
Maximal and supremal tolerances in

multiobjective linear programming

Milan Hlad́ık ∗ Sebastian Sitarz †

Abstract

Let a multiobjective linear programming problem and any
efficient solution be given. Tolerance analysis aims to compute
interval tolerances for (possibly all) objective function coeffi-
cients such that the efficient solution remains efficient for any
perturbation of the coefficients within the computed intervals.
The known methods yield tolerances that are not optimal. In
this paper, we propose a method for calculating the supremal
tolerance (the maximal one needn’t exist). The method is ex-
ponential in the worst case. We show that the problem of de-
termining the maximal/supremal tolerance is NP-hard, so an
efficient procedure is not likely to exist.

Keywords: Multiobjective linear programming, efficient solution, sensitiv-
ity analysis, tolerance analysis.

1 Introduction

This paper is a contribution to postoptimal analysis in multiobjective linear
programming, namely to tolerance analysis. Postoptimal analysis is a funda-
mental tool to study effects of various uncertainties and data perturbations
∗Charles University, Faculty of Mathematics and Physics, Department of Ap-

plied Mathematics, Malostranské nám. 25, 118 00 Prague, Czech Republic, e-mail:
milan.hladik@matfyz.cz
†University of Silesia, Institute of Mathematics, Department of Mathematical Meth-

ods in Economics and Finance, ul. Bankowa 14, 40-007 Katowice, Poland, e-mail:
ssitarz@ux2.math.us.edu.pl

1

on the model. The standard sensitivity analysis [14, 15] inspects behavior
of one coefficient perturbation. Contrary, tolerance analysis was developed
to handle simultaneous and independent variations of several coefficients.

Tolerance analysis was pioneered by Wendell [18, 19] in linear program-
ming, and then investigated by many researchers; see e.g. [8, 17, 20]. In
multiobjective linear programming, tolerance analysis was adapted by a
few of ways. Since multiobjective linear programming problems are often
solved by weighted sum scalarization, the first approach concerns tolerance
analysis of the objective function weights [1, 2, 5, 11].

Another way is to adapt tolerance analysis directly on the objective func-
tion coefficients. This approach was followed by Hlad́ık [6], who proposed
an algorithm for satisfactory large, but not necessarily maximal, tolerances.
Note that the maximal tolerances needn’t exist, so we will speak more about
supremal tolerances. Sitarz [16] calculates an upper bound on the supre-
mal additive tolerance. An extension to individual tolerances was given in
[7]. So far, there has been no method known for computing the supremal
tolerances, only the afore-mentioned lower nad upper bounds. Herein, we
present such an algorithm to compute the supremal tolerances.

The paper is organized as follows. After some preliminaries (Section 2)
we propose a formula to compute the supremal tolerances in terms of an
optimization problem (Section 3). In Section 3.1 we show how to practically
solve the optimization problem by decomposing into orthants. A procedure
to test whether the calculated supremal tolerance is also the maximal one
is presented in Section 3.2. NP-hardness of determining maximal/supremal
tolerance is proved in Section 3.3. Section 3.4 is concerned with an upper
bound on the supremal tolerance by using edges emerging from a given
vertex. Finally, we illustrate our method on examples in Section 4.

2 Preliminaries and problem statement

Let us introduce some notation first. By an interval matrix we mean a
family of matrices

[M,M] = {M ∈ Rm×n; M ≤M ≤M},

where M ≤ M are given matrices. The relation x 	 y denotes in short
that x ≥ y and x 6= y, diag(v) stands for the diagonal matrix with entries
v1, . . . , vn, and sgn(v) for the sign vector of a vector v. The ith row of a
matrix A is denoted by Ai..

2

Consider a multiobjective linear programming problem

maxCx subject to Ax ≤ b, (1)

where C ∈ Rs×n, A ∈ Rm×n and b ∈ Rm. A feasible solution x∗ is called
efficient if there is no feasible x such that Cx 	 Cx∗.

