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Jan Ekstein∗ Přemysl Holub∗ Bernard Lidický†

Abstract

The packing chromatic number χρ(G) of a graph G is the

smallest integer k such that vertices of G can be partitioned

into disjoint classes X1, ..., Xk where vertices in Xi have pair-

wise distance greater than i. We study the packing chromatic

number of infinite distance graphs G(Z, D), i.e. graphs with

the set Z of integers as vertex set and in which two distinct

vertices i, j ∈ Z are adjacent if and only if |i− j| ∈ D.

In this paper we focus on distance graphs with D = {1, t}.
We improve some results of Togni who initiated the study. It

is shown that χρ(G(Z, D)) ≤ 35 for sufficiently large odd t

and χρ(G(Z, D)) ≤ 56 for sufficiently large even t. We also

give a lower bound 12 for t ≥ 9 and tighten several gaps for

χρ(G(Z, D)) with small t.
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1 Introduction

In this paper we consider simple undirected graphs only. For ter-
minology and notations not defined here we refer to [2]. Let G be
a connected graph and let distG(u, v) denote the distance between
vertices u and v in G. We ask for a partition of the vertex set of G
into disjoint classes X1, ..., Xk according to the following constraints.
Each color classXi should be an i-packing, a set of vertices with prop-
erty that any distinct pair u, v ∈ Xi satisfies distG(u, v) > i. Such
a partition is called a packing k-coloring, even though it is allowed
that some sets Xi may be empty. The smallest integer k for which
there exists a packing k-coloring of G is called the packing chromatic
number of G and it is denoted χρ(G). The very first results about
packing chromatic number were obtained by Slopper [15]. He stud-
ied an eccentric coloring but his results were directly translated to
the packing chromatic number. The concept of packing chromatic
number was introduced by Goddard et al. [9] under the name broad-
cast chromatic number. The term packing chromatic number was
later proposed by Brešar et al. [3]. The determination of the pack-
ing chromatic number is computationally difficult. It was shown to
be NP-complete for general graphs in [9]. Fiala and Golovach [6]
showed that the problem remains NP-complete even for trees.

The research of the packing chromatic number was driven by
investigating χρ(Z2) where Z2 is the Cartesian product of two infinite
paths - the (2-dimensional) square lattice. Goddard et al. [9] showed
that 9 ≤ χρ(Z2) ≤ 23. Fiala et al. [7] improved the lower bound to
10 and Holub and Soukal [10] improved the upper bound to 17. The
lower bound was pushed further to 12 by Ekstein et al. [4]. For Z3

see [7, 8].
Let D = {d1, d2, ..., dk}, where di are positive integers and i =

1, 2, ..., k. The (infinite) distance graph G(Z, D) with distance set D
has the set Z of integers as a vertex set and in which two distinct
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vertices i, j ∈ Z are adjacent if and only if |i−j| ∈ D. We denote the
graph G(Z, {a, b}) by D(a, b). The study of a coloring of distance
graphs was initiated by Eggleton et al. [5]. In last twenty years
there were more than 60 papers concerning this topic. We recall e.g.
contributions by Voigt and Walter [17], Ruzsa et al. [14], Liu [12],
Liu and Zhu [13] and Barajas and Serra [1].

D χρ ≥ χρ ≤
1,2 8 8
1,3 9 9
1,4 11 16
1,5 10 12
1,6 11 23
1,7 10 15
1,8 11 25
1,9 10 18

D χρ ≥ χρ ≤
1,2 8 8
1,3 9 9
1,4 14 15
1,5 12 12
1,6 15 23
1,7 14 15
1,8 15 25
1,9 13 18

Table 1: Lower and upper bounds for the packing chromatic number
of D(1, t). Left table contains previously known bounds and the right
table contains current bounds.

The study of a packing coloring of distance graphs was initi-
ated by Togni [16]. Results for D(1, t) for small values of t, ob-
tained by Togni [16], are summarized in the left part of Table 1.
Our improvements are emphasized in the right part of the table
and they were obtained by a computer. We wrote two indepen-
dent programs (one in Pascal and other one in C++). The source
codes and the outputs of the programs can be downloaded from
http://kam.mff.cuni.cz/ bernard/dist.
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For larger t Togni proved the following theorem.

