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Abstract

The arboricity of a graph G is the minimum number of
colours needed to colour the edges of G so that every cycle
gets at least two colours. Given a positive integer p, we de-
fine the generalized p-arboricity Arbp(G) of a graph G as the
minimum number of colours needed to colour the edges of a
multigraph G in such a way that every cycle C gets at least
min(|C|, p + 1) colours. In the particular case where G has
girth at least p + 1, Arbp(G) is the minimum size of a parti-
tion of the edge set of G such that the union of any p parts
induce a forest. If we require further that the edge colour-
ing be proper, i.e., adjacent edges receive distinct colours,
then the minimum number of colours needed is the general-
ized p-acyclic edge chromatic number of G. In this paper, we
relate the generalized p-acyclic edge chromatic numbers and
the generalized p-arboricities of a graph G to the density of
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the multigraphs having a shallow subdivision as a subgraph
of G.
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1 Introduction

In this paper, we consider the following problem: given a graph G,
how many colours do we need to colour the edges of G in such a way
that every cycle gets “many” colours? Of course, the answer to this
question depends on the precise meaning of “many”. If we require
that each cycle γ of length l of G gets l colours, i.e., every cycle
is rainbow, then the minimum number of colours needed is equal
to the maximum size of a block of G, as two edges of G belong to
a common cycle if and only if they belong to the same block. If
we require that every cycle gets at least 2 colours, i.e., every colour
class induces a forest, then the minimum number of colours needed
is the arboricity Arb(G) of G, and its determination is solved by the
well-known Nash-Williams’ theorem we recall now.

Denote by V (G) and E(G) the vertex set and the edge set of
G. Also denote by |G| = |V (G)| (resp. ‖G‖ = |E(G)|) the order of
G (resp. size). For A ⊆ V (G) denote by G[A] the subgraph of G
induced by A. By Nash-Williams’ theorem [7, 8], the arboricity of a
graph G is given by the formula:

Arb(G) = max
A⊆V (G),|A|>1

⌈
‖G[A]‖
|A| − 1

⌉
. (1)

Here we consider a generalization of these two extreme cases. A
general form of our problem is captured by the following:

Given an unbounded non-decreasing function f : N→ N
and an integer p, what is the minimum number Nf (G, p)
of colours needed to colour the edges of a graph G in such
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a way that each cycle γ gets at least min(f(|γ|), p + 1)
colours?

Thus for p = 1 and f(n) ≥ 2 we get Nf (G, p) = Arb(G). For an
arbitrary graph G, it is usually difficult to determine Nf (G, p). Our
interest is to find upper bound for Nf (G, p) in terms of other graph
parameters, and upper bound for Nf (G, p) for some nice classes of
graphs and/or for some nice special functions f .

Many colouring parameters are bounded for proper minor closed
classes of graphs. It is natural to ask for which functions f isNf (G, p)
bounded for any proper minor closed class C of graphs. We shall
prove (Lemma 1) that if f(2p−1) > p − 1 for some value of p then
there is a (quite small) minor closed class of graphs C, such that
Nf (G, p) is unbounded. On the other hand, we prove (Corollary 6)
that if f(x) ≤ dlog2 xe for all x then Nf (G, p) is not only bounded
on proper minor closed classes of graphs, but actually bounded on
a class C if and only if C has bounded expansion (to be defined in
Section 3).

Next we consider the special function f(x) = x. For this special
function, the parameter Nf (G, p + 1) is denoted as Arbp(G) and is
called the generalized p-arboricity of G. So Arbp(G) is the number
of colours needed if we require that each cycle of G gets at least
p + 1 colours or is rainbow if its length is smaller than p + 1. Note
that if p = 1, then Arbp(G) is the arboricity Arb(G) of G. We shall
relate the generalized p-arboricities of a graph to the density of its
shallow topological minors. Toward this end we define the following
notions, which are analogous to those defined in [12] and [13]. The
main difference is that here we consider multigraphs.

Let G be a multigraph and let r be a half integer. A multigraph
H is a shallow topological minor of G at depth r if a ≤ 2r-subdivision
of H is a subgraph of G. We denote by G ˜P r the class of the multi-
graphs which are shallow topological minors of G at depth r. Hence
we have

G ∈ G ˜P 0 ⊆ G ˜P 1
2 ⊆ · · · ⊆ G ˜P r ⊆ . . . .

Notice that the class G ˜P 0 is exactly the monotone closure of G, that
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is the class of all the subgraphs of G.
We denote by ∇̃/r(G) the maximum density of a graph in G ˜P r,

that is:

∇̃/r(G) = max
H∈G eP r

‖H‖
|H|

. (2)

In this paper, we will give lower and upper bounds for Arbp(G)
based on ∇̃/ p−1

2
(G)). For p = 1, notice that it is an easy consequence

of Nash-Williams’ Theorem that d ∇̃/0(G)e ≤ Arb1(G) ≤ 2d ∇̃/0(G)e.
In this paper, we shall show (Theorem 15) that for any positive
integer p, there is a polynomial Pp such that for any graph G,(

∇̃/ p−1
2

(G)
)1/p

≤ Arbp(G) ≤ Pp( ∇̃/ p−1
2

(G)). (3)

The paper is organized as follows: In Section 2, we consider the
key case of graphs with bounded tree-depth. In particular, we es-
tablish that if f(2p−1) > p − 1 for some value of p then there is a
minor closed class of graphs C (namely the class of graphs with tree-
depth at most p) such that Nf (G, p) is unbounded. In Section 3,
we prove that if, for some unbounded non-decreasing function f and
each fixed integer p, the value Nf (G, p) is bounded for graphs in a
class C, then the class C has bounded expansion. We prove also that,
conversely, if C has bounded expansion and f0(x) = dlog2 xe then
supG∈C Nf0(G, p) is bounded for each integer p. In Section 4, we
establish (3), which is the main result of this paper. For the sake
of improving the readability of this paper, the proofs of two difficult
lemmas used in Section 4 are actually postponed to Section 5. In
Section 6 we consider a dual version of the problem.

