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Preface

The 16th Prague Midsummer Combinatorial Workshop was held from
July 26th to July 30th 2010 in our beautiful building Malostranské náměst́ı
25. This of course contributed to the comfort of the participants as all the
activities (including the lunches) could be taken on the same site. Besides,
as it was expressed by several participants, the renovated faculty building
surely belongs to the most beautiful math and computer science depart-
ments in the world! The workshop was organized by the Department of
Applied Mathematics (KAM) of Charles University jointly with DIMATIA
and ITI. Only a small but distinguished group of mathematicians was in-
vited and we were particularly happy to have Peter J. Cameron among the
participants. The list of speakers is included in this booklet.

As it already became a tradition, the workshop benefited from participa-
tion of young researchers and PhD students. For example six undergraduate
students from the USA and six undergraduate students from Charles Univer-
sity, together with their mentors Aaron D. Jaggard, David Duncan from US
side and Bernard Lidický from Prague side took part in the workshop, within
the DIMATIA-DIMACS program International REU (supported jointly by
NSF and Czech Ministry of Education ME 09074).

The workshop followed an informal daily routine with morning and early
afternoon discussions and presentations. This report reflects some of the
presentations during the workshop. Perhaps you can digest some of the
atmosphere at the workshop from these proceedings, and you can also see
that the fruitful exchange of ideas led directly to some new results and
papers.

This volume was edited by Martin Tancer. Most of the contributions
were supplied by the authors in an electronic form. In a few cases, slight
typographical changes were necessary. We apologize for any possible inac-
curacies which might have occurred in the editing process.

We gratefully acknowledge financial support of Czech research projects
1M0545 and MSM0021620838.

We hope to meet again in 2011 the same midsummer week!
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Figure 1: A photo of the locality where was the workshop held.

7



Cores, hulls and synchronization

Peter J. Cameron

The topic of synchronization arose originally in automata theory, turned
into permutation group theory, and ended up connecting to graph homo-
morphisms. One thing that came from this is the notion of the “hull” of a
graph, a concept which is in some way dual to the core.

This material is covered in much more detail in notes from an intensive
course I gave recently. The notes are available from

http://www.maths.qmul.ac.uk/~pjc/LTCC-2010-intensive3/

1 Homomorphisms

I will be brief here since anything you want to know about graph homo-
morphisms can probably be found in the work of Jarik Nešetřil. All graphs
here will be simple, and finite except in the final section.

A homomorphism between graphs is a map from the vertex set of one to
that of the other which maps edges to edges. Two graphs are homomorphism-
equivalent (or hom-equivalent, for brevity) if there are homomorphisms in
both directions between them. Given a finite graph X, a core of X is a
graph which has the minimal number of vertices among all graphs hom-
equivalent to X. It is well-known that any finite graph has a core, unique
up to homomorphism, which we denote by Core(X). If X = Core(X), we
say that X is a core.

We remark that the core of X is the complete graph Km if and only if
ω(X) = χ(X) = m, where ω and χ are the clique number and chromatic
number respectively.

It is known that the core of a vertex-transitive graph is vertex-transitive.
The proof extends unchanged to other sorts of transitivity (edge-, nonedge-,
etc.) with the proviso that the core may contain none of the objects in
question (e.g. the core of a non-edge-transitive graph may be complete).
One of the consequences of this work is:

Theorem 1.1. If X is nonedge-transitive, then either X is a core, or the
core of X is complete.
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For any finite graph X, we define the hull of X to be the graph Hull(X)
which has the same vertex set as X, where vertices v and w are joined in
Hull(X) if and only if there is no endomorphism f of X satisfying vf = wf .

Proposition 1.2. (a) X is a spanning subgraph of Hull(X).

(b) End(X) ≤ End(Hull(X)) and Aut(X) ≤ Aut(Hull(X)).

(c) Core(Hull(X)) is a complete subgraph on the vertices of Core(X).

For example, if X is the path of length 3, then Hull(X) is the cycle of
length 4; the number of automorphisms increases from 2 to 8.

Proof of the Theorem Let X be nonedge-transitive. Then Hull(X)
consists of X with possibly some orbits of nonedges changed to edges. There
is only one such orbit, so Hull(X) = X or Hull(X) is complete.

In the first case, Core(X) = Core(Hull(X)) is complete. In the second,
Core(Hull(X)) has all the vertices of X, and hence so does Core(X); so X
is a core.

2 Synchronization

A (finite deterministic) automaton is a set Ω of states with a set of tran-
sitions, each of which is a function on the set of states. Combinatorially
we can regard it as an edge-coloured directed graph in which there is just
one edge of each colour leaving each vertex. We can compose arbitrary se-
quences of transitions; so algebraically, an automaton is a transformation
monoid on the set of states, with a distinguished set of generators.

A reset word is a word in the generators (the transitions) which takes the
automaton to a fixed state from any starting state – that is, which evaluates
to a constant function. The Černý conjecture from 1968, one of the oldest
conjectures in automata theory, asserts that, if an n-state automaton has a
reset word, then it has one of length at most (n− 1)2. (If true, this would
be best possible.)

An approach to the conjecture devised by João Araújo and Ben Steinberg
begins with the observation that the transitions which are permutations gen-
erate a permutation group which contains all elements of the corresponding
monoid which are permutations. Now, if the addition of a non-permutation
forces a reset word, there is some hope of using group-theoretic techniques
to bound its length.
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Accordingly, we say that a permutation group G on Ω is synchronizing
if, whenever f is a transformation of Ω which is not a permutation, the
monoid 〈G, f〉 contains a reset word (a transformation of rank 1).

Proposition 2.1. (a) A synchronizing group is primitive.

(b) A 2-set transitive group is synchronizing.

(c) Neither implication reverses.

So a new and interesting property has been added to the hierarchy of
permutation group properties!

The next theorem gives the only practical test for this property. A graph
is trivial if it is complete or null.

Theorem 2.2. Let G be a permutation group on Ω. Then G is non-
synchronizing if and only if there is a non-trivial G-invariant graph X on
the vertex set Ω whose core is complete.

Proof For the reverse implication, take f to be an endomorphism of X
which is not an automorphism. Then 〈G, f〉 ≤ End(X) contains no constant
function.

For the reverse, use the idea in the definition of a hull: if 〈G, f〉 contains
no constant function, define the graph X by the rule that v is adjacent to
w if and only if there is no element h ∈ 〈G, f〉 with vf = wf .

So the algorithm for testing the synchronization property of G is: list all
the nontrivial G-invariant graphs; for each of them, test whether its clique
number and chromatic number are equal. This is not a fast algorithm: there
may be exponentially many graphs to check, and for each of them, we have
a hard problem to solve. But in practice, the property can be checked for
permutation groups with degrees in the thousands.

3 The infinite

What happens to these concepts in the infinite case?
To begin, despite the work of Bauslaugh, I believe that there is no satis-

factory theory of infinite cores. Fortunately, for the other concepts, things
are a bit better.

The usual definition of synchronization makes sense but is not inter-
esting. If we adjoin a map f which is either surjective or injective, we
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will never generate a constant function, even if G is the symmetric group.
Because synchronization involves collapsing points to the same place, we
should presumably add a map which is not injective. Now in the finite case,
a transformation monoid contains a map of rank 1 if and only if any two
distinct points can be mapped to the same place by some element of the
monoid. Accordingly we make the following definition:

The permutation group G on an infinite set Ω is synchronizing if and
only if, whenever f is a non-injective transformation of Ω, it holds that for
any two points v, w of Ω, there exists h ∈ 〈G, f〉 such that vh = wh.

Unfortunately we get nothing interesting in the countable case:

Proposition 3.1. Let G be a permutation group of countable degree. Then
G is synchronizing if and only if it is 2-set transitive.

The essence of the proof is the forward implication. Suppose that G
is not 2-set transitive. Then there is a non-trivial G-invariant graph X.
By Ramsey’s Theorem, replacing X by its complement if necessary, we can
assume that X contains an infinite clique. Now it is a fairly simple exercise
to find an endomorphism of X which collapses two non-adjacent vertices.

Some variations of the concept have been tried, but no really satisfactory
definition is known. However, there is an interesting open problem here: is
the proposition true for permutation groups of uncountable degree? (Of
course the application of Ramsey’s Theorem fails.)

For hulls, we could start with the usual definition: v and w are joined in
Hull(X) if and only if there is no element f ∈ End(X) with vf = wf . Then

(a) every countable graph containing an infinite clique is a hull (arguing
as above);

(b) if X is a hull and ω(X) <∞ then ω(X) = χ(X).