Now, let G ≥ 0 be an s × n matrix and consider the interval matrix
[C − δG,C + δG] with parameter δ > 0, and x∗ an efficient solution to (1).
A non-negative value δ is called admissible tolerance if x∗ remains efficient
for all C ′ ∈ [C − δG,C + δG]. Herein, G represents perturbation scales for
objective function coefficients. It is usually set up as Gij = |Cij | for relative
(percentage) tolerances, Gij = 1 for additive tolerances, and Gij = 0 in case
when perturbation of Cij is not in interest. However, they can be set up in
any other way according to the decision maker preferences and importances
of particular coefficients.

Our aim is to calculate the maximal admissible tolerance. Formally, we
define and denote the maximal tolerance as follows

δmax := max δ subject to x∗ is efficient ∀C ′ ∈ [C − δG,C + δG], δ ≥ 0.

Note that the maximal tolerance needn’t exist; see Example 1. That is why
we focus more on calculation of the supremal tolerance

δsup := sup δ subject to x∗ is efficient ∀C ′ ∈ [C − δG,C + δG], δ ≥ 0.

Once the supremal tolerance δsup is computed, δsup − ε is an admissible
tolerance for arbitrarily small ε > 0, but δsup is not necessarily admissible.

3 Main results

Let x∗ be a feasible solution and I(x∗) = {i;Ai.x = bi} its active set. The
tangent cone at x∗ is described

Ai.(x− x∗) ≤ 0, i ∈ I(x∗).

For simplicity, we denote the system by A1(x−x∗) ≤ 0. It is known [3] that
x∗ is efficient iff there is no dominated solution within the tangent cone,
that is, the system

A1(x− x∗) ≤ 0, C(x− x∗) 	 0 (2)

3

or

A1(x− x∗) ≤ 0, C(x− x∗) = y ≥ 0, 1T y = 1 (3)

has no solution. We utilize this characterization of efficiency to derive more
general robust characterization of efficiency in the following lemma, and to
state our main computational result in the sequel.

Lemma 1. Let x∗ be an efficient solution to (1). Then x∗ is efficient for
each C ′ ∈ [C − δG,C + δG] iff the system

A1(x− x∗) ≤ 0, C(x− x∗) + δG|x− x∗| 	 0 (4)

has no solution.

Proof. Sufficiency. Let C ′ ∈ [C − δG,C + δG] and suppose that x∗ is not
efficient for C ′, that is, there is a solution x to

A1(x− x∗) ≤ 0, C ′(x− x∗) 	 0.

Then x fulfills also

0 � C ′(x− x∗) = C(x− x∗) + (C ′ − C)(x− x∗)
≤ C(x− x∗) + |C ′ − C||x− x∗|
≤ C(x− x∗) + δG|x− x∗|.

Necessity. Now, suppose that x solves (4). Putting

C ′ := C + δGdiag(sgn(x− x∗)) ∈ [C − δG,C + δG]

we get

C ′(x− x∗) = C(x− x∗) + δGdiag(sgn(x− x∗))(x− x∗)
= C(x− x∗) + δG|x− x∗| 	 0

Thus x∗ is not efficient for C ′.

Theorem 1. Let x∗ be an efficient solution to (1). Then

δsup = min δ subject to A1(x− x∗) ≤ 0, (5a)
C(x− x∗) + δG|x− x∗| ≥ 0, (5b)

1TG|x− x∗| = 1, δ ≥ 0. (5c)

4

Proof. By Lemma 1, x∗ is efficient for each C ′ ∈ [C − δG,C + δG] iff the
system (4) has no solution. Thus we seek the supremal δ such that the
system (4) has no solution. Instead, we compute minimal δ ≥ 0 such that
the system (4) has a solution, that is

inf δ subject to A1(x− x∗) ≤ 0, C(x− x∗) + δG|x− x∗| 	 0, δ ≥ 0.
(6)

Its equivalent form is (5). The reason is the following. Let (δ, x) be a feasible
solution to (6). If 1TG|x− x∗| = 0 then G|x− x∗| = 0 and C(x− x∗) 	 0,
meaning that x∗ cannot be efficient. Otherwise, if 1TG|x − x∗| > 0 then(
δ, 1

1T G|x−x∗| (x− x
∗) + x∗

)
solves (5). Let (δ, x) be a solution to (5). Then

(δ+ε, x) is a solution to (6) for an arbitrarily small ε > 0. Thus the optimal
values of both problems are the same.