2 Longest Cycles and Tree-Depth

Let us recall some definitions. The height of a rooted forest is the
maximum number of vertices in a path from a root to a leaf. The
closure of a forest F is the graph on V (F ) in which xy is an edge
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if and only if x is an ancestor of y or y is an ancestor of x. The
tree-depth td(G) of a graph G is the minimum height of a rooted
forest F such that G is a subgraph of its closure.

In this section we establish how the concept of tree-depth intro-
duced in [11] is related to the length of the longest cycle of a graph.
It will follow that if f(2p−1) > p − 1 for some value of p then there
is a minor closed class of graphs C on which Nf (G, p) is unbounded.

Lemma 1. Let p be an integer such that the function f satisfies
f(2p−1) > p− 1. Let C be the class of graphs with tree-depth at most
p. Then Nf (G, p) is unbounded on C.

Proof. Let N be an arbitrarily large integer. Let G be the closure
of a rooted complete q-ary tree Y of height p, where q = N(p

2) + 1.
Let r be the root of Y . Given a leaf v of Y , there are N(p

2) ways to
colour the edges of the subgraph of G induced by v and its ancestors
with N colours, and let φ(v) ∈ {1, . . . , N(p

2)} be the encoding of
this colouration corresponding to the leaf vertex v. For non leaf
vertices v we define φ(v) by induction on the descending height as
the majority value of φ(x) among the children of v. The root r has
at least dq/N(p

2)e = 2 sons v with φ(v) = φ(r). Inductively, the
root r is the root of a complete binary subtree Y ′ of Y , all vertices
of which have the same φ-value as r. The closure of Y ′ contains a
cycle γ of length 2p−1, and this cycle gets at most p− 1 colours (see
Fig 2). As min(f(|γ|), p) = p we conclude that Nf (G, p) > N and
thus Nf (G, p) is unbounded.

Remark that the proof of Lemma 1 is a variant of an old trick of
R. Goldblatt. Lemma 1 shows that we cannot expect Nf (G, p) to be
bounded on proper minor closed classes of graphs if f(x) > dlog2 xe.
In Section 3, we shall show that if f(x) ≤ dlog2 xe then Nf (G, p)
are not only bounded on proper minor closed classes of graphs, but
actually bounded on a class C if and only if C has bounded expansion.
This provides yet another characterization of this robust notion.

We now prove that the connection with tree-depth shown in
Lemma 1 is actually deeper in the sense that a 2-connected graph
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Figure 1: The closure of Y ′ contains a cycle γ of length 2p−1, and
this cycle gets exactly p− 1 colours

has no long cycles if and only if it has a small tree-depth. (Note that
2-connectivity has to be assumed.)

Lemma 2. Let G be 2-connected graph and let L be the maximum
length of a cycle in G. Then

1 + dlog2 Le ≤ td(G) ≤
(
L− 1

2

)
+ 2.

Proof. The first inequality is a consequence of the monotonicity of
tree-depth and the exact values of tree-depth for cycles: td(Cn) =
1 + dlog2 ne.

The remaining of the proof will concern the second inequality.
Consider a Depth-First Search tree Y of G and let r be the root

of Y . Let h = height(Y ). For a vertex x let level(x) be the height
of x in Y . The rooted tree Y naturally defines a partial order � by
x � y if x belongs to the tree-path from r to y. A basic property of
DFS-trees is that two adjacent vertices are always comparable with
respect to � (DFS-trees have no cross edges), so that G ⊆ Clos(Y )
thus td(G) ≤ h.

For a vertex x, let low(x) be the smallest vertex y (with respect
to �) which is adjacent by an edge not in Y to a vertex z � x.
Notice that such a vertex exists as G is 2-connected and that for
x 6= r it holds low(x) ≺ x. Moreover, if low(x) 6= r, the fact that
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low(x) is not a cut-vertex of G implies that there exists y such that
low(y) ≺ low(x) ≺ y ≺ x.

Let P = (v1 = r, . . . , vh) be a longest root-to-leaf path of Y . We
inductively define indexes a1, b1, . . . , ak, bk ∈ {1, . . . , h} as follows:
let a1 = h and let vb1 = low(va1). For i ≥ 1, if bi 6= 1 then let
vbi+1 be the minimum low of a vertex z such that vbi ≺ z ≺ vai , let
vai+1 be such that vbi

≺ vai+1 ≺ vai
and low(ai+1) = bi+1, and let

ei be a non-tree edge linking some w � vai
and vbi

. This process
stops at some value k such that bk = 1. Notice that ai+2 � bi for
1 ≤ i ≤ k − 2.

Let γi be the fundamental cycle of ei and let γ be the symmetric
difference of all the γi’s. Then γ is a cycle and each edge of P ∪
{e1, . . . , ek} belongs to 2 of the cycles γ1, . . . , γk, γ. Hence 2(h+ k−
1) ≤ |γ1| + · · · + |γk| + |γ| ≤ (k + 1)L, i.e. h ≤ k+1

2 (L − 2) + 2 (see
Fig. 2).

Moreover, γ contains at least two tree edges (either k = 1 and
γ = γ1 or k > 1 and then a2 < a1 and bk < bk−1) thus L ≥ |γ| ≥ k+2
hence k ≤ L− 2. Altogether, we obtain h ≤

(
L−1

2

)
+ 2.