4 Problems

The first of these problems was presented at the problem session. I am happy
for the others to be included as well, if the editor thinks it worthwhile.1

1The editor happily agrees.
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Problem 1 This is an attempt to define edge density for an infinite graph.
Let G be an infinite graph. Let Gn be the set of graphs on the vertex set
{1, 2, . . . , n} (that is, labelled graphs) which are embeddable in G. Let dn

be the proportion of graphs in Gn in which the vertices 1 and 2 are adjacent.

Does dn tend to a limit as n→ ∞?

If so, then this limit is the “edge density” of G.
Notes:

• The edge density (and the convergence question) only depends on the
age of G (the class of finite graphs embeddble in G).

• One can replace an edge by an arbitrary graph H on the vertex set
{1, 2, . . . , k}; simply redefine dn to be the proportion of graphs in Gn

which induce H on {1, . . . , k}.

• If these limits exist for all finite graphs, then one can define a proba-
bility measure on the class of countable graphs whose age is contained
in that of G, by the following rule: take a countable set of vertices;
decree that, for any vertices v1, . . . , vk, the probability that the map
i 7→ vi for i = 1, . . . , k is an embedding of H in the random graph is
limn→∞ dn. Unlike most probability measures for such graphs, this
one does not depend on the order in which vertices or edges are con-
sidered.

Problem 2 Consider a class of discrete minimization problems. Suppose
that the cost of a solution is equal to the amount by which the objective
function exceeds its true minimum value, and that the cost of computation
is ǫ times the number of Turing machine steps reqired. What is the solution
that minimizes the sum of these two costs? In particular, how does it depend
on ǫ?

Problem 3

(a) Is there a description of the random graph R in which the vertices and
edges are computable but we cannot proe in Peano arithmetic that
the graph is R (because the witnesses are not computable functions
of the data)?
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(b) Consider the graph with vertex set Z, in which x and y are joined
if and only if, for n = |x − y|, the n-th odd prime is congruent to 3
(mod 4). Is this the random graph?

Problem 4 The theorem of Engeler, Ryll-Nardzewski and Svenonius as-
serts that a complete theory in a countable first-order language has the
property that all its countable models are isomorphic if and only if the au-
tomorphism grou of a countable model of T is oligomorphic (that is, has
only finitely many orbits on n-tuples for all n.

Is there an analogous result for homomorphisms? That is, is there a
property of endomorphism monoids sch that this property of End(M) is
equivalent to the assertion that all contable models of the theory of M are
hom-equivalent? What about monomorphisms?

Problem 5 Take a network in which each edge has unit capacity. At each
time step, perform the following operation:

(a) choose a random maximal flow f in the network;

(b) choose a random edge e;

(c) with probability 1 − f(e), the edge e “silts up” and is removed.

Eventually we are left with only those edges lying in minimal cuts, each
carrying flow 1 in a maximal flow. What can be said about the distribution
of the time for this to happen?
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Complexity of contractions to paths on
claw-free graphs

Jǐŕı Fiala
Department of Applied Mathematics, Charles University in Prague

Joint work with Daniël Paulusma1.

As an open problem we ask, what is the computational complexity of
the problem whether a claw-free graph can be contracted to a path of length
four.

This result would be interesting due to the following facts:
It is well known that the decision whether a fixed graph H is a minor of a

given graph G is solvable in polynomial time for general graphs [Robertson,
Seymour]. Hence it makes sense to study graph manipulations derived from
vertex and edge deletions, and edge contractions.

If edge contractions are forbidden, these problems become variations of
the subgraph problem, which are trivially polynomial as long as H is fixed.

If only contractions and vertex deletions are permitted, i.e. we seek for
an induced minor, it is known that there exist a particular graph H on
about 50 vertices for which the problem is NP-complete [Fellows et al.]. On
the other hand, it is easy when H is a path (not necessarily fixed).

It is known that for H = P4 the contraction problem is NP-complete for
general G [Brower et al.], while we can show that it becomes polynomially
solvable when G is claw-free. This construction can be extended to any
H formed from a clique and vertices of degree one. Our construction also
extends to the induced minor problem.

On the other hand, if H = P7 and G is a line graph, we can prove that
the problem becomes NP-complete. Hence the twist in the computational
copmplexity appears for some short path length. We would like to resolve
the mising cases of H = P5 and H = P6 to determine it precisely when the
twist happens.

1Durham University, UK
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The flip graph of unique-sink orientations

Jan Foniok

A hypercube of dimension n is the graph Qn with vertex set Vn = {0, 1}n

and an edge connecting any two vertices that differ in exactly one entry.
Define v ⊕ C by

(v ⊕ C)i =

{
1 − vi if i ∈ C

vi if i /∈ C

for any v ∈ Vn and C ⊆ {1, . . . , n}. A subcube of Qn is then any induced
subgraph with vertex set {v ⊕ D : D ⊆ C} for some v ∈ {0, 1}n and
C ⊆ {1, . . . , n}. Any vertex v of a subcube determines the same subcube
(with the same C); the dimension of the subcube is |C|.

A unique-sink orientation (USO) is an orientation of Qn such that ev-
ery subcube has a unique vertex of out-degree zero; its sink. Unique-sink
orientations of hypercubes are used for studying algorithms for various prob-
lems such as linear programming, linear complementarity problems, and the
smallest enclosing ball of points or balls. The original problem is always re-
duced to the problem of finding the unique sink of a hypercube.

The object of our interest is the flip graph of unique-sink orientations: in
a fixed dimension n, the vertices of the flip graph are all (labelled) unique-
sink orientations of n-dimensional hypercubes; an edge connects two orien-
tations differing in the direction of exactly one edge.

We hope that understanding the structure of the flip graph might bring
new insights into the algorithmic questions. For instance, how much does
the behaviour of an algorithm differ on two USOs that can be obtained from
one another by flipping few edges (and thus there is a short path between
them in the flip graph)?

In particular, we are interested in the following questions:

• Is the flip graph connected?

• Are there isolated vertices?

• What is the diameter of the flip graph?

• How far can a USO be form a uniform orientation, in which all edges
are oriented “from 0 to 1”?
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With K. Fukuda we supervised a bachelor student U. Müller, who was
able to establish some facts.

• For dimensions n = 2, 3, the flip graph is connected.

• In dimension 2, the distance of any two vertices in the flip graph is
equal to their Hamming distance (the number of differing edges), and
thus the diameter is 4.

• In dimension 3, the above is not true. The diameter is at most 24.

Moreover, we have an interesting characterisation of “flippability”.

Lemma 1.1. Let Φ be a unique-sink orientation of the hypercube Qn, n ≥ 2,
and let e be an edge. If the orientation obtained from Φ by reversing e is
not a unique-sink orientation, then there exists a 2-dimensional subcube Ψ
containing e such that the orientation obtained from Ψ by reversing e is not
a unique-sink orientation.

The rest of the questions remain open.
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Partial Representation Extension

Pavel Klav́ık
Department of Applied Mathematics, Charles University in Prague

Joint work with Jan Kratochv́ıl and Tomáš Vyskočil.

Abstract

Recognition problems (Recog) are well studied in graph theory.
For a fixed class C, Recog(C) asks whether a given graph belongs to
C. For example, recognition of interval graphs (INT) can be done in a
linear time. We introduce a new problem called partial representation
extension (PRExt). For a given graph and a part of its representa-
tion fixed, it asks whether this representation can be extended to the
whole graph. We show that interval graphs can be extended in time
O(n2).

In this talk, we consider only intersection representations of graphs.
An intersection representation assigns sets to vertices in such a way that
two vertices are adjacent if and only if the corresponding sets intersect.
Classes of intersection graphs restrict these sets. For example, interval
graphs (INT) are graphs with representations by (closed) intervals of the
real line. A partial representation assigns sets to some vertices of a graph.
We consider the following problem:

Problem: Partial Representation Extension – PRExt(C).
Input: A graph G with a partial representation R.

Output: A representation of G extending R if exists, no otherwise.

Theorem 1.1. The problem PRExt(INT) is polynomially solvable in time
O(n2).

We sketch the proof. To solve PRExt(INT), we modify the PQ-tree
Algorithm of Booth and Lueker [1]. This algorithm is based on the following
characterization of interval graphs, due to Fulkerson and Gross [2]:

Lemma 1.2. A graph is an interval graph if and only if there exists an
ordering of the maximal cliques such that for every vertex the cliques con-
taining this vertex appear consecutively in this ordering.
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Using PQ-trees, such an ordering is found if it exists. For an ordering, we
place points representing maximal cliques on the real line. These points are
called clique-points. Using clique-points, we construct the representation,
see Figure 1.1.

a

b

c

d

e

f

g abc bcde ef eg

a

b

c
d

e
f g

Figure 1.1: An interval graph and its representation with the corresponding
ordering of maximal cliques. The clique-points are placed and each interval
is placed between clique-points containing this interval.