Theorem 1. [16] For every q, t ∈ N:

χρ(D(1, t)) ≤



86 if t = 2q + 1, q ≥ 36,
40 if t = 2q + 1, q ≥ 223,
173 if t = 2q, q ≥ 87,
81 if t = 2q, q ≥ 224,
29 if t = 96q ± 1, q ≥ 1,
59 if t = 96q + 1± 1, q ≥ 1.

We improve some results of Theorem 1 as follows.

Theorem 2. For any odd integer t ≥ 575,

χρ(D(1, t)) ≤ 35.

For any even integer t ≥ 648,

χρ(D(1, t)) ≤ 56.

We also give a lower bound for the packing chromatic number of
D(1, t) for t ≥ 9, as a corollary of the following statement.

Theorem 3. [4] The packing chromatic number of the square lattice
is at least 12.

Corollary 4. Let D(1, t) be a distance graph, t ≥ 9 an integer. Then

χρ(D(1, t)) ≥ 12.

Throughout the rest of the paper by a coloring we mean a packing
coloring.
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2 D(1, t) with small t

In this section we prove new lower and upper bounds for the packing
chromatic number of D(1, t) which are mentioned in Table 1.

Lemma 5. χρ(D(1, 4)) ≤ 15.

Proof. We prove this lemma by exhibiting a repeating pattern for
15-packing coloring of D(1, 4). The pattern has period 320 and is
given here:
1,3,1,2,4,1,5,1,8,2,1,3,1,10,11,1,2,1,6,4,1,3,1,2,5,1,7,1,9,2,1,3,1,12,4,
1,2,1,13,8,1,3,1,2,6,1,5,1,4,2,1,3,1,7,10,1,2,1,15,14,1,3,1,2,5,1,4,1,11,2,
1,3,1,6,9,1,2,1,8,7,1,3,1,2,4,1,5,1,12,2,1,3,1,10,13,1,2,1,4,6,1,3,1,2,5,1,
7,1,8,2,1,3,1,4,14,1,2,1,11,9,1,3,1,2,6,1,5,1,4,2,1,3,1,7,10,1,2,1,8,12,1,3,
1,2,5,1,4,1,13,2,1,3,1,6,9,1,2,1,15,7,1,3,1,2,4,1,5,1,8,2,1,3,1,10,11,1,2,1,
6,4,1,3,1,2,5,1,7,1,9,2,1,3,1,12,4,1,2,1,13,8,1,3,1,2,6,1,5,1,4,2,1,3,1,7,
10,1,2,1,14,15,1,3,1,2,5,1,4,1,11,2,1,3,1,6,9,1,2,1,8,7,1,3,1,2,4,1,5,1,12,
2,1,3,1,10,13,1,2,1,4,6,1,3,1,2,5,1,7,1,8,2,1,3,1,4,11,1,2,1,15,9,1,3,1,2,6,
1,5,1,4,2,1,3,1,7,10,1,2,1,8,12,1,3,1,2,5,1,4,1,13,2,1,3,1,6,9,1,2,1,14,7.

The pattern was found with help of a computer using simulated
annealing heuristics [11].

Lemma 6.
14 ≤ χρ(D(1, 4)),

12 ≤ χρ(D(1, 5)),

14 ≤ χρ(D(1, 7)),

13 ≤ χρ(D(1, 9)).

Proof. These results were obtained by a computer using a brute force
search programs. We have written two independent programs (one
in Pascal and one in C++) implementing the brute force search. The
programs take vertices X = {1, 2, . . . k} from D(1, t). Then they try
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to construct a packing coloring % of X using colors from 1 up to c.
First, they assign %(1) = c and then they try to extend % to X. If
the extension is not possible we conclude that χρ(D(1, t)) > c. The
results of computations are summarized in Table 2.

D c k Configurations Time
1,4 13 81 6.4 · 1012 26 days
1,5 11 134 8.1 · 109 25 minutes
1,7 13 229 6.9 · 1013 335 days
1,9 12 66 6.2 · 1012 28 days

Table 2: Computations from Lemma 6. Time of the computation is
measured on a workstation from year 2010.