It is not clear whether the quadratic bound of Lemma 2 is tight.
We propose the following problem (compare with [5] where the chro-
matic number of a graph is bounded using the length of the largest
odd cycle).

Problem 1. For a 2-connected graph G, denote by L(G) the length
of the longest cycle in G.

Does there exist a constant C such that for every 2-connected
graph the following inequality holds:

td(G) ≤ C L(G)?
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va1 = vh
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e1

e3
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Figure 2: Illustration of the proof of Lemma 2. Cotree edge ei links
vai

(or one of its symmetric difference of the γi’s

3 Classes of graphs with bounded expan-
sion

Classes with bounded expansion have been introduced in [9, 10, 12]
and are based on the boundedness of graph invariants similar to
∇̃/r(G).

We denote [12, 13] by GO r (resp. G Õ r) the class of the simple
graphs which are shallow minors (resp. simple shallow topological
minors) of G at depth r, and we denote by ∇r(G) (resp. ∇̃r(G))
the maximum density of a graph in GO r (resp. in G Õ r), that is:

∇r(G) = max
H∈GO r

‖H‖
|H|

∇̃r(G) = max
H∈G eO r

‖H‖
|H|

. (4)

Notice that the main difference between the definition of ∇̃/r(G) and
the one of ∇̃r(G) stands in the way parallel edges are handled.
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A class C has bounded expansion if supG∈C ∇r(G) is bounded for
each value of r. It is obvious that ∇r(G) ≥ ∇̃r(G). However, it
has been proved by Dvořák [1, 2] that for each integer r, ∇r(G) is
bounded by a polynomial function of ∇̃r(G). Hence a class C has
bounded expansion if and only if supG∈C ∇̃r(G) is bounded .

Theorem 3. Let f : N → N be an unbounded non-decreasing func-
tion with f(x) ≤ x and let g : N→ N be defined by

g(p) = max{i, f(i) ≤ p}.

Then for every graph G and every integer r we have:

∇r(G) ≤ Nf (G, 2r + 1)2r+1g(2r + 1)2.

Proof. Let N = Nf (G, 2r+ 1) and let c : E(G)→ [N ] be a colouring
of the edges ofG such that each cycle γ gets at least min(f(|γ|), 2r+2)
colours. For a subset I ∈

(
[N ]

2r+1

)
of 2r + 1 colours, let GI be the

subgraph of G whose edges are coloured by colours in I. Then the
maximum length of a cycle of GI is g(2r+1). According to Lemma 2,
blocks of GI have tree-depth at most

(
g(2r+1)−1

2

)
+ 2.

Let K ∈ GO r be such that ‖K‖/|K| = ∇r(G), let x1, . . . , xk be
the roots of trees T1, . . . , Tk of height at most r (corresponding to
vertices h1, . . . , hk of K) and H ⊆ G[V (T1) ∪ · · · ∪ V (Tk)] be such
that K ∼= H/(E(T1) ∪ · · · ∪ E(Tk)).

If hi and hj are adjacent in K then there exists in H a path Pi,j
of length at most 2r + 1 linking xi and xj . Denote by Ai,j a subset
of 2r + 1 colours such that all the edges of Pi,j have their colour in
Ai,j . For I ∈

(
[N ]

2r+1

)
, let HI be subgraph of H containing the edges

of the paths Pi,j for which Ai,j = I. Let KI be the corresponding
subgraph of K. As the blocks of HI are included in blocks of GI ,
they have tree-depth at most

(
g(2r+1)−1

2

)
+ 2. As tree-depth is minor

monotone, this bound also applies to the blocks of KI . Observe that
a graph of tree depth k has density at most k − 1, because if all
edges are oriented from higher level end vertex to lower level end
vertex, then each vertex has out-degree at most k−1. It follows that
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‖KI‖/|K| ≤ ‖KI‖/|KI | ≤
(
g(2r+1)−1

2

)
+ 1. By summing up over the

possible choices of I we obtain

‖K‖/|K| ≤
“ N

2r + 1

” „“g(2r + 1)− 1

2

”
+ 1

«
≤ Nf (G, 2r + 1)2r+1g(2r + 1)2.

Corollary 4. Let C be a class of graph and let f : N → N be an
unbounded non-decreasing function with f(x) ≤ x.

If supG∈C Nf (G, r) < ∞ for every r ∈ N then C has bounded
expansion.

Theorem 5. Let f0(x) = dlog2 xe and let r be an integer. There
exists a polynomial Pr such that for every graph G it holds

Nf0(G, r) ≤ Pr( ∇̃2r (G)).

Proof. According to [15] there exists for each p ∈ N a polynomial
Qp such that every graph G has a vertex colouring c : V (G) →
[Qp( ∇̃2p−1(G))] such that the subgraph induced by any i ≤ p colours
has tree-depth at most i. Let p = r + 1 and let Pr(X) =

(
Qr+1(X)

2

)
.

The graph G admits a vertex-colouring c : V (G)→ [Qr+1( ∇̃2r (G))]
such that the subgraph induced by any i ≤ r + 1 colours has tree-
depth at most i. Colour each edge {x, y} of G by the set {c(x), c(y)}
(hence using Pr( ∇̃2r (G)) colours). Let γ be a cycle of G with i ≤ r
colours. By construction, the vertices of γ use at most i+ 1 ≤ r + 1
colours hence td(γ) ≤ i+ 1, thus |γ| ≤ 2i. It follows that every cycle
γ of G gets at least min(r + 1, f0(|γ|) colours.