The key observation is that a partial representation gives a partial or-
dering of clique-points. Intervals given by a partial representation split the
real line to several parts, see Figure 1.2. For a clique-point a, we denote
I(a) the represented intervals contained in this clique. A clique-point a can
be placed only to a part of the real line containing exactly represented in-
tervals from I(a). By x(a) (resp. y(a)) we denote the leftmost (resp. the
rightmost) point of the real line where the clique-point a can be placed. We
obtain a natural ordering ◭ of the maximal cliques:

◭ =
{

(a, b) | y(a) ≤ x(b)
}
.

x(a) y(a) x(b) y(b)

x

y z
w

Figure 1.2: Clique-points a and b, having I(a) = {x} and I(b) = {z, w},
can be placed to the bold parts of the real lines. We obtain a ◭ b.

The algorithm works in the following way:

(1) We find maximal cliques and construct a PQ-tree, independently of
the partial representation.

(2) We compute x and y for all the cliques and construct ◭.
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(3) We search the PQ-tree and find an ordering of the cliques extending
◭.

(4) We place the clique-points greedily on the real line.

(5) Using the clique-points, we construct a representation.

Surprisingly, the ordering ◭ is sufficient to solve PRExt(INT):

Lemma 1.3. For an ordering of the cliques compatible with the PQ-tree
extending ◭, the greedy algorithm in Step 4 never fails.

We omit a proof of the above lemma. The algorithm can be easily
implemented in O(n2).

We conclude with two open problems. Two famous subclasses of interval
graphs are studied. Proper interval graphs (PROPER INT) are interval
graphs with a representation such that no interval is a proper subset of
another interval. Unit interval graphs (UNIT INT) can be represented by
intervals of a unit length. A well-known theorem of Roberts [3] shows that
PROPER INT = UNIT INT.

Surprisingly, the Partial Representation Extension Problem distinguish-
es PROPER INT and UNIT INT. By another modification of PQ-trees,
the problem PRExt(PROPER INT) can be solved in time O(mn). The
complexity of PRExt(UNIT INT) remains open.

The other open problem is to solve PRExt(INT) faster. We believe
that a linear time algorithm can be constructed.

References

[1] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property,
interval graphs, and planarity using PQ-tree algorithms. Journal of
Computational Systems Science, 13:335–379, 1976.

[2] D. R. Fulkerson and O. A. Gross. Incidence matrices and interval
graphs. Pac. J. Math., 15:835–855, 1965.

[3] F. S. Roberts. Indifference graphs. In F. Harary (Ed.), Proof Tech-
niques in Graph Theory, pages 139–146. Academic Press, 1969.
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Towards duality of multicommodity
multiroute cuts and flows:

Multilevel ball-growing

Petr Kolman
Department of Applied Mathematics, Charles University in Prague

Joint work with Christian Scheideler.

An elementary h-route flow, for an integer h ≥ 1, is a set of h edge-
disjoint paths between a source and a sink, each path carrying a unit of
flow, and an h-route flow is a non-negative linear combination of elementary
h-route flows. An h-route cut is a set of edges whose removal decreases the
maximum h-route flow between a given source-sink pair (or between every
source-sink pair in the multicommodity setting) to zero. The main result
of this contribution is an approximate duality theorem for multicommodity
h-route cuts and flows, for h ≤ 4: The size of a minimum h-route cut is
at least f/h and at most O(log2 k · f) where f is the size of the maximum
h-route flow and k is the number of commodities. The main step towards
the proof of this duality is the design and analysis of a polynomial-time
approximation algorithm for the minimum h-route cut problem for h ≤ 4
that has an approximation ratio of O(log2 k). Previously, polylogarithmic
approximation was known only for h-route cuts for h ≤ 2. A key ingredient
of our algorithm is a novel rounding technique that we call multilevel ball-
growing. Though the proof of the duality relies on this algorithm, it is not
a straightforward corollary of it as in the case of classical multicommodity
flows and cuts. Similar results are shown also for the sparsest multiroute
cut problem.
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Linkless and flat embeddings in the 3-space

Stephan Kreutzer
Oxford University Computing Laboratory, Wolfson Building, Parks Road,

Oxford, UK

kreutzer@comlab.ox.ac.uk

Joint work with Ken-ichi Kawarabayashi1 and Bojan Mohar 2 .

Abstract

We consider piecewise linear embeddings of graphs in the 3-space R
3. Such

an embedding is linkless if every pair of disjoint cycles forms a trivial link
(in the sense of knot theory). Robertson, Seymour and Thomas [3] showed
that a graph has a linkless embedding in R

3 if and only if it does not contain
as a minor any of seven graphs in Petersen’s family (graphs obtained from
K6 by a series of Y∆ and ∆Y operations). They also showed that a graph
is linklessly embeddable in R

3 if and only if it admits a flat embedding into
R

3, i.e. an embedding such that for every cycle C of G there exists a closed
2-disk D ⊆ R

3 with D ∩ G = ∂D = C. Clearly, every flat embedding is
linkless, but the converse is not true. We consider the following algorithmic
problem associated with embeddings in R

3:

Flat Embedding: For a given graph G, either detect one of Petersen’s
family graphs as a minor in G, or return a flat (and hence linkless) embed-
ding of G in R

3.

The first outcome is a certificate that G has no linkless and no flat em-
beddings. Our main result is to give an O(n2) algorithm for this problem.
While there is a known polynomial-time algorithm for constructing linkless
embeddings [1], this is the first polynomial time algorithm for constructing
flat embeddings in the 3-space. This settles a problem proposed by Lovász
[2].

An extended abstract of this work has appeared at the 2010 Symposium
on Computational Geometry (SOCG).

References

[1] H. van der Holst, A polynomial-time algorithm to find a linkless em-
bedding of a graph, J. Combin. Theory, Series B 99 (2009), 512–530.

1National Institute of Informatics, Tokyo, Japan. k keniti@nii.ac.jp.
2Simon Fraser University, Burnaby, B.C., Canada. mohar@sfu.ca.
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Extending fractional precolorings

Martin Kupec
Department of Applied Mathematics, Charles University in Prague

Joint work with Daniel Král’, Matjaž Krnc, Borut Lužar, and Jan Volec.

Let G be a k-colorable graph. Consider an independent set I ⊆ V (G)
with minimum distance between its vertices at least d. A question asked by
Thomassen was: “Does there exist d such that every precoloring of I with
k+1 colors can be extended to a proper (k+1)-coloring of G?” Albertson[1]
answered the question in affirmative with d = 4 which is optimal.

In [2], Albertson and West investigated extensions of circular colorings
and gave optimal bounds for most choices of the parameters. Here, we focus
on extensions of fractional colorings.

Definition 1.1. Let I be an interval of length d. A fractional d-coloring of
graph G is a map f : V (G) → M(I) such that

∀x ∈ V (G) µ(f(x)) ≥ 1

and
∀x, y ∈ E(G) f(x) ∩ f(y) = ∅

where µ is the Lebesgue measure.

Our main result asserts the following.

Theorem 1.2 (Fractional coloring extention). Let G be a graph with frac-
tional chromatic number χ, P an independent set in G and d the minimum
distance between two vertices in P . If d ≥ 4, then every fractional (χ+ ε)-
precoloring of P can be extended to a fractional (χ+ε)-coloring of G, where
ε satisfies the following inequalities:

d = 0 mod 4 : 1
χ+ε ≥ 1 − d

4ε

d = 1 mod 4 : 1
χ ≥ 1 − d−1

4 ε

d = 2 mod 4 : χ−1
χ+ε ≤ d−2

4 ε

d = 3 mod 4 : (1−ε)(1−χ)
χ ≤ d−3

4 ε
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For χ = 2 and χ ≥ 3, the value of ε is the best possible.
Let us now briefly sketch the main idea of the proof. Our proof is

based on a notion of universal graphs. For fractional colorings, the universal
graphs are “fractional cliques” which are Kneser graphs.

Definition 1.3 ((p, q)-clique graph). Let p ≥ q be positive integers and I
an interval of length p/q divided into p subintervals of length 1/q. A (p, q)-
clique is a graph G where each vertex corresponds to a union of q of the
subintervals and two vertices are adjacent if and only if all the subintervals
corresponding to them are mutually different.

