Lecture 11. Normal order

M. Klazar

May 11, 2024

In the eleventh lecture we cover Chapter III.3. Normal order in G. Tenenbaum's book [4], up to page 475.

Two (arithmetic) functions $f, g: \mathbb{N} \rightarrow \mathbb{C}$ are normal orders of one another if $f(n)=(1+o(1)) g(n)$ for $n \in X, n \rightarrow \infty$, where $X \subset \mathbb{N}$ has natural density 1 . We write $f(n)=(1+o(1)) g(n)$ (a. e.).

Chapter III.3. Normal order

The following are Theorems 3.1 (Turán-Kubilius inequality), 3.2-3.5, Corollary 3.6 and Theorems $3.7-3.10$ in [4].

We have to introduce some notation. Let $f: \mathbb{N} \rightarrow \mathbb{C}$. For $N \in \mathbb{N}$ we define $Z_{N}=Z_{f, N}=\sum_{p \leq N} \zeta_{p}$ where $\zeta_{p}=\zeta_{p}(f)$ are independent random variables on an abstract prob. space $S=(\Omega, P)$ with laws $P\left(\zeta_{p}=f\left(p^{\nu}\right)\right)=(1-1 / p) p^{-\nu}$, $\nu \in \mathbb{N}_{0}(f(1)=0)$. We have the empirical variance $\mathbb{V}_{N}(f)=N^{-1} \sum_{n \leq N} \mid f(n)-$ $\left.\mathbb{E}_{N}(f)\right|^{2}$ and the semi-empirical variance $\mathbb{V}_{N}^{*}(f)=N^{-1} \sum_{n \leq N}\left|f(n)-\mathbb{E}\left(Z_{f, N}\right)\right|^{2}$. We set

$$
B_{f}(N)^{2}=\sum_{p \leq N} \mathbb{E}\left(\left|\zeta_{p}\right|^{2}\right)=\sum_{p^{\nu} \leq N} \frac{\left|f\left(p^{\nu}\right)\right|^{2}}{p^{\nu}}(1-1 / p)
$$

Also,

$$
C_{N}:=\sup _{f \neq 0} \frac{\mathbb{V}_{N}(f)}{\mathbb{V}\left(Z_{f, N}\right)} \text { and } C_{N}^{*}:=\sup _{f \neq 0} \frac{\mathbb{V}_{N}^{*}(f)}{\mathbb{V}\left(Z_{f, N}\right)} .
$$

Finally,

$$
\varepsilon_{N}:=\frac{8}{N}\left(\sum_{\substack{p^{\nu} q^{\mu} \leq N \\ p \neq q}} p^{\nu} q^{\mu}\right)^{1 / 2}+\frac{4}{N}\left(2 \sum_{p^{\nu} \leq N} p^{\nu} \sum_{p \leq N} \frac{1}{p}\right)^{1 / 2}
$$

Theorem 1 If $f: \mathbb{N} \rightarrow \mathbb{C}$ is additive then for any $N \in \mathbb{N}$,

$$
\mathbb{V}_{N}^{*}(f) \leq\left(4+\varepsilon_{N}\right) B_{f}(N)^{2} \leq\left(8+2 \varepsilon_{N}\right) \mathbb{V}\left(Z_{f, N}\right)
$$

In particular, $\max \left(C_{N}, C_{N}^{*}\right) \leq 8+O(\sqrt{\log \log N / \log N})(N \geq 3)$.
[4] gives cryptically some references for this result: Turán [6] and (added by us) Kubilius [3]. Paul (Pál) Turán (1910-1976) was a Hungarian mathematician and Jonas Kubilius (1921-2011) was a Lithuanian mathematician who was rector of Vilnius University for 32 years.

Theorem 2 For any $a_{1}, \ldots, a_{N} \in \mathbb{C}$,

$$
\sum_{p^{\nu} \leq N} \frac{p^{\nu}}{1-1 / p}\left|\sum_{\substack{n \leq N \\ p^{\nu} \| n}} a_{n}-\frac{1-1 / p}{p^{\nu}} \sum_{n \leq N} a_{n}\right|^{2} \leq N C_{N}^{*} \sum_{n \leq N}\left|a_{n}\right|^{2}
$$

Theorem 3 If $f: \mathbb{N} \rightarrow \mathbb{C}$ is additive and if $B_{f}(N)=o\left(\mathbb{E}\left(Z_{f, N}\right)\right)(N \rightarrow \infty)$, then $g(n):=\mathbb{E}\left(Z_{f, N}\right)$ is a normal oder for f.