Corollary 6. Let C be a class of graphs. Then the following are
equivalent:

1. There exists non-decreasing unbounded f : N→ N such that

∀p ∈ N, sup
G∈C

Nf (G, p) <∞
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2. Let f0(x) = dlog2 xe. Then

∀p ∈ N, sup
G∈C

Nf0(G, p) <∞

3. the class C has bounded expansion.

Notice that the second condition is tight, according to Lemma 1.

4 Bounds on Arbp(G)

The lower bound
(
∇̃/ p−1

2
(G)
)1/p

for Arbp(G) is easy.

Lemma 7. Let G be a graph and let p be a positive integer. Then
(Arbp(G))p is greater than or equal to the maximum arboricity of a
multigraph H such that G contains a ≤ (p−1)-subdivision of H, that
is,

(Arbp(G))p ≥ max{Arb(H), H ∈ G ˜P (p−1
2

)
} ≥ ∇̃/p−1

2

(G). (5)

Proof. Let c be an edge colouring of G with a set J of Arbp(G)
colours such that every cycle C of G gets at least min(|C|, p + 1)
colours. Assume that G includes a ≤ (p − 1)-subdivision S of a
multigraph H. Colour each edge e of H by the set X of colours used
by the edges of the path of length at most p in G corresponding to
e in S. The total number of colours used by edges of H is at most
the number of ≤ p-subsets of the J , which is less than (Arbp(G))p.
If (Arbp(G))p < Arb(H), then H has a monochromatic cycle, each
edge being coloured by a set X of at most p colours. Then the
corresponding cycle C of G uses at most |X| < p+ 1 colours and has
length at least 2|X|, contradicting the colouring assumption. Thus
(Arbp(G))p ≥ Arb(H).

The upper bound is more involved. First, we introduce the admit-
tedly rather technical definition of fraternal completion of oriented
multigraphs.
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A digraph ~G is fraternally oriented if (x, z) ∈ E(~G) and (y, z) ∈
E(~G) implies (x, y) ∈ E(~G) or (y, x) ∈ E(~G). This concept was in-
troduced by Skrien [14] and a characterization of fraternally oriented
digraphs having no symmetrical arcs has been obtained by Gavril and
Urrutia [4], who also proved that triangulated graphs and circular
arc graphs are all fraternally orientable graphs.

In the context of multigraphs, this notion may be extended as
follows:

Definition 1. Let ~G be a directed multigraph and let a be a pos-
itive integer. A fraternal completion of ~G of depth a is a triple
f = ((E1, . . . , Ea), w, κ), where

• E1 = E(~G) is the arc set of ~G; for each 2 ≤ i ≤ a, Ei is the
arc set of a multigraph having V (~G) as its vertex set; for every
1 ≤ i < j ≤ a, Ei ∩Ej = ∅ (although different arcs of Ei and
Ej may have the same head and tail);

• for e ∈
⋃

1≤i≤aEi, the weight w(e) of e is the integer i ∈ [a]
such that e ∈ Ei;

• κ :
⋃

1<i≤aEi →
(⋃

1≤i≤aEi
)2 is such that for every e ∈⋃

1<i≤aEi with κ(e) = (f, g) we have

tail(f) 6= tail(g)
w(e) = w(f) + w(g)

tail(e) = tail(f)
head(e) = tail(g)
head(f) = head(g);

• conversely, for every i, j ∈ N, f ∈ Ei and g ∈ Ej such that
i + j ≤ a, tail(f) 6= tail(g) and head(f) = head(g) there exists
a unique e ∈ Ei+j such that κ(e) ∈ {(f, g), (g, f)}.

We also define the arc set Ef of the fraternal completion f by Ef =⋃
1≤i≤aEi (notice that Ef includes no loop) and define a = depth(f)
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as the depth of f. A fraternal completion f′ = ((E′1, . . . , E
′
a′), w

′, κ′)
of ~G extends another fraternal completion f = ((E1, . . . , Ea), w, κ) of
~G (or is an extension of f) if

• a′ = depth(f′) > a = depth(f),

• for every 1 ≤ i ≤ depth(f) we have E′i = Ei,

• the restrictions of κ and κ′ to Ef coincide.

We now state an easy lemma of fraternal completions:

Lemma 8. For every oriented multigraph ~G and every positive in-
teger a,

• ~G has a unique fraternal completion of depth 1 defined by E1 =
E(~G),

• every fraternal completion f of depth a has an extension of
depth a+ 1.

Proof. The first item is direct from the definition.
For the second item, let f = ((E1, . . . , Ea), w, κ) be a fraternal

completion of ~G of depth a. Consider an arbitrary numbering ν of
Ef. Define

Ea+1 = {ef,g : (f, g) ∈ E2
f , w(f) + w(g) = a+ 1, ν(f) < ν(g),

tail(f) 6= tail(g), and head(f) = head(g)},

where ef,g is an arc with tail(ef,g) = tail(f) and head(ef,g) = tail(g);
define the mapping κ′ :

⋃
1≤i≤a+1Ei → Ef by κ′(e) = κ(e) if w(e) ≤

a and κ′(ef,g) = (f, g) for ef,g ∈ Ea+1; also define w′ : Ef ∪Ea+1 by
w′(e) = i if e ∈ Ei. Then f′ = ((E1, . . . , Ea+1, w

′, κ′) is obviously an
extension of f of depth a+ 1.

Suppose f = ((E1, . . . , Ea), w, κ) is a fraternal completion of ~G of
depth a. We associate to each arc e ∈ Ef a walk W (e) of ~G defined
as follows:
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• If w(e) = 1 then W (e) is the walk e,

• Otherwise, if κ(e) = (f, g) then W (e) is the walk W (f) followed
by the reverse W (g) of the walk W (g), what we denote by
W (e) = W (f) ·W (g).

