g) :=
limx→+∞

1
x

∑
n≤x f(n) 6= 0 then (a) the series

∑
p(1 − g(p))/p converges and

(b) ∃ ν ∈ N such that g(2ν) 6= −1. (ii) If (a) holds then the mean value M(g)
exists and is given by the formula

M(g) =
∏
p

(
1− 1/p

)∑
ν≥0

g(pν)/pν .
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Lemma 3 Let H > 0 and let (un), (vn) ⊂ C be such that always 1+un+vn 6= 0
and

∑
n(|un|2+|vn|) ≤ H. Then

∏
n(1+un+vn) converges iff

∑
n un converges.

Then ∣∣∏
n(1 + un + vn)

∣∣ ≤ exp
(
6H +

∑
n Re(un)

)
.

Theorem 4 Let g : N → D be multiplicative. If
∑
p(1 − Re(g(p)))/p < +∞

then for x→ +∞ it holds that

1

x

∑
n≤x

g(n) =
∏
p≤x

(
1− 1/p

)∑
ν≥0

g(pν)/pν + o(1) .

“Theorem 4.4 has not been published by Delange but has been object of several
oral expositions.”

Theorem 5 Let g : N→ D be multiplicative. If there is a τ ∈ R such that (s):∑
p(1− Re(g(p)p−iτ ))/p converges, then for x→ +∞ it holds that

1

x

∑
n≤x

g(n) =
xiτ

1 + iτ

∏
p≤x

(
1− 1/p

)∑
ν≥0

g(pν)

pν(1+iτ)
+ o(1) .

If the series (s) does not converge for any τ then

1

x

∑
n≤x

g(n) = o(1) .

This theorem is from [3].

Theorem 6 Let g : N→ [−1, ] be multiplicative. Then

lim
x→+∞

1

x

∑
n≤x

g(n) =
∏
p

(
1− 1/p

)∑
ν≥0

g(pν)/pν

“where the infinite product is to be taken as zero when it diverges.”

This theorem is from [7].
Let G(x) :=

∑
n≤x g(n), F (s) :=

∑
n g(n)/ns (σ > 1) and for T, α > 0,

HT (α)2 :=
∑

k∈Z
|k|≤T

1
k2+1 max σ=1+α

|τ−α|≤1/2
|F (s)|2.

Theorem 7 For any multiplicative g : N → D, with this notation it uniformly
holds for T > 0 and x ≥ 2 that

G(x)� x

log x

∫ 1

1/ log x

HT (α)dα/α+
x

T
.

Lemma 8 Let M ⊂ R be compact and fn : M → R, n ∈ N, be continu-
ous functions such that f1 ≤ f2 ≤ . . . and for any x ∈ M one has that
limn→∞ fn(x) = +∞. Then this limit is uniform,

∀ c∃n0 ∀x ∈M ∀n ≥ n0 : fn(x) > c .
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Proof. In not, there is a c and sequences n1 < n2 < . . . and (xm) ⊂ M such
that for any m one has that fnm

(xm) ≤ c. We may assume that limm→∞ xm =
x0 ∈M . Let n be arbitrary but fixed. Then for any large m,

fnm
(xm) ≥ fn(xm) ≥ fn(x0)− 1

because limm→∞ fn(xm) = fn(x0). Thus fn(x0) ≤ c+ 1 and it is not true that
limn→∞ fn(x0) = +∞. 2

In the case of convergence of fn to a function f this is Dini’s theorem.
The next three lemmas are needed for the proof of Theorem 7.

Lemma 9 Let λ1, . . . , λN for N ∈ N be distinct real numbers and let δn :=
minm6=n |λm − λn|. Then for all T > 0 and a1, . . . , aN ∈ C∫ T

−T

∣∣∣ N∑
n=1

ane(λnt)
∣∣∣2 dt�

N∑
n=1

|an|2(T + 1/δn) ,

where the implied constant is absolute. In particular, for any Dirichlet series∑
n≥1 an/n

s with abscissa of convergence < α, it uniformly holds for T > 0 and
σ ≥ α that ∫ T

−T
|F (s)|2 dτ �

∑
n≥1

|an|2

n2σ
(T + n) .

Lemma 10 If Dirichlet series A(s) :=
∑
n≥1 an/n

s and B(s) :=
∑
n≥1 bn/n

s

converge for σ ≥ 1 and |an| ≤ bn, then for T ≥ 0 and σ > 1,∫ T

−T
|A(s)|2 dτ ≤ 3

∫ T

−T
|B(s)|2 dτ .

Lemma 11 Let g : N → D be multiplicative. Then for σ > 1 we have that∑
n≥1 g(n)/ns = (1 +D(s))F1(s)J(s) where

D(s) =
∑
ν≥1

g(2ν)

2νs
, F1(s) = exp

(∑
p>2 g(p)/ps

)
and where J(s) is a function holomorphic on σ > 1

2 that for σ ≥ 1 satisfies
1� J(s)� 1 and J ′(s)� 1.

The following is an effective form of Halász Theorem 5.

Corollary 12 Let g : N→ D be multiplicative and for x, T ≥ 2 let

m(x, T ) := min
|τ |≤T

∑
p≤x

1− Re(g(p)p−iτ )

p
and R(x, T ) :=

1 +m(x, T )

em(x, T )
+

1

T
.

Then
∑
n≤x g(n)� xR(x, T ).
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Lemma 13 Let h : R→ R be a 2π-periodic function that has on [0, 2π] bounded

variation and has h := 1
2π

∫ 2π

0
h(t) dt. Let M(h) := supt |h(t)| and V (h) :=∫ 2π

0
|dh(t)|. Then for any τ, w, z ∈ R with τ 6= 0 and 1 < w < z,∑

w<p≤z
h(τ log p)

p = h log
(
log z
logw

)
+O

( V (h)
|τ | logw + M(h)+(1+|τ |)V (h)

e
√

log w

)
.

Theorem 14 Let ϕ0 ∈ (0, 2π) be the unique solution of sinϕ+ (π−ϕ) cosϕ =
π/2 and K := cosϕ0 ≈ 0.32867. Then for any x ≥ 2 and any multiplicative
function g : N→ [−1, 1],∑

n≤x g(n)� x exp
(
−K

∑
p≤x

1−g(p)
p

)
where the implicit constant does not depend on g.

This theorem is from [4].
Let

Φ(y) :=
1√
2π

∫ y

−∞
e−t

2/2 dt

be the normal distribution function. As usual, ω(n) is the number of prime
factors of n.

Theorem 15 For any N ∈ N \ {1} and y ∈ R,

N−1|{n ≤ N : ω(n) ≤ log logN + y
√

log logN}| = Φ(y) +O(1/
√

log logN)

where the implicit constant is absolute.

This theorem is from [1] and [5].
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