Let Hk denote a finite subgraph of D(1, t) on vertices 1, . . . , k
and let H ′k denote a finite subgraph of D(1, t) on vertices −k,−k +
1, . . . , k.

For a subset X of vertices of D(1, t) we define its density d(X) as

d(X) = lim sup
k→∞

|X ∩ V (H ′k)|
|V (H ′k)|

.

For a color c we define its density d(c) as

d(c) = max
χ

d(Xc),

where χ is a packing coloring of D(1, t) and Xc is a c-packing. Sim-
ilarly, by d(c1, . . . , cl) we mean

d(c1, . . . , cl) = max
χ

d(Xc1 ∪ . . . ∪Xcl
).

The following statement was proved in [7].
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Lemma 7. [7] If there exists a coloring of D(1, t) by k colors then,
for every 1 ≤ l ≤ k, it holds that

k∑
i=1

d(i) ≥ d(1, . . . , l) +
k∑

i=l+1

d(i) ≥ d(1, . . . , k) = 1.

Lemma 8.
15 ≤ χρ(D(1, 6)),

15 ≤ χρ(D(1, 8)).

Proof. To the contrary we suppose that χρ(D(1, 6)) ≤ 14. Using
a computer we verified that d(1, 2, 3, 4) ≤ 31

41 since we can color at
most 31 vertices of H41 using colors 1, 2, 3, 4. The computation took
about three minutes and it checked 4.6 · 109 configurations. Clearly,
d(i) ≤ 1

6i−9 for i ≥ 2 since there is no pair of vertices in H6i−9 with
distance greater than i and hence at most one vertex of H6i−9 can
be colored by color i. By Lemma 7 we easily get

d(1, 2, . . . , 14) ≤ d(1, 2, 3, 4)+

14X
i=5

d(i) ≤ 31

41
+

1

21
+· · ·+ 1

75
= 0.999771 < 1,

which is not possible since d(1, 2, . . . , 14) = 1 by the assumption
that χρ(D(1, 6)) ≤ 14.

Now to the contrary we suppose that χρ(D(1, 8)) ≤ 14. Using
a computer we verified that d(1, . . . , 6) ≤ 50

58 since we can color at
most 50 vertices of H58 using colors 1, . . . , 6. The computation took
about sixty hours and it checked 7.5 · 1011 configurations. Clearly,
d(i) ≤ 1

8i−20 for i ≥ 3 since there is no pair of vertices in H8i−20 with
distance greater than i and hence at most one vertex of H8i−20 can
be colored by color i. By Lemma 7 we easily get

d(1, 2, . . . , 14) ≤ d(1, . . . , 6)+

14X
i=7

d(i) ≤ 50

58
+

1

36
+· · ·+ 1

92
= 0.999110 < 1,

which is not possible since d(1, 2, . . . , 14) = 1 by the assumption
that χρ(D(1, 8)) ≤ 14.
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3 D(1, t) with large t

A key observation for this section is that a distance graph D(1, t),
for t > 1, can be drawn as an infinite spiral with t lines orthogonal
to the spiral (e.g. D(1, 5) on Figure 3).
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Figure 1: Distance graph D(1, 5).

For i ∈ {0, 1, ..., t − 1}, the i-band in a distance graph D(1, t),
denoted by Bi, is an infinite path in D(1, t) on the vertices V (Bi) =
{i + kt, k ∈ Z}. Note that the band Bi corresponds to one of t
lines orthogonal to the spiral. For i ∈ {0, 1, ..., t − 24}, the i-strip
in a distance graph D(1, t), t > 23, denoted by Si, is a subgraph of
D(1, t) induced by the union of vertices of Bi, Bi+1, ..., Bi+23.

We use the following statement proved by Goddard et al. in [9].

Proposition 9. [9] For every k ∈ N, the infinite path can be colored
by colors k, k + 1, ..., 3k + 2.

Holub and Soukal [10] improved the upper bound for a packing
coloring of the square lattice to 17 by finding a pattern on 24×24
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vertices using color 1 on positions as white places on a chessboard.
We use this pattern to prove the following lemma.

Lemma 10. Let D(1, t) be a distance graph, t > 24, and Si its
i-strip. Then χρ(Si) ≤ 17.