This way, each arc e of Ef is associated a walk W (e) in ~G of length
w(e) which has the same endpoints as e. An arc e ∈ Ef is called
simple if W (e) is a path.

Let ~G be a directed multigraph, let f = ((E1, . . . , Ea), w, κ) be a
fraternal completion of ~G of depth a. Let ≺ be the partial order on
Ef defined by transitivity from the conditions

κ(e) = (f, g) =⇒ f ≺ e and g ≺ e.

Notice that if e ∈ Ef and f ∈ E1 we have e � f if and only if f
belongs to the walk W (e).

For i = 1, 2, . . . , a, let ~Hi (resp. ~H≤i) be the multigraphs with
vertex set V (~G) and arc set Ei (resp.

⋃
j≤iEj). In particular,

~G = ~H1. For arcs e1, e2 of ~G and a fraternal completion f =
((E1, . . . , Ea), w, κ) of ~G of depth a of ~G, say that a pair (e1, e2) ∈ E2

1

is a conflict if there exists arcs f1 � e1 and f2 � e2 and a directed
path of length at most a of ~H≤a starting with f1 and ending at one
of the endpoints of f2 (notice that we allow f1 = f2).

Lemma 9. Assume ~G is an orientation of G, f is a fraternal com-
pletion of ~G of depth a. Assume that c : E(~G) → [N ] is a coloura-
tion of the edges of ~G such that for every conflict (e1, e2) we have
c(e1) 6= c(e2). Then every cycle γ gets at least min(|γ|, a+1) colours.

Proof. Assume for contradiction that there exist in ~G a cycle γ =
(v1, . . . , v|γ|) which gets less than min(|γ|, a + 1) colours. We say a
sequence (e1, e2, . . . , eq+1) of simple arcs in Ef is admissible if the
W (ei) are pairwise arc-disjoint and form consecutive subpaths of γ
and e1, . . . , eq form a directed path of ~H≤a.
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Choose an admissible sequence (e1, e2, . . . , eq+1) in such a way
that

∑
i w(ei) is maximal and then that q is minimum. Without

loss of generality, we may assume that for 1 ≤ i ≤ q we have ei =
(vai

, vai+1) with 1 = a1 < a2 < · · · < aq+1 ≤ |γ|.
First we show that

∑q+1
i=1 w(ei) ≥ min(a + 1, |γ|). Assume for

contradiction that
∑q+1
i=1 w(ei) < min(a + 1, |γ|). Then eq+1 has

vaq+1 and vaq+2 as endpoints with aq+1 < aq+2 < |γ| (actually we
have aq+2 =

∑
i w(ei) − 1). Let g be the arc of ~G linking vaq+2

to the next vertex of γ. According to the maximality of
∑
i w(ei),

the sequence (e1, . . . , eq+1, g) is not admissible hence e1, . . . , eq+1 is
not a directed path, that is: eq+1 = (vaq+2 , vaq+1). As w(eq) +
w(eq+1) ≤

∑
i w(ei) ≤ a there exists an arc f in Ef such that

κ(f) = (eq, eq+1) (see Fig 3). The arc f is clearly simple (W (f) =
W (eq)W (eq+1) or W (f) = W (eq+1)W (eq)). If κ(f) = (eq, eq+1)
then (e1, . . . , eq−1, f, g) is admissible, and

∑q−1
i=1 w(ei)+w(f)+w(g) =∑q+1

i=1 w(ei) + w(g) >
∑q+1
i=1 w(ei), what contradicts the maximality

of
∑
i w(ei). Otherwise, κ(f) = (eq+1, eq). Then, (e1, . . . , eq−1, f) is

an admissible sequence such that
∑q−1
i=1 w(ei) +w(f) =

∑q+1
i=1 w(ei),

what contradicts the minimality of q (for given
∑
i w(ei)).

Thus
∣∣⋃

iW (ei)
∣∣ =

∑q+1
i=1 w(ei) ≥ min(a+1, |γ|). By assumption,

the cycle γ which gets less than min(|γ|, a + 1) colours hence there
exist f1, f2 ∈

⋃
iW (ei) such that c(f1) = c(f2). Let b1, b2 be such

that f1 ∈ W (eb1) and f2 ∈ W (eb2). Without loss of generality
we assume b1 ≤ b2. As f1 � eb1 , f2 � eb2 and as there exists by
construction a (maybe empty) directed path of length at most a of
~H≤a starting with eb1 and ending at one of the endpoints of eb2 we
deduce that (f1, f2) is a conflict, contradicting the hypothesis that
c(f1) = c(f2).

To prove that Arbp(G) ≤ Pp( ∇̃/ p−1
2

(G)) for some polynomial Pp,

it suffices to find a fraternal completion f of an orientation ~G of G
of depth p so that each edge e of G is in conflicts with at most
Pp( ∇̃/ p−1

2
(G)) other edges. We shall see that this problem can be
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Figure 3: Illustration for the proof of Lemma 9.

reduced to finding a fraternal completion with bounded in-degrees.
Toward this end, let

C(f) =
∑∏

j

∆−( ~Hij ) :
∑
j

ij < depth(f)

 .

Lemma 10. For every arc e of ~G we have∣∣{f ∈ Ef : f � e}
∣∣ ≤ C(f).