Theorem 4 For any function $\xi(n) \rightarrow \infty$ and any $N \geq 3$,

$$
|\{n \leq N:|\omega(n)-\log \log N|>\xi(N) \sqrt{\log \log N}\}|<N / \xi(N)^{2} .
$$

The same holds for $\Omega(n)$.
This is classical Turán's form [5] of the classical 1917 theorem of Hardy and Ramanujan [2].

Theorem 5 Let $f: \mathbb{N} \rightarrow[0,+\infty)$ be multiplicative. If for some constants $A, B>0$ it holds that (i) for any $y \geq 0$ one has that $\sum_{p \leq y} f(p) \log p \leq A y$ and (ii) $\sum_{p} \sum_{\nu \geq 2} f\left(p^{\nu}\right) \log \left(p^{\nu}\right) / p^{\nu} \leq B$, then for any $x>1$,

$$
\sum_{n \leq x} f(n)=(A+B+1) \frac{x}{\log x} \sum_{n \leq x} \frac{f(n)}{n}
$$

By [4] this theorem is from [1].
Corollary 6 Let $\lambda_{1}>0$ and $\lambda_{2} \in[0,2)$. Suppose that $f: \mathbb{N} \rightarrow \mathbb{R}$ is multiplicative and satisfies $0 \leq f\left(p^{\nu}\right) \leq \lambda_{1} \lambda_{2}^{\nu-1}$ for any p and $\nu \in \mathbb{N}$. Then for any $x \geq 1$,

$$
\sum_{n \leq x} f(n) \ll x \prod_{p \leq x}(1-1 / p) \sum_{\nu \geq 0} \frac{f\left(p^{\nu}\right)}{p^{\nu}}
$$

with an implicit constant that is independent of f and $\leq 4\left(1+9 \lambda_{1}+\lambda_{1} \lambda_{2} /(2-\right.$ $\left.\lambda_{2}\right)^{2}$).

For $t>0$ we set

$$
\omega(n, t)=\sum_{p \mid n, p \leq t} 1 \text { and } \Omega(n, t)=\sum_{p^{\nu} \mid n, p \leq t} \nu
$$

Theorem 7 Let $y_{0}>0$. Then for any $y \in\left[0, y_{0}\right]$ and $x \geq t \geq 2$ it uniformly holds that

$$
\sum_{n \leq x} y^{\omega(n, t)} \ll x(\log t)^{y-1}
$$

If in addition $y_{0}<2$ then the same holds for $\Omega(n, t)$.

Theorem 8 For any $x \geq t \geq 3$ and $0 \leq \xi \leq \sqrt{\log \log t}$ it uniformly holds that

$$
|\{n \leq x:|\omega(n, t)-\log \log t|>\xi \sqrt{\log \log t}\}| \ll x \mathrm{e}^{-\xi^{2} / 3}
$$

For $\xi \ll(\log \log t)^{1 / 6}$, $\cdot / 3 \sim \cdot / 2$. The same holds for $\Omega(n, t)$ if $0 \leq \xi \leq$ $c \sqrt{\log \log t}$ for some constant $c \in(0,1)$.

Theorem 9 Let $\varepsilon>0$ and $\xi(n) \rightarrow \infty$. Then

$$
\sup _{\xi(n) \leq t \leq n}\left|\frac{\omega(n, t)-\log \log t}{\sqrt{2 \log \log t \cdot \log \log \log t}}\right| \quad \text { (a.e.). }
$$

By $p_{j}(n)$ we denote the j-th prime factor of n.
Theorem 10 Let $\varepsilon>0$ and $\xi(n) \rightarrow \infty$. Then

$$
\sup _{\xi(n) \leq j \leq n}\left|\frac{\log \log p_{j}(n)-j}{\sqrt{2 j \cdot \log j}}\right| \leq 1+\varepsilon \quad \text { (a.e.). }
$$

References

[1] R. R. Hall and G. Tenenbaum, Divisors, CUP, Cambridge 1988
[2] G. Hardy and S. Ramanujan, The normal number of prime factors of a number n, Quart. J. Math. 48 (1917), 76-92
[3] J. Kubilius, Veroyatostnye metody v teorii chisel, Gos. Izd. Polit. i Nauch. Lit. Litovskoj SSR, Vil'nyus 1962 (2nd ed., Probabilistic Methods in Number Theory, originally Tikimybiniai Metodai Skaičiu Teorijoje)
[4] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, AMS, Providence, RI 2015 (Third Edition. Translated by Patrick D. F. Fion)
[5] P. Turán, On a theorem of Hardy and Ramanujan, J. London Math. Soc. 9 (1934), 274-276
[6] P. Turán, Über einige Verallgemeinerungen eines Satzes von Hardy und Ramanujan, J. London Math. Soc. 11 (1936), 125-133