The notion of (p, q)-cliques is then modified to provide universal graphs
for precolorings. Such a universal graph consists of a pool (p, q)-clique
with several chains of (p, q)-cliques leading to precolored vertices attached.
The length of the chains is proportional to d. The crucial property is that
for every fractioanlly (p, q)-colorable graph with some vertices precolored
can be homomorphically mapped to this graph (providing the number of
chains is sufficient) in such a way that the precolored vertices are mapped
to precolored vertices of the universal graph. The structure of the universal
graphs is then exploited to provide both lower and upper bounds on ε.
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1 Introduction

A structure is homogeneous if every isomorphism between finite substruc-
tures of the structure extends to an automorphism of the structure. The
theory of (countable) homogeneous structures gained its momentum in 1953
with the famous theorem of Fräıssé [9] which states that countable homo-
geneous structures can be recognized by the fact that their collections of
finitely induced substructures have the amalgamation property. Nowdays
it is a well-established theory with deep consequences in many areas of
mathematics.

Homogeneous objects have been determined for many important classes
of structures. For example, countably infinite homogeneous posets were
characterized in [20]; countably infinite homogeneous graphs were described
in [14], while the finite ones were determined in [10]; countably infinite ho-
mogeneous digraphs were described in [4] while finite and countably infinite
homogeneous tournaments were described in [13]. As in this paper we are
particularly interested in finite geometries, let us finally mention that homo-
geneous linear spaces were characterized in [6], and homogeneous semilinear
spaces in [5].

In their recent paper [3] the authors discuss a variant of homogeneity
with respect to various types of morphisms of structures, and in particular
introduce the notion of homomorphism-homogeneous structures:

Definition 1.1 (Cameron, Nešetřil [3]). A structure is called homomor-
phism-homogeneous if every homomorphism between finite substructures of
the structure extends to an endomorphism of the structure.

Not much is known about homomorphism-homogeneous structures. Ho-
momorphism-homogeneous posets were characterized in [15] and the char-
acterization of countable posets with respect to various types of morphisms
can be found in [2]. Finite homomorphism-homogeneous tournaments (with
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loops) were characterized in [11], a some classes of finite point-line geome-
tries in [16]. Moreover, a model-theoretic approach can be found in [3] as
well as in [18].

2 Graphs

Finite homomorphism-homogeneous graphs without loops were character-
ized in [3]:

Theorem 2.1. A finite graph G with no loops is homomorphism-homo-
geneous if and only if G ∼= k ·Kn for some k, n ≥ 1.

This result was slightly improved in [17]:

Theorem 2.2. Let D = (V, ρ) be a finite irreflexive binary relational sys-
tem. Then D is homomorphism-homogeneous if and only if

• D ∼= k ·Kn for some k, n ≥ 1, or

• D ∼= k · C3 for some k ≥ 1,

where C3 denotes the oriented 3-cycle.

The situation concerning graphs with loops is much more involved.

Theorem 2.3 ([19]). Deciding whether a finite graph with loops is homo-
morphism-homogeneous is a coNP-complete problem.

Using the same strategy as in [19] the following two related results were
shown in [12]:

Theorem 2.4. (a) Deciding whether a finite metric space is homomorphism-
homogeneous is a coNP-complete problem.

(b) Deciding homomorphism-homogeneity of a finite point-line geometry
in which no two thick lines (= lines with ≥ 3 points) intersect is a coNP-
complete problem.

(Interestingly, both the countable Urysohn’s space U and its completion U∗

are homomorphism-homogeneous [7].)
From [19] it follows that if a graph G with loops is not homomorphism-

homogeneous, then there exists an obstacle in the following sense. We say
that a subgraph H of G has a cone in G if there exists a vertex v in G which

26



is adjacent to every vertex of H. We say that H is an obstacle in G if there
exists an embedding e : H → G and an injective homomorphism j : H → G
such that e(H) has a cone in G and j(H) does not.

Let K be a class of finite graphs, let O be the class of all the obstacles
that appear in K and assume that both K and O are maximal with respect
to each other in the following sense:

• if G is in K, then all the obstacles of G, if any, belong to O;

• if G is a graph such that all the obstacles of G, if any, belong to O,
then G ∈ K.

Then it is easy to see the following:

Fact 2.5. If there are only finitely many isomorphism types in O then
deciding whether a graph from K is homomorphism-homogeneous is in P.

Problem 2.6. If there are infinitely many isomorphism types in O then
deciding whether a graph from K is homomorphism-homogeneous is coNP-
complete.

3 Algebras

A notion related to homomorphism-homogeneity has been closely investi-
gated for algebras. An algebra A is quasi-injective if every homomorphism
f : S → A from a subalgebra S of A into A extends to an endomor-
phism of A. It is easy to see that if A is a finite algebra, then A is quasi-
injective iff A is homomorphism-homogeneous. Finite quasi-injective (=
homomorphism-homogeneous) groups have been characterized in 1979 by
Bertholf and Walls [1].

Homomorphism-homogeneous lattices have been described in [8]:

Theorem 3.1. A lattice L is homomorphism-homogeneous if and only if it
is either a chain, or every interval of L is a boolean lattice.

Corollary 3.2 ([8]). A finite lattice L is hom-hom if and only if it is either
a chain, or a direct power of 0 < 1.

In contast to that, it has been shown in [15] that every lattice (L,≤)
understood as a relational structure is homomorphism-homogeneous.

The characterization of homomorphism-homogeneous semilattices is still
an open problem.
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Lemma 3.3 ([8]). Let S be a hom-hom semilattice. Then S is either a tree,
or it is locally bounded.

Consequently, if S is a finite hom-hom semilattice, then it is either a
tree, or the ∧-semilattice reduct of a lattice.

Proposition 3.4 ([8]). Every tree is a hom-hom semilattice.

Theorem 3.5 ([8]). Let (L,∧,∨) be a distributive lattice. Then (L,∧) is a
hom-hom semilattice.

However, there are nondistributive lattices whose reducts are neverthe-
less homomorphism-homogeneous.

Lemma 3.6 ([8]). (N5,∧) and (M3,∧) are homomorphism-homogeneous.

Problem 3.7. Characterize homomorphism-homogeneous semilattices.
Alternatively, using the strategies from [19], show that deciding homo-

morphism-homogeneity of finite semilattices is coNP-complete.

Note that it was shown in [7] that the universal homogeneous countable
semilattice is homomorphism-homogeneous.
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First we formulate an extremal graph-theoretic problem. Let G = (V,E) be
a graph on n vertices. An odd triple of G is a triple {u, v, w} of vertices such
that the subgraph of G induced by {u, v, w} has an odd number of edges
(that is, it is a triangle or a single edge plus an isolated vertex). We say that
G is minimal if, for every partition of the vertex set V into subsets A and
V \A, the number of edges of G going between A and its complement is at
most 1

2 |A| · |V \A| (i.e., at most half of all possible edges). For the readers
familiar with the notion of Seidel switching, we remark that the minimality
condition says that G should have the minimum number of edges among
the graphs of its Seidel switching class.

Problem: What is the smallest possible number of odd triples
for a minimal graph G with n vertices and at least α

(
n
2

)
edges?

Here α > 0 is a parameter, and the answer should depend on α. For a
reason not explained here, the range of interest for α is (0, 2

9 ).
The best upper bound we know is obtained for the following graph. We

divide the vertex set into three subsets V1, V2, V3, where |V1| ≤ |V2| = |V3|,
and G is the complete bipartite graph with color classes V1 and V2. The
sizes of V1, V2 is set so that the number of edges is α

(
n
2

)
±O(n). It is easily

checked that this graph is minimal (the “critical” partition is with A = V1,
where the density is exactly 1

2 ).
Optimistically, we conjecture the following.

1. The upper bound above is the truth, and the described example is the
only extremal graph (at least for those α where the number of edges
is exactly α

(
n
2

)
).

1Research done during a visit at the ETH Zurich, whose support is gratefully acknowl-
edged.
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2. The triangles can be ignored: that is, if we want to minimize only the
number of triples with a single edge, instead of the number of all odd
triples.

The best lower bound we can currently prove is that a minimal graph
with α

(
n
2

)
edges has at least max

{
α
(
n
3

)
, ψ(α)

(
n
3

)}
odd triples, where ψ(α) =

3
4α

(
1 +

√
1 − 4α

)
.