Proof. We cyclically use the pattern on 24×24 vertices to color all
the vertices of Si. Hence it is obvious that χρ(Si) ≤ 17.

Lemma 11. Let D(1, t) be a distance graph and Bi its i-band. If
vertices {i + 2jt, j ∈ Z} are colored by color 1, then it is possible to
extend the coloring to all vertices of Bi using colors k, k+1, ..., 2k−1,
for every k ∈ N, k > 2.

Proof. We color Bi by the following periodic pattern: 1, k, 1, k +
1, ..., 1, 2k − 1. As the period for every color different from 1 is 2k
and the largest used color is 2k−1, we conclude that we get a packing
coloring of Bi.

Lemma 12. Let D(1, t) be a distance graph, t ≥ 50, and Bi, Bi+25

its bands. Then it is possible to color Bi and Bi+25 using colors
C = {1, 18, 19, ..., 35}.

Proof. We color the vertices of Bi and Bi+25 repeating the pattern
from the proof of Lemma 11. We start to color Bi at the vertex i and
Bi+25 at the vertex i− kt for any k ∈ {11, 12, ..., 25}. Lemma 11 as-
sures that the distance between two vertices colored with color c in a
single band is greater than c. Let u ∈ V (Bi) and v ∈ V (Bi+25) be col-
ored by the same color. By the pattern from the proof of Lemma 11
we conclude that the distance between u and v is min{k, 36−k}+25
which is greater than 35. Hence we have a packing coloring of Bi
and Bi+25.
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For a distance graph D(1, t) we use notation D(1, t) =
S0B24S25B49 . . . to express that we view D(1, t) as a union of strips
S0, S25, . . . and bands B24, B49, . . ..

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Case 1: t is odd.
Let r, s be positive integers such that t = 24s + r, where r < 24 is
also odd. Since t ≥ 575, we get s ≥ r (for r = 23 we have 24s ≥
552). Thus we have s disjoint strips and r disjoint bands such that
D(1, t) = S0B24S25B49...S24(r−1)+r−1B24r+r−1S24r+r...S24(s−1)+r.

For odd j = 1, 3, ..., r, we color the strips S24(j−1)+j−1 cyclically
with the pattern on 24×24 vertices starting at the vertex 24(j−1)+
j−1. For even j = 2, 4, ..., r−1, we color S24(j−1)+j−1 cyclically with
the pattern on 24×24 vertices starting at the vertex 24(j−1)+j−1−t.
For j = r + 1, r + 2, ..., s, we color S24(j−1)+r cyclically with the
pattern on 24×24 vertices starting at the vertex 24(j − 1) + r − t.
Hence we have a packing coloring of all s disjoint strips of D(1, t)
using the same principle as in the proof of Lemma 10.

For odd j = 1, 3, ..., r− 2, we color the bands B24j+j−1 cyclically
with the sequence of colors 1, 18, 1, 19, ..., 1, 35 starting at the vertex
24j + j − 1. For even j = 2, 4, ..., r − 3, we color B24j+j−1 cyclically
with the sequence of colors 1, 18, 1, 19, ..., 1, 35 starting at the vertex
24j+j−1−17t. We color B24(r−1)+r−2, B24r+r−1 cyclically with the
sequence of colors 1, 18, 1, 19, ..., 1, 35 starting at the vertex 24(r −
1) + r − 2 − 13t, 24r + r − 1 − 24t, respectively. Hence we have
a packing coloring of all r disjoint bands of D(1, t) using the same
principle as in the proof of Lemma 12.

Note that the bands are colored by colors 1, 18, 19, ..., 35 and the
strips are colored by colors 1, 2, ..., 17 such that no pair of adjacent
vertices is colored with color 1. Then we conclude that we have a
packing coloring of D(1, t), hence χρ(D(1, t)) ≤ 35.

We illustrate this situation on Figure 2. The black vertices are
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colored by 1 and we color bands cyclically only with the sequence of
colors of length 6 instead of 36 and a strip consists of only 4 bands
instead of 24. Note that this decomposition is equivalent to our
situation.