Proof. For each f � e, there is a sequence of arcs g1, g2, . . . , gt in f
such that g1 = e, gt = f and gi covers gi−1 in ≺. So it suffices to
show that for any g � e with w(f) = i, for any j > i, there are at
most ∆−( ~Hj−i) arcs g′ with w(g′) = j such that g′ covers g in ≺.
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This is so because the number of such arcs g′ is at most the number
of arcs f ′ such that κ(g′) ∈ {(g, f ′), (f ′, g)} and hence at most the
number of arcs f ′ with head(f ′) = head(g) in ~Hj−i, which is at most
∆−( ~Hj−i).

Lemma 11. For every arc e2 of ~G there exist at most
3pC(f)(max(2,∆−( ~Hp))a arcs e1 of ~G such that (e1, e2) is a conflict.

Proof. According to Lemma 10 there exists at most C(f) arcs f2 ∈⋃p
i=1Ei such that f2 � e2. Given an arc f2 of ~H≤p there exist at

most (∆−( ~Hp) − 1)(1 + · · · + ∆−( ~Hp)p−1) = ∆−( ~Hp)p − 1 arcs f1
such that there exists in ~H≤p a directed path of length at most p
starting with f1 and ending at the head of f2. Similarly we have
at most 1 + · · · + ∆−( ~Hp)p arcs f1 such that there exists in ~Hp a
directed path of length at most p starting with f1 and ending at
the tail of f2. Hence for each f2 we have at most 3 max(2,∆−( ~Hp)p

possibilities for f1. As there are |W (f1)| ≤ a arcs e1 such that
f1 � e1, we conclude.

Lemma 12. Let Q1(X), . . . , Qp(X) be polynomials, and let Pp be
the polynomial defined by:

Pp(X) = 6p(2 +Qp(X))p
( ∑

P
ij<p

∏
j

Qij (X)
)

+ 1. (6)

Let G be a multigraph with a fraternal completion f of depth p such
that

∀1 ≤ i ≤ p, ∆−( ~Hi) ≤ Qi( ∇̃/(p−1)/2(G)). (7)

Then
Arbp(G) ≤ Pp( ∇̃/p−2

2

(G)). (8)

(Of course, the polynomial Pp depends on polynomials Q1, . . . , Qp.
This dependence will be clear from the context.)
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Proof. According to Lemma 11 and Lemma 9, G has a colouration of
its edges by at most Pp( ∇̃/(p−1)/2(G)) colours such that every cycle
γ gets at least min(p+ 1, |γ|) colours, that is

Arbp(G) ≤ Pp( ∇̃/p−1
2

(G)).

By Lemma 12, to prove that for some polynomial Pp, Arbp(G) ≤
Pp( ∇̃/ p−1

2
(G)), it suffices to prove that one can find a fraternal com-

pletion f of an orientation ~G of G of depth p so that ∆−( ~Hi) is
bounded by some polynomial function Qi of ∇̃/ p−1

2
(G). The con-

struction of such a fraternal completion f is easy: Let Hi be the un-
derlying graph of ~Hi. By definition, H1 = G and for i = 1, 2, . . . , p−
1, Hi+1 is uniquely determined by ~Hj for j = 1, 2, . . . , i. For i =
1, 2, . . . , p, we orient the edges of Hi to obtain ~Hi so that ∆−( ~Hi) =
d ∇̃/0(Hi)e. This defines a fraternal completion f of an orientation ~G
of G of depth p. In the following, we shall show that for this frater-
nal completion f, ∆−( ~Hi) is bounded by some polynomial function
of ∇̃/ p−1

2
(G).

For i = 1, 2, . . . , p, let Ti be the (i− 1)-subdivision of the under-
lying graph Hi of ~Hi. Hence

Hi ∈ Ti ˜P ( i−1
2 ).

In particular, H1 = T1 = G.
For integer m, let G•m be the multigraph with vertex set V (G)×

[m] where {(x, i), (y, j)} is an edge of G •m of multiplicity k if and
only if {x, y} is an edge of G of multiplicity k. In the following
section, we shall prove the following two lemmas.

Lemma 13. Let G be a multigraph, let m be a positive integer and
let r be a positive half-integer. Then

∇̃/r(G •m) ≤ (2r(m− 1) + 1) ∇̃/r(G) +m2 ∇̃/0(G) +m− 1. (9)
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Lemma 14. For every integer p ≥ 2, there is a polynomial Np such
that Tp is a subgraph of G •Np( ∇̃/ p−2

2
(G)).

From these lemmas will then follow the main result of this paper:

Theorem 15. For each integer p there exists a polynomial Pp such
that for every multigraph G it holds(

∇̃/ p−1
2

(G)
)1/p

≤ Arbp(G) ≤ Pp( ∇̃/ p−1
2

(G)).

In particular, Arbp and ∇̃/p−1
2

are two polynomially equivalent

multigraph invariants.

Proof. The inequality
(
∇̃/ p−1

2
(G)
)1/p

≤ Arbp(G) follows from
Lemma 7. By the argument above, Lemma 13 and Lemma 14 imply
that ∆−( ~Hi) is bounded by some polynomial function of ∇̃/ p−1

2
(G),

and hence, by Lemma 12, there exists a polynomial Pp such that
Arbp(G) ≤ Pp( ∇̃/ p−1

2
(G)).

5 Proofs of Lemmas 13 and 14

Proof of Lemma 13. The vertices of K •m are the pairs (v, i), v
a vertex of G and 1 ≤ i ≤ m. The every vertex v of G, we say that
(v, i) and (v, j) are twins in G•m and we denote by π the projection
of G •m into G which maps (v, i) to v.

Let S be a subgraph of G • m which is (≤ 2r)-subdivision of a
multigraph H such that

∇̃/r(G •m) =
‖H‖
|H|

.

Choose S with the minimal number of vertices.
A path of S corresponding to an edge of H is called a branch.