Motivation. The problem above is motivated by the following basic
geometric problem. Let X be a set of n points in Rd in general position,
and let us consider the

(
n

d+1

)
d-dimensional simplices spanned by the points

of X. By results of Boros and Füredi (for d = 2) and of Bárány (for d ≥ 3),
there always exists a “heavily covered” point c (typically not belonging to
X) that lies in at least cd

(
n

d+1

)
of these simplices, where cd > 0 depends

only on d. The best possible value of cd is known only for d = 2, where
c2 = 2

9 .
Gromov developed, in a recent major work [Singularities, expanders and

topology of maps. Part 2: From combinatorics to topology via algebraic
isoperimetry, Geom. Funct. Anal., 20(2):416-526, 2010] a new, topological
proof of the result above, which yields the current best lower bounds for
cd. The extremal problem formulated above is relevant for a further slight
improvement of the lower bounds for the cd, and generally for a better
understanding of the possibilities of Gromov’s method.
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Counting substructures

Dhruv Mubayi

Turán’s theorem determines the maximum number of edges in a graph with
n vertices and no clique of a fixed size, and extremal graph theory has grown
through extensions and generalizations of this result. One such direction is
to count the number of copies of a specified clique in a graph with more
edges than in the Turán bound. We take this approach further by extending
classical results of Rademacher, Erdös, Simonovits, and Lovász-Simonovits
to the class of color critical graphs. The techniques are new and quite
general, and they yield similar results for hypergraphs. Here is a sample
theorem:

Füredi-Simonovits and independently Keevash-Sudakov settled an old
conjecture of Sós by proving that the maximum number of triples in an n
vertex triple system (for n sufficiently large) that contains no copy of the

Fano plane is p(n) =
(
⌈n/2⌉

2

)
⌊n/2⌋ +

(
⌊n/2⌋

2

)
⌈n/2⌉.

We prove that there is an absolute constant c such that if n is sufficiently
large and 1 ≤ q ≤ cn2, then every n vertex triple system with p(n)+q edges
contains at least

6q

((⌊n/2⌋
4

)
+ (⌈n/2⌉ − 3)

(⌊n/2⌋
3

))

copies of the Fano plane. This is sharp for q ≤ n/2 − 2.
One modern ingredient of our approach is the use of the removal lemma,

which is a consequence of the hypergraph regularity lemma. In many cases,
our results so far use ad hoc methods for each hypergraph F , and one open
problem is to prove general results that apply to large classes of hypergraphs.
Another open problem is to count induced copies of graphs or hypergraphs,
which is a more challenging problem. A specific case is to consider the
enumerative questions for the configurations studied recently by Razborov
and Pikhurko, which are closely related to the famous Turán conjecture for
hypergraphs.
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Problem What is the smallest subgraph of the projective (folded) cube
of dimension 2r to which every planar graph of odd-girth 2k + 1 admits a
homomorphism?

Projective cube of dimension r, denoted PC(r), is obtained from r +
1-dimensional hypercube by identifying antipodal vertices or equivalently
from r-dimensional hypercube by adding an edge between every pair of
antipodal vertices. It can also be viewed as a Cayley graph on Z

r
2, or on

Z
r+1
2 . These graphs are known by many names, the term folded cube is

used most frequent.
The problem posed above captures several interesting theorems and chal-

lenging conjectures. Even formation of a sensible conjecture may give insight
to these conjectures.

The 2r-dimensional projective cube has odd-girth 2r + 1. Thus there is
no such subgraph for r > k. For r = k it is a conjecture of the author that
PC(2r) itself is the answer. The existence of homomorphism in this case
relates to the edge colouring of planar graphs and is related to a conjecture
of P. Seymour, see [2]. That no proper subgraph of PC(2r) works in this
case follows from [3]. In fact we have conjectured that PC(2r) is the smallest
graph of odd-girth 2r + 1 to which every planar graph of odd-girth 2r + 1
admits a homomorphism. Using the four colour theorem, this is easily true
for r = 1 and is prved for r = 2 [4].

For r = k − 1 we have conjectured in [3] that the Kneser graph K(2k −
1, k − 1) (also known as odd graph) is the answer. This is related to the
fractional chromatic number of planar graphs and some partial results are
proved in [3].

The smallest subgraph of the projective cube PC(2r) which is not bipar-
tite is C2r+1. It is a classical result that when k is much larger than r then
C2r+1 is the answer to our question. It is an strengthening of a conjecture
of Jeager by Zhang in [5], that this holds for k = 2r. X. Zhu proved in [6]
that for k ≥ 4r − 2, C2r+1 is the answer.
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When r = 1 and k ≥ 2 the Grotzsch’s theorem states that C3, the
triangle, is the answer. For r = 2 and k ≥ 5, M. DeVos and A. Deckelbaum
claim C5 is the answer.

Finally for r = 3 and k = 5 we conjecture that the Coxeter graph is the
answer.
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The complex of atoms of a prime network. By a network we mean
a factorization X → Y → Z of a finite (not necessarily connected) covering
X → Z of Z ≈ S

1 such that the non trivial classes of the equivalence
relation R on X induced by X → Y are finitely many and of size 2. By
construction Y ≈ X/R is the underlying space of a finite 1-dimensional cell
complex and the images Yi under X → Y of the connected components Xi

of X are edge-disjoint supports of cycles of edges in Y that cover Y , i.e.,⋃
Yi = Y. The Yi are called the cycles of the network. By a decomposition

of a network X → Y → Z we mean the set of cycles of a network of type
X ′ → Y → Z. In particular the set of cycles of a network is a decomposition
of that network, that we shall called its canonical decomposition. The
status of a vertex of a network in a decomposition of that network is termed
crossing or touching depending on whether the decomposition coincides or
not with the canonical decomposition of the network in the vicinity of that
vertex. Clearly a decomposition depends only on the status of the vertices
of the network; conversely any assignment to the vertices of a network of a
crossing or touching status defines a unique decomposition of that network.
A network X → Y → Z is termed prime if (1) it has at least one prime
decomposition, i.e., a decomposition whose cycles are homeomorphic to Z
via Y → Z and whose intersecting cycles cross exactly once; (2) for any
prime decomposition A and any touching vertex u of A the decomposition
A′ obtained from A by interchanging the touching status of u with the
crossing status of the crossing vertex v of the two cycles of A touching at u
is prime (we will say that A′ is obtained by flipping the touching vertex u in
A). By definition the atoms of a prime network are the sets of contact points
of its prime decompositions, and the complex of atoms of a prime network
is the set of subsets of its atoms ordered by inclusion and augmented with
a maximum element. By construction the complex of atoms of a prime
network is a pure simplicial complex and satisfies the “diamond property”.
In the next paragraph we show that it is strongly flag-connected [McM94].

Theorem 1.1. The complex of atoms of a prime network is an abstract
simplicial m-polytope where m is the number of touching vertices of its
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atoms.

Example 1.2. Let P be a finite set of points in general position of a real
two-dimensional affine geometry, let P ∗ be the set of lines incident to P ,
let C∗ be the set of supporting lines of the convex hull C of P , let Y be the
topological closure of P ∗ \ C∗, let Γ be the decomposition into cycles of Y
induced by the P ∗

i , Pi ∈ P , let Xi → Γi, Xi = S
1, be a parametrization of Γi

which is one-to-one except at its self-intersection points, let X → Y be the
disjoint union of the Xi → Γi, and let Y → Z(≈ S

1) be the map that assigns
to a line its direction. Then X → Y → Z is a prime network and its complex
of atoms is isomorphic to the complex of pointed pseudotriangulations of
P [PP10]. The complex of pointed pseudotriangulations is known to be
polytopal in the case where the underlying affine geometry is the standard
affine geometry [RSS03].

Example 1.3. Let P be a finite set of points in convex position of a real
two-dimensional affine geometry, let P ∗ be the set of lines incident to (at
least one point of) P , let C∗

k be the set of lines of P ∗ with the property
that one of their open sides contains at most k points of P , let Y be the
topological closure of P ∗ \ C∗

k , let Γ be the decomposition into cycles of Y
induced by the P ∗

i , Pi ∈ P , let Xi → Γi, Xi = S
1, be a parametrization

of Γi which is one-to-one except at its self-intersection points, let X → Y
be the disjoint union of the Xi → Γi, and let Y → Z(≈ S

1) be the map
that assigns to a line its direction. Then X → Y → Z is a prime network
and its complex of atoms is isomorphic to the complex of k-triangulations
of P [PP10]). The complex of k-triangulations is a vertex-decomposable
triangulated sphere [SS10, Stu10], and the complex of 2-triangulations of
the octogon is polytopal [BP09].

Example 1.4. Let M be a noncompact Möbius strip, i.e., a topological
space homeomorphic to the real two-dimensional projective plane with one
point deleted. An arrangement of pseudoline with contact points in M is
a finite family of pseudolines in M such any two pseudolines have finitely
many intersection points of which exactly one is transversal. Let Y =

⋃A
be the support of a simple arrangement of pseudolines with contact points
A, let Γ be the decomposition into cycles of Y defined by the condition
that the intersection points of the cycles are transversal in M, let Xi → Γi,
Xi = S

1, be a parametrization of Γi which is one-to-one except at the self-
intersection points of Γi, let X → Y be the disjoint union of the Xi → Γi,
and let M → Z be a retraction of M onto one of its core circle Z compatible
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with the arrangement A in the sense that the restriction of M → Z to any
pseudoline of A is one-to-one. Then X → Y → Z is a prime network [PP10].
The complex of atoms of (the prime network defined by) the support of an
arrangement of two pseudolines with m contact points is the lattice of the m-
simplex. The complex of atoms of the support of an arrangement of three
pseudolines with contact points is the opposite of the lattice of a simple
polytope with three more facets than its dimension; futhermore any simple
polytope with three more facets than its dimension can be realized like this
(F. Santos 09, personnal communication).