S0 B24 S25 B49 B25r−1 St−24 S0

Figure 2: Distance graph D(1, t) for odd t.

Case 2: t is even.
Let r, s be positive integers such that t = 24(s+2)+r, where 0 < r ≤
24 is also even. Since t ≥ 648, we get s ≥ r (for r = 24 we have 24s ≥
576). Thus we have now s+2 disjoint strips and r disjoint bands such
that D(1, t) = S0S24B48S49B73...S24(r−1)+r−2B24r+r−2S24r+r−1

S24(r+1)+r−1...S24(s+1)+r−1B24(s+2)+r−1.
For odd j = 1, 3, ..., r − 1, we color the strips S0, S24j+j−1 cycli-

cally with the pattern on 24×24 vertices starting at the vertex 0,
24j + j − 1, respectively. For even j = 2, ..., r− 2, we color S24j+j−1

cyclically with the pattern on 24×24 vertices starting at the ver-
tex 24j + j − 1 − t. For j = r, r + 1, ..., s + 2, we color S24j+r−1

cyclically with the pattern on 24×24 vertices starting at the vertex
24j+ r− 1− t. Hence we have a packing coloring of all s+ 2 disjoint
strips of D(1, t) using the same principle as in the proof of Lemma 10.
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For odd j = 1, 3, ..., r− 1, we color the bands B24(j+1)+j−1 cycli-
cally with the sequence of colors 1, 18, 1, 19, ..., 1, 35 starting at the
vertex 24(j + 1) + j − 1. For even j = 2, 4, ..., r − 2, we color
B24(j+1)+j−1 cyclically with the sequence of colors 1, 18, 1, 19, ..., 1, 35
starting at the vertex 24(j+ 1) + j− 1− 17t. We color B24(s+2)+r−1

with sequence of colors 18, 19, ..., 56 starting at the vertex 24(s+2)+
r−1 by Proposition 9 for k = 18. Note the band B24(s+2)+r−1 is the
only one with colors greater than 35. We have a packing coloring of
all r disjoint bands of D(1, t) by the fact that the distance between
an arbitrary vertex of B24(s+2)+r−1 and a vertex of any other band is
at least 49 and using the same principle as in the proof of Lemma 12.

Note that the bands are colored by colors 1, 18, 19, ..., 56 and the
strips are colored by colors 1, 2, ..., 17 such that no pair of adjacent
vertices is colored with color 1. Then we conclude that we have a
packing coloring of D(1, t), hence χρ(D(1, t)) ≤ 56.

We illustrate this situation on Figure 3. Note that this decom-
position is equivalent to our situation as in Case 1.

S0 S24 B48 S49 B25r−2 S0St−25 Bt−1

Figure 3: Distance graph D(1, t) for even t.
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r t ≥ r t ≥
1 25 2 98
3 75 4 148
5 125 6 198
7 175 8 248
9 225 10 298
11 275 12 348
13 325 14 398
15 375 16 448
17 425 18 498
19 475 20 548
21 525 22 598
23 575 24 648

Table 3: Table for t depending on r.

Note that in some cases we can decrease t for which Theorem 2
is true. It depends on r from the proof of Theorem 2. We have
t ≥ 24r + r for odd t and t ≥ 24r + r + 48 for even t (see Table 3).

4 Lower bound from square lattice

In this section we give a proof of the lower bound for χρ(D(1, t)).

Proof of Corollary 4. By the proof of Theorem 3, a finite square lat-
tice 15×9 cannot be colored using 11 colors. Clearly D(1, t) contains
a finite square grid as a subgraph and t ≥ 9 assures existence of the
square lattice 15×9 in D(1, t). Therefore, χρ(D(1, t)) ≥ 12 for every
t ≥ 9.
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5 Conclusion

We have shown that the packing chromatic number of an infinite
distance graph D(1, t) is at least 12 for t ≥ 9 and at most 35 for
odd t greater or equal than 575 or at most 56 for even t greater or
equal than 648. Moreover, we have found some smaller values of t
for which Theorem 2 holds. The next research in this area can be
focused on finding better bounds for D(1, t). In particular, obtaining
a lower bound for D(1, t) which would exceed the upper bound for
the square lattice would be an interesting result.
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