The vertices of S corresponding to vertices of H are called principal
vertices. The other vertices of S are subdivision vertices.
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Let S0 be the graph obtained from S by deleting all the branches
which are not subdivided and let H0 be the corresponding sub-
graph of H (S0 is a (≤ 2r)-subdivision of H0 and every branch of
S0 is a path of length at least 2). Then we have ‖H‖ ≤ ‖H0‖ +
m2‖G[π(V (H))]‖ hence

‖H‖
|H|

≤ ‖H0‖
|H|

+m2 ‖G[π(V (H))]‖
|π(V (H))|

.

Thus

∇̃/r(G •m) ≤ ‖H0‖
|H0|

+m2 ∇̃/0(G).

First notice that no branch of S(H) contains two twin vertices, except
if the branch is a single edge path linking two twin vertices (otherwise
we can shorten the branch without changing ‖H‖ and |H|, see Fig 4).

Figure 4: If a branch contains twin vertices, we shorten it.

We define the multigraph H1 and its (≤ 2r)-subdivision S1 by
the following procedure: Start with H1 = H0 and S1 = S0. Then,
for each subdivision vertex v ∈ S1 having a twin which is a principal
vertex of S1, delete the branch of S1 containing v and the corre-
sponding edge of H1. In this way, we delete at most (m − 1)|H0|
edges of H1. Thus ‖H1‖

|H1| ≥
‖H0‖
|H0| − (m − 1) and S1 is such that no

subdivision vertex is a twin of a principal vertex.
Given H1 we construct the conflict graph C of H1 as follows:

the vertex set of C is the edge set of H1 and the edges of C are the
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pairs of edges {e1, e2} such that one of the subdivision vertices of the
branch corresponding to e1 is a twin of one of the subdivision vertex
of the branch corresponding to e2. Note that graph C has maximum
degree at most 2r(m− 1) hence it is (2r(m− 1) + 1)-colourable. Let
H2 be the subgraph of H1 induced by a monochromatic set of edges
of H1 of size at least ‖H1‖

2r(m−1)+1 . So ‖H1‖
|H1| ≤ (2r(m− 1) + 1)‖H2‖

|H2| .
Let S2 be the corresponding subgraph of S1. If v is a principal

vertex of S2, then two edges incident to v cannot have their other
endpoints equal or twins (because of the colouration). Let S3 =
π(S2) be the projection of S2 on G. Because of the above colouration,
S3 is a (≤ 2r) subdivision of H2. Hence

∇̃/r(G) ≥ ‖H2‖
|H2|

≥ ‖H1‖
(2r(m− 1) + 1)|H1|

≥ ‖H0‖
(2r(m− 1) + 1)|H0|

− m− 1
2r(m− 1) + 1

and the result follows.
Proof of Lemma 14
Let f = ((E1, . . . , Ep), w, κ) be a fraternal completion of ~G of

depth p constructed in such a way that for i = 1, 2, . . . , p, ∆−( ~Hi) =
∇̃/0(Hi).

In the following, we shall prove that for 2 ≤ a ≤ p there is a
polynomial Na such that the graph Ta can be injectively embedded
into a blowing G • Na( ∇̃/ a−2

2
(G)) of G. Observe that if this is true

for a = 2, . . . , i, then by using Lemma 13, we can conclude that there
is a polynomial Pi such that ∇̃/0(Hi) ≤ Pi( ∇̃/ i−1

2
(G)).

By definition, for a ≥ 1, Ta is obtained from the empty graph on
V (G) by adding, for each arc e = xy in Ea, an induced path of length
a connecting x and y. Each arc e = xy in Ea corresponds to a walk
W (e) in G of length a from x to y. By sending the induced x-y-path
of length a in Ta to the corresponding walk in G connecting x and
y, we obtain a homomorphism, say f , from Ta to G. However, f is
not an embedding, as many vertices of Ta may have the same image.
Indeed, V (Ta) is the union of V (G) and a set of |E(Ta)|(a−1) added
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~G ~H≤9

1

1

1

1 124

2

2
3

w(h) = 4

w(g) = 3

w(f) = 7 9

T2

e1

e2

e3
e4 e5

Figure 5: Example of graphs defined by a fraternal completions.
On the left, the graph ~G. In the middle, arcs of a fraternal com-
pletion of depth 9 form the multigraph ~H≤9; here, κ(f) = (g, h);
the walk W (h) = (e1e2e4e5) associated to h is simple but the walk
W (f) = (e3e4e5e5e4e2e1) associated to f is not. On the right, the
1-subdivision of the arcs in E2 define the undirected multigraph T2.

vertices which are the interior vertices of the walks W (e). If for some
integer m, each vertex v of G is contained in at most m − 1 of the
walks W (e) as an interior vertex, then Ta embeds into G •m, as we
can assign to each vertex in f−1(v) a distinct vertex of {v} × [m]
in G • m as its image. Let us consider the case a = 2. By our
construction, ~G has ∆−(~G) = d ∇̃/0(G)e Each arc e = xy in E2

corresponds to a walk of the form (x, v, y), where (x, v) and (y, v)
are arcs of ~G. Let d = d ∇̃/0(G)e = ∆−(~G). Then v is an interior
vertex of a walk W (e) for e = xy in E2 if and only if (x, v) and (y, v)
are arcs of ~G. Hence v is contained in at most

(
d
2

)
walks W (e) as a

an interior vertex. Therefore for N2(x) =
(
x+1
2

)
+ 1, T2 embeds into

G •N2( ∇̃/0(G)).
Assume now that the polynomial Ni is defined for i = 2, . . . , a−