Example 1.5. Let B be a finite branched covering space of an affine real
two-dimensional geometry A. Let D be a finite family of pairwise disjoint
convex bodies of B in general position with the property that any branch
point belongs to the interior of a body of the family and any body contains at
most one branched point, and let F be the complement in B of the interiors of
the bodies. The space F is endowed with the point-line incidence structure
inherited from the point-line incidence structure of A, i.e., the lines of F

are the traces on F of the subsets of B homeomorphic to the lines of A

via the covering map B → A. Let D∗
i be the set of lines of F that are

tangent to the convex body Di, let C∗ be the set of lines of F that are
tangent to the convex hull C of the D∗

i , let Y be the topological closure of⋃D∗ minus C∗, let Γ be the decomposition into cycles of Y induced by the
D∗

i , let Xi → Γi, Xi = S
1, be a parametrization of Γi which is one-to-one

except at its self-intersection points, let X → Y be the disjoint union of
the Xi → Γi, and let Y → Z(≈ S

1) be the map that assigns to a line its
direction. Then X → Y → Z is a prime network (that we shall called a
visibility network) and its complex of atoms is isomorphic to the complex of
pseudotriangulations of D.

Problem 1.6. Investigate the polytopality (shellability, etc) of the com-
plexes of atoms of prime networks.

Greedy atoms and the greedy flip property. Let N be a prime net-
work defined by the factorization X → X/R → Z, let X → X/S → X/R
be a factorization of X → X/R with the property that S contains the
free vertices of N (a vertex of a prime network is termed free if it is con-
tact point of an atom of the network), and let NS be the induced network
X → X/S → Z. It should be clear that NS is also prime and that the flip
graph P(NS) on the atoms of NS and the flip graph P(N ) on the atoms of
N are isomorphic via ρ : X/S → X/R.
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We set M = X/S. Let π : Z̃ ≈ R → Z be a universal covering of Z,

let τ : Z̃ → Z̃ be a generator of its automorphism group (which is infinite

cyclic) and let M̃ be the induced covering of M defined as the set of pair

(x, y) ∈ M× Z̃ such that p ◦ ρ(x) = π(y), and let ι : M̃ → M̃ defined by

ι(x, y) = (x, τ(y)). By construction M̃, oriented according to ι, is acyclic
and we denote by 4 the induced partial order on its set of vertices and
edges. Given a filter I of the poset (M̃0,4) bounded from below (i.e., with
no infinite descending chain) we introduce

1. the maximal antichain Î of the poset (M̃1,4) associated with I, i.e.,

the set of 1-cells of M̃ whose sinks belong to I but not their sources;

2. the section sI : M0 → M̃0 of the canonical projection M̃0 → M0

with range the set of vertices of I not in ι(I), i.e., sI(u), u ∈ M0, is
the unique element of I not in ι(I) whose image under the canonical

projection M̃0 → M0 is u;

3. the directed version P(I) of P(NS) obtained by orienting its edges
according to the following rule: the edge {A,A′} is oriented from A
to A′ if sI(u) 4 sI(v) where u is the contact point of A not in A′ and
v is the contact point of A′ not in A;

4. the family of curves λ(e; I), e ∈ M̃1, sink(e) ∈ I, sour(e) /∈ ι(I),
defined inductively as follows: If e belongs to the antichain associated
with ι(I) we set λ(e; I) = e; otherwise we introduce the two 1-cells f
and f ′ with initial vertex the terminal vertex v of e with the convention
that f and e are supported by the same cycle of NS , and we set
λ(e; I) = evλ(f ′; I) or λ(e; I) = evλ(f ; I) depending on whether the
curves λ(f ; I) and λ(f ′; I) share a vertex or not;

5. the image G(I) under the canonical projection M̃ → M of the family
λ(e; I), e ∈ Î.

The following theorem generalizes to the setting of prime networks the
greedy flip property for greedy pseudotriangulations of [PV96, AP03, HP07].

Theorem 1.7. Let N be a prime network, let S as above, let I be a filter
of M̃0, and let u be a minimal element of I. Then (1) P(I) is acyclic;
(2) G(I) is an atom of NS and is the unique source of P(I); (3) P(NS)
is connected; (4) u is a contact point of G(I) if and only if u is free; in
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particular if S contains only free vertices then u is a contact point of G(I);
(5) if u is free then G(I \{u}) is obtained from G(I) by flipping u; otherwise
G(I \ {u}) and G(I) coincide.

In particular we derive from the greedy flip property that the operator
Φ defined on the set of free vertices of M̃ as the one that assigns to u the
sole element of G(I \u)\G(I), u minimal in I, is well-defined (independant
of the choice of I), one-to-one and onto.

Problem 1.8. Study the properties of the Φ-operator at the light of the
properties of the Φ-operator for visibility networks reported in [AP03].
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The following firefighter problem on a finite graph G = (V,E) was intro-
duced by Hartnell at the conference in 1995 [3]. Suppose that a fire breaks
out at a given vertex v ∈ V . In each subsequent time unit, a firefighter
protects one vertex which is not yet on fire, and then fire spreads to all un-
protected neighbours of the vertices on fire. (Once a vertex is on fire or gets
protected it stays in such state forever.) Since the graph is finite, at some
point each vertex is either on fire or is protected by the firefighter, and the
process is finished. (Alternatively, one can stop the process when no neigh-
bour of the vertices on fire is unprotected. The fire will no longer spread.)
The objective of the firefighter is to save as many vertices as possible. To-
day, 15 years later, our knowledge about this problem is much greater and
a number of papers have been published. We would like to refer the reader
to the survey of Finbow and MacGillivray for more information [6].

We would like to focus on the following property. Let sn(G, v) denote
the number of vertices in G the firefighter can save when a fire breaks out at
vertex v ∈ V , assuming the best strategy is used. The surviving rate ρ(G)
of G, introduced in [5], is defined as the expected percentage of vertices
that can be saved when a fire breaks out at a random vertex of G (uniform
distribution is used), that is, ρ(G) = 1

n2

∑
v∈V sn(G, v). It is not difficult

to see that for cliques ρ(Kn) = 1
n , since no matter where a fire breaks out

only one vertex can be saved. For paths we get that

ρ(Pn) =
1

n2

∑

v∈V

sn(G, v) =
1

n2
(2(n− 1) + (n− 2)(n− 2)) = 1 − 2

n
+

2

n2

(one can save all but one vertex when a fire breaks out at one of the leaves;
otherwise two vertices are burned). It is not surprising that a path can
be easily protected, and in fact, all trees have this property. Cai, Cheng,
Verbin, and Zhou [1] proved that the greedy strategy of Hartnell and Li [4]
for trees saves at least 1−Θ(log n/n) percentage of vertices on average for an
n-vertex tree. Moreover, they managed to prove that for every outerplanar
graph G, ρ(G) ≥ 1−Θ(log n/n). Both results are asymptotically tight and

41



improved earlier results of Cai and Wang [2]. Let us note that there is
no hope for similar result for planar graphs, since, for example, ρ(K2,n) =
2/(n+ 2) = o(1).

Let us stay focused on sparse graphs. It is clear that sparse graphs are
easier to control so their survival rates should be relatively large. Finbow,
Wang, and Wang [7] showed that any graph G with average degree strictly
smaller than 8/3 has the surviving rate bounded away from zero. Formally,
it has been shown that any graph G with n ≥ 2 vertices and m ≤ ( 4

3 − ε)n
edges satisfies ρ(G) ≥ 6ε

5 > 0, where 0 < ε < 5
24 is a fixed number. This

result was recently improved by the author of this extended abstract to
show that any graph G with average degree strictly smaller than 30/11 has
the surviving rate bounded away from zero [8].

Theorem 1.1 ([8]). Suppose that graph G has n ≥ 2 vertices and m ≤
( 15
11 − ε)n edges, for some 0 < ε < 1

2 . Then, ρ(G) ≥ ε
60 .

(Let us note that the goal was to show that the surviving rate is bounded
away from zero, not to show the best lower bound for ρ(G). The constant
1
60 can be easily improved with more careful calculations.)