1 and Ti embeds into G • Ni( ∇̃/ i−2
2

(G)). Each arc e = xy ∈ Ea
corresponds to two arcs g ∈ Ei and g′ ∈ Ej with i + j = a, with
g = xz and g′ = yz for some z. A vertex v is an interior vertex of
the walk W (e) if and only if either v = z or v is an interior vertex
of W (g) or W (g′). By our definition of the fraternal completion,
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v has in-degree at most ∆−( ~Hi) = d ∇̃/0(Hi)e in ~Hi. By induction
hypothesis and the observation above, ∇̃/0(Hi) ≤ Pi( ∇̃/ i−1

2
(G)) for

some polynomial Pi. This implies that for some polynomial Q, each
vertex v has in-degree at most d = Q( ∇̃/ a−2

2
(G)) in ~H≤(a). So for

each vertex v of G, there are at most
(
d
2

)
pairs of arcs g, g′ for which

there is an edge e = xy in Ea with k(e) = (g, g′).
For an edge e = xy ∈ Ea, we say a vertex v is the transfer vertex

of W (e) if k(e) = (g, g′), g = (x, v) and g′ = (y, v). An interior vertex
of W (e) is either a transfer vertex of W (e) or an interior vertex of g
for some g ∈ Ei where i ≤ a− 1.

By induction hypothesis, there is a polynomial Z such that a
vertex v appears at most Z( ∇̃/ a−3

2
(G)) times as an interior vertex of

a walk W (g) for g ∈ ∪a−1
i=1Ei. For each g ∈ Ei for some i ≤ a−1, there

are at most 2d edges e ∈ Ea such that k(e) = (g, g′) or k(e) = (g′, g).
Therefore, each vertex v appears at most

(
d
2

)
+ 2d × Z( ∇̃/ a−2

2
(G))

times as an interior vertex of W (e) for e ∈ Ea. As d = Q( ∇̃/ a−2
2

(G))

and ∇̃/ a−3
2

(G) ≤ ∇̃/ a−2
2

(G), with Na(x) = Q(x)2 + 2Q(x)Z(x), each

vertex appears at most Na( ∇̃/ a−2
2

(G))−1 times as an interior vertex

of W (e) for some e ∈ Ea. Therefore with m = Na( ∇̃/ a−2
2

(G)), Ta
embeds into G •m. This completes the proof of Lemma 14.

6 The Dual Version

The problem addressed in this paper can be considered in the more
general context of matroids:

Problem 2. Let M be a matroid and let p be an integer. What is
the minimum number Arbp(M) needed to colour the elements ofM
in such a way that each circuit γ gets at least min(|γ|, p+1) colours?

It would be interesting to find a natural class of matroids for
which Arb?p(M) is uniformly bounded. For graphs this leads to the
following problem:

23



Problem 3. Let G be a graph and let p be an integer. What is the
minimum integer N = Arb?p(G) such that the edge set of G may be
coloured using N -colours in such a way that each cut ω gets at least
min(|ω|, p+ 1) colours?

It is maybe interesting that the dual version of our problem may
present different aspects. The well known theorem of Erdős [3] which
asserts that there exists a graph of order at least n, girth at least g
and chromatic number at least 2N + 1. As the chromatic number of
a graph is bounded by χ(G) ≤ 2Arb(G) + 1 we get that there exist
graphs with arbitrarily large girth and arboricity (hence arbitrarily
large Arbp). The notion dual to “G has girth at least k” (i.e. every
cycle of G has length at least k) is “G is k-edge connected” (i.e.
every edge cut of G has size at least k). However, there does not
exist graphs with arbitrarily edge-connectivity and Arb?p. Precisely:

Proposition 16. Let G be a graph and let p be an integer.

• If G is (2p+ 2)-edge connected then Arb?p(G) = p+ 1;

• if G is (2p+ 1)-edge connected then Arb?p(G) ≤ (p+ 1)(2p+ 1),
and there exists infinitely many (2p+ 1)-edge connected graphs
such that Arb?p(G) ≥ p+ 2;

• Arb?p(G) is not bounded for (2p)-edge connected graphs.

Proof. The first item is a consequence of [6] where it is proved that a
2n-edge connected graph has at least n pairwise edge-disjoint span-
ning trees. It follows that if G is (2p + 2)-edge connected, it has at
least p + 1 edge-disjoint spanning trees Y1, . . . , Yp+1. Colour i the
edges of Yi and further colour 1 the edges which are present in none
of the Yi’s. As each Yi is spanning, each cut meets all the Yi’s thus
gets p+ 1 colours. It follows that Arb?p(G) = p+ 1.

The upper bound of the second item is similarly obtained by
doubling each edge of G (thus obtaining a (4p + 2)-edge connected
multigraph) and considering 2p+1 edge-disjoint spanning trees of this
new multigraph G′, and colouring each edge e of G by the set of (at
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most two) colours assigned to the two edges of G′ corresponding to e.
The lower bound is obtained by considering non-complete (2p + 1)-
regular (2p+ 1)-edge connected graphs G: if Arbp(G) = p+ 1 would
hold then each colour class would include a spanning tree and hence
‖G‖ ≥ (p+ 1)(|G| − 1) would hold.

The last item follows from the following construction. For inte-
gers L, p let C(p)

L be the multigraph obtained from a cycle of length
L by replacing each edge by p parallel edges (see Fig. 6). The graph
C

(p)
L is (2p)-edge connected. However, Arbp(C

(p)
L ) ≥ L1/p as if each

cut gets at least p + 1 colours then no two group of parallel edges
can be coloured by the same set of colours.

p

Figure 6: The multigraph C
(p)
L is (2p)-edge connected and

Arbp(C
(p)
L ) ≥ L1/p
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