On the other hand there are some dense graphs with large survival rates
(take, for example, a large collection of cliques). However, in [8] a construc-
tion of a sparse random graph on n vertices with the survival rate tending
to zero as n goes to infinity is proposed. Hence the result is tight and the
constant 15

11 cannot be improved.

It would be nice to find the threshold for other families of graphs, in-
cluding planar graphs.

Question 1.2. Determine the largest real number M such that every planar
graph G with n ≥ 2 vertices and m ≤ (M − ε)n edges has ρ(G) ≥ c · ε for
some c > 0.

It follows from Theorem 1.1 and the fact that ρ(K2,n) = o(1) that 15
11 ≤

M ≤ 2.

The second question was asked in [7].

Question 1.3. Determine the least integer g∗ such that there is a constant
0 < c < 1 such that every planar graph G with girth at least g∗ has ρ(G) ≥ c.
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Note that a connected planar graph with n vertices and girth g can have
at most g

g−2 (n − 2) edges (see, for example, [7]). Thus, from Theorem 1.1

it follows that g∗ ≤ 8. Using the fact that ρ(K2,n) = o(1) one more time,
we conclude that 5 ≤ g∗ ≤ 8.
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Abstract

We show in this paper that in every 3-coloring of the edges of K
n

all but o(n) of its vertices can be partitioned into three monochro-
matic cycles. From this, using our earlier results, actually it follows
that we can partition all the vertices into at most 10 monochromatic
cycles, improving the best known bounds. If the colors of the three
monochromatic cycles must be different then one can cover ( 3

4
−o(1))n

vertices and this is close to best possible. These are joint results of
András Gyárfás, Gábor Sárközy, Endre Szemerédi and myself.

1 Introduction

It was conjectured in [3] that in every r-coloring of a complete graph, the
vertex set can be covered by r vertex disjoint monochromatic cycles (where
vertices, edges and the empty set are accepted as cycles).

Conjecture 1.1. (Erdős, Gyárfás, Pyber, [3]) In every r-coloring of the
edges of Kn its vertex set can be partitioned into r monochromatic cycles.

For general r, the O(r2 log r) bound of Erdős, Gyárfás, and Pyber [3] has
been improved to O(r log r) by Gyárfás, Ruszinkó, Sárközy and Szemerédi
[4]. The case r = 2 was conjectured earlier by Lehel and was settled for
large n using the Regularity Lemma by  Luczak, Rödl and Szemerédi [6].
Recently Allen [1] gave a proof without the Regularity Lemma, Bessy and
S. Thomassé [2] found an elementary argument that works for every n.

The main result of this paper confirms Conjecture 1.1 in case r = 3 in
asymptotic sense.

Theorem 1.2. In every 3-coloring of the edges of Kn all but o(n) of its
vertices can be partitioned into three monochromatic cycles.
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Combining Theorem 1.2 with some of our earlier results from [4] we
can actually prove that we can partition all the vertices into at most 10
monochromatic cycles, improving the best known bounds for r = 3.

Theorem 1.3. In every 3-coloring of the edges of Kn the vertices can be
partitioned into at most 10 monochromatic cycles.

Note that in the same way for a general r if one could prove the corre-
sponding asymptotic result as in Theorem 1.2 (even with a weaker linear
bound on the number of cycles needed; unfortunately we are not there yet),
then we would have a linear bound overall. This makes the asymptotic
result interesting.

In the proof of Theorem 1.2 our main tools are the Regularity Lemma [7]
and the following lemma. A connected matching in a graph G is a matching
M such that all edges of M are in the same component of G.

Lemma 1.4. If n is even then in every 3-coloring of the edges of Kn the
vertex set can be partitioned into three monochromatic connected matchings.

Theorem 1.2 fails if we insist that the monochromatic cycles must have
different colors. The following result is tight.

Theorem 1.5. In every 3-coloring of the edges of Kn, at least ( 3
4 − o(1))n

vertices can be covered by vertex disjoint monochromatic cycles having dis-
tinct colors.

Theorem 1.5 relies on the following variant of Lemma 1.4.

Lemma 1.6. In every 3-coloring of the edges of Kn vertex disjoint mono-
chromatic connected matchings of distinct colors cover at least 3n

4 − 1 ver-
tices.

One can find the proofs of the stated results in [5]. Basically, we prove
Lemmata 1.4 and 1.6 and then we use standard methods based on the
Regularity Lemma. However working in the reduced graph we usually face
the difficulty of extending Ramsey-type results from the case when the host
graph is Kn to the case when the host graph is an arbitrary almost complete
one. Therefore, it would be technically very useful to prove something in
this direction. I don’t know exactly what would be the right statement,
therefore I pose a problem in the following vague form.

Problem 1.7. Assume that a graph G has a ‘good reason’ to have a lin-
ear Ramsey number, i.e., in every r-coloring of the edges of Kn there is
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a monochromatic copy of G of order f(r)n where f is a function depend-
ing only on r. Is it true then that in every r-edge-coloring of a graph on
n vertices having almost all edges there is a monochromatic copy of G of
asymptotically similar order?
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Abstract

We are interested in the relation between the average/minimum
degree and the appearance of substructures in infinite graphs.

In finite graphs, the impact of the average degree on the appearance of
certain substructures is well studied. The specific substructure that will
play the lead role here is the complete graph Kk, for k ∈ N, which may
appear as a subgraph, as a minor, or as a topological minor. So a good
example of a result in the direction we aim at is Turán’s classical theorem,
which states that an average degree of more than k−2

k−1n, where n is the
number of vertices of the host graph G, ensures the existence of a finite
subgraph of G that is isomorphic to Kk.

While the function from Turán’s theorem depends on n, for forcing
‘weaker’ substructures the degree bound may depend only on k: An av-
erage degree of at least c1k

2 ensures a topological minor isomorphic to Kk,
and an average degree of at least c2k

√
log k ensures a minor isomorphic to

Kk. (The ci are some constants from R+.)
Further, related substructures such as the complete k-partite graph Kk

s

with partition classes of size s, or k-connected subgraphs, can be forced with
stronger/weaker assumptions. In the following table, where we assume G to
be a graph on n vertices, the reader finds an overview of some well-known
results we would like to extend to infinite graphs. For the sake of brevity,
in the first of these results, the quantifiers are missing: for every ε, k and s
there is an n0 so that for all n ≥ n0 the implication below is valid.

Erdős-Stone Turán Bollobás
& Thoma-
son

Kostochka Mader

d(G) > (k−2
k−1 + ε)n > k−2

k−1n ≥ c1k
2 ≥ c2k

√
log k ≥ 4k

H ⊆ G,
⇒ Kk

s ⊆ G Kk ⊆ G Kk �top G Kk � G H is
(k + 1)-
connected.

1Supported by Fondecyt grant no. 11090141.
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So how do these results extend to infinite graphs? To answer this ques-
tion, we must ask first of all how the average degree translates to an infinite
graph, as we now deal with an infinite number of vertices. Of course, the
average degree is closely related to the density |E(G)|/

(
|V (G)|

2

)
, and this

notion is reflected in the upper density of an infinite graph.
The upper density ud(G) of a graph G is defined as the supremum of the

subgraph densities, taken over all sequences of finite subgraphs of G whose
order tends to infinity. That is,

ud(G) := sup
(Hi)i∈N

lim sup
i→∞

(
|E(Hi)|/

(
V (Hi)

2

))
,

where the sequences (Hi)i∈N range over all sequences of finite subgraphs
Hi ⊆ G with limi→∞ |V (Hi)| = ∞ (see for instance Bollobás [1]).

Now, it is not difficult to calculate that if (for k > 1) the upper density
of a graph G is greater than k−2

k−1 , say ud(G) ≥ (1 + δ)k−2
k−1 , then G has a

finite subgraph H of average degree at least (1 + δ
2 )k−2

k−1 |V (H)|, and thus,

by Turán’s theorem, contains a Kk-subgraph. Actually, as the order of the
subgraph H may be assumed to exceed any given integer, we may apply
to H the Erdős-Stone theorem for any s, and obtain a Kk

s -subgraph. So
in this sense, both the Turán and the Erdős-Stone theorem do extend to
infinite graphs.

From the existence of arbitrarily large complete k-partite subgraphs once
the threshold upper density k−2

k−1 is surpassed, it follows that the upper
density of any infinite graph takes one of the following (countably many)
values: 1, 0, 1

2 ,
2
3 ,

3
4 , . . ., that is, one of the Turán densities. So it seems

that the graphs for which it would be interesting to extend the latter three
results discussed above, all have upper density 0. In other words, the upper
density is not fine enough a measure for a generalisation of e.g. Kostochka’s
theorem to infinite graphs.

One possible way out of this dilemma is replacing the average degree
with something that quite obviously does exist in infinite graphs, the min-
imum degree. For rayless graphs, this is an excellent option, as we have
the following result, which is not difficult to prove. Write δV (G) for the
minimum degree taken over all vertices of the graph G.

Proposition 1.1.[4] Let k ∈ N and let G be a rayless graph with δV (G) ≥ k.
Then G has a finite subgraph of average degree at least k.

This means that the latter three results from the table above extend
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literally to rayless graphs, if we replace the average degree with the minimum
degree.

In general, however, we are not that lucky. Just consider an infinite
tree, whose vertices may attain any minimal degree condition, while the tree
does not contain any interesting substructure. The example suggests that
we need some additional condition that prevents ‘the density from escaping
to infinity’, in other words, that makes the vertices send their edges ‘back’
instead of ‘further out’. Following recent developments (see [3]), the most
natural way to impose such an additional condition is to impose it on the
ends2 of the graph.

In [2, 5], see also [3], the vertex-degree3 dv(ω) of an end ω is defined as
the supremum of the cardinalities of the sets of vertex-disjoint rays from
ω. This intuitive notion allows us to extend Mader’s theorem from above
to infinite graphs. For this, let us write δV,Ωv (G) for the minimum of the
degrees or vertex-degrees, taken over all vertices and ends of the graph G.

Theorem 1.2. [5] Let G be a graph. If δV,Ωv (G) ≥ 2k(k + 3) then G has a
(k + 1)-connected subgraph.

We remark that the (k + 1)-connected subgraph can neither be guaran-
teed to be finite nor to be infinite. The bound 2k(k + 3) may possibly be
lowered, but not to less than k

5 log k
5 . See [5].

The vertex-degree, however, does not serve for forcing large complete
(topological) minors. One can see this by considering the following example.
Take, for r ∈ N, r > 2, the infinite r-regular tree, and add a spanning cycle
in each level. The resulting graph Gr has one end of infinite vertex-degree,
while all vertices have degree at least r. Now, although r may be arbitrarily
large, Gr is planar, and thus has no complete minor of order greater than
4.

So, a different road has to be taken for forcing minors and topological
minors in graphs with rays. In [4], the relative degree of an end was intro-
duced for locally finite graphs. The idea is to calculate the ratios of the

2The ends of a graph are the equivalence classes of the rays (the one-way infinite
paths) of the graph under the following equivalence relation. Two rays are equivalent if
no finite set of vertices separates them. For more on the end space of an infinite graph,
see [3].

3There, also the edge-degree of ω is defined quite analogously, as the supremum of
the cardinalities of the sets of edge-disjoint rays from ω. The edge-degree allows for
an extension of the edge-version of Mader’s theorem. In this edge-version, only linear
bounds on the minimum (edge)-degree are needed. For details, see [5].
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cardinality of the edge-boundary4 ∂eHi versus the cardinality of the vertex-
boundary5 ∂vHi of certain subgraphs Hi of G, and then define the relative
degree to be the limit of these ratios as the Hi in some sense converge to ω.
This intuitive idea can be formalised as follows.

We call a subgraph H of a graph G an ω-region if ∂vH is finite and H
contains a ray of the end ω ∈ Ω(G). We write ΩG(H) for the sets of all
ends of G that have a ray in H.

Now, for a locally finite graph G, write (Hi)i∈N → ω if (Hi)i∈N is an
infinite sequence of distinct ω-regions of G such that Hi+1 ⊆ Hi−∂vHi and
∂vHi+1 is an inclusion-minimal ∂vHi–ΩG(Hi+1) separator, for each i ∈ N.
Note that by the local finiteness of G such sequences do exist. Define

de/v(ω) := inf
(Hi)i∈N→ω

lim inf
i→∞

|∂eHi|
|∂vHi|

.

This definition leads to the desired results for locally finite graphs. Let
δV,Ωe/v (G) denote the minimum (relative) degree, taken over all vertices and
ends of the graph G. The constants c1, c2 ∈ R+ are as in the corresponding
theorems for finite graphs.

Theorem 1.3. [4] Let k ∈ N and let G be a locally finite graph.

(a) If δV,Ωe/v (G) ≥ c1k
2, then Kk is a topological minor of G.

(b) If δV,Ωe/v (G) ≥ c2k
√

log k, then Kk is a minor of G.

For arbitrary infinite graphs it is necessary to adapt the definition of
the relative degree. This is so as now there may be vertices dominating6

ends. In that case, the sequences (Hi)i∈N cannot satisfy the condition that
Hi+1 ⊆ Hi − ∂vHi. We thus ask:

Question 1.4. Does Theorem 1.3 extend to arbitrary infinite graphs? How
does the (relative) end degree have to be defined in this case?

A partial answer to Question 1.4 will be provided in [6]. A second not
less interesting question is:

Question 1.5. Are there extensions of the results mentioned in the begin-
ning, if we let k be an infinite cardinal?

4The edge-boundary of a subgraph H of a graph G is the set ∂eH := E(H, G − H).
5The vertex-boundary of a subgraph H of a graph G is the set ∂vH := NG(G − H).
6A vertex is said to dominate an end ω if for some ray R ∈ ω there are infinitely many

v–V (R) paths, disjoint except in v.
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Fractional colorings in cubic graphs with
large girth

Jan Volec

Joint work with Daniel Král’, and Frantǐsek Kardoš.

We show that every (sub)cubic n-vertex graph with sufficiently large girth
has a fractional chromatic number at most 2.2978, which improves the re-
sult of Hatami and Zhu [1]. As a corollary, we obtain that it also contains
an independent set of size 0.4352n. This improves the previous lower bound
on the independence number of cubic graphs with large girth given by Hop-
pen [2] and translates also to random cubic graphs.
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Matroid representation over the reals

Geoff Whittle

Historically most research in structural matroid theory has focused on
matroids representable over finite fields. No doubt there are a variety of
reasons for this. Nonetheless Whitney probably had the real numbers in
mind as the canonical field over which to represent matroids. Unfortunately
almost all of the general theorems that hold for finite fields and the general
conjectures that we believe hold for finite fields fail spectacularly for infinite
fields.

Consider some examples. Recall that an excluded minor for a minor
closed class of matroid M is a matroid not in M with the property that all
of its proper minors belong to M. Perhaps the most famous open problem
in matroid theory is Rota’s Conjecture which states that if F is a finite field,
then the class of F-representable matroids has a finite number of excluded
minors. Rota’s Conjecture is known to be true for GF (2), GF (3) and GF (4)
and it is widely believed to hold in general. Consider the non-finite case.
Assume that F is an infinite field. Then, it is known that there are an
infinite number of excluded minors of F-representability. Indeed, it is even
known that every F-representable matroid is a minor of an excluded minor
for F-representability.

Similarly, it is believed that many of the results of the graph-minors
project of Robertson and Seymour extend to matroids representable over fi-
nite fields. For example we believe that, if F is a finite field, then the class of
F-representable matroids is well-quasi-ordered and that membership of any
minor-closed subclass of F-representable matroids can be recognised in poly-
nomial time. Again, for infinite fields, these conjectures fail spectacularly.
Indeed, if F is infinite, there are an uncountable number of minor-closed
classes of F-representable matroids. But there are only a countable num-
ber of algorithms, so recognising membership of a minor-closed subclass of
F-representable matroids is, in general, not even decidable.

Another problem is related to logic. Inspired by a comment of Whit-
ney, it is sensible to ask if, for a given field F, one can add a finite num-
ber of axioms in a logic that is natural for matroids that characterises
F-representability. This question was addressed by Vámos, but he used
first order logic which is not natural for matroids and cannot even be used
to distinguish binary matroids. If Rota’s Conjecture holds then it is routine
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to show that representability over finite fields can be characterised in a logic
that is natural for matroids, but evidence is accumulating that this is not
the case for infinite fields.

Just how bad can things be? Here is a very grim conjecture. Let M be
a minor-closed class of matroids and let M+ denote the matroids that are
either in M or are excluded minors for M. Call M a fractal class, if for
all ǫ > 0, there is an N such that, for n ≥ N , the proportion of n-element
members of M+ that belong to M is less than ǫ. Together with Dillon
Mayhew and Mike Newman, I conjecture that the matroids representable
over any fixed infinite field form a fractal class.

The contrast between the behaviour of matroid representation over fi-
nite and infinite fields is particularly striking when one considers that ma-
troids representable over the real numbers are particularly natural from the
point of view of human intuition—they are the configurations of classical
projective geometry. Is there a sensible general structure theory for these
matroids? I believe that this is a question of great interest for future re-
search.
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