3.1 Decomposition procedure

The optimization problem (5) is difficult to solve, however, we can de-
compose it into 2n simpler problems according to the signs of (x − x∗)i,
i = 1, . . . , n. Let z ∈ {±1}n and consider a restriction to the orthant
defined by diag(z)(x− x∗) ≥ 0:

δz = min δ subject to A1(x− x∗) ≤ 0, (7a)
C(x− x∗) + δGdiag(z)(x− x∗) ≥ 0, (7b)

1TGdiag(z)(x− x∗) = 1, (7c)
δ ≥ 0, diag(z)(x− x∗) ≥ 0, (7d)

where min ∅ = ∞ by convention. The supremal tolerance is computed as
δsup = minz∈{±1}n δz.

We show that the sub-problems (7) can be transformed to belong to a
class of the so called generalized linear fractional programming problems,
and so is efficiently solvable. Generalized linear fractional programming
problems are problems of the form

maxα subject to Px− αQx ≥ 0, Qx ≥ 0, Rx ≥ r,

or

minβ subject to Px+ βQx ≥ 0, Qx ≥ 0, Rx ≥ r.

5

These problems are polynomially solvable using an appropriate interior
point method [4, 12]. By substitution y := diag(z)(x− x∗) we get

δz = min δ subject to A1 diag(z) y ≤ 0, (8a)
C diag(z) y + δGy ≥ 0, (8b)

1TGy = 1, δ ≥ 0, y ≥ 0. (8c)

Since y ≥ 0 implies Gy ≥ 0, the problem (8) takes the form of a generalized
linear fractional program and therefore is solvable in polynomial time.

Note that not always a number of 2n sub-problems is necessary to solve.
In some cases, some components of z ∈ {±1}n can be fixed to 1 or −1 and
hence the cardinality is several times halved. Provided that the ith column
of G is zero, we fix zi to be 1 or −1. Another possibility is that there are
some a priori bounds li ≤ xi ≤ ui on the variable xi in the constraints
of (1). If x∗i = li then xi − x∗i is always non-negative and we put zi = 1.
Similarly, x∗i = ui implies that xi − x∗i is non-positive and we fix zi = −1.

3.2 Checking whether δsup is the maximal tolerance

Theorem 1 gives a formula for computing the supremal tolerance δsup. A
natural question arise to check whether δsup is the maximal tolerance as well.
This question can be answered by using results on necessarily efficiency. The
point x∗ is called necessarily efficient with respect to an interval matrix
[C − R,C + R], R ≥ 0, if it is efficient for every C ′ ∈ [C − R,C + R].
Clearly, δsup is the maximal tolerance if and only if x∗ is necessarily efficient
for [C − δsupG,C + δsupG]. A number of results on necessarily efficiency
exists; see e.g. a survey in [13], or a sufficient condition and a necessary
condition in [10].

Nevertheless, testing necessarily efficiency may be time consuming. Pro-
vided that we compute the supremal tolerance by the decomposition method,
we can utilize it to derive a faster decision method. Obviously, it suffices to
go through all z ∈ {±1}n for which the minimum of δz is attained and check
whether x∗ is efficient for C + δsupGdiag(z). For the others z ∈ {±1}n, the
efficiency holds trivially. One can expect that the number of such minimizers
is usually very small.

3.3 NP-hardness

The decomposition procedure described in Section 3.1 requires an exponen-
tial number of steps in the worst case. In what follows we show that the

6

problem of determining the maximal/supremal tolerance is NP-hard, so the
problem doesn’t seem to be polynomially solvable.

Theorem 2. Let x∗ be an efficient solution to (1). Determining the supre-
mal tolerance and checking whether it is maximal is an NP-hard problem.

Proof. Let R ≥ 0. In [9] it was proven that the following problem is NP-
hard: Test whether x∗ is efficient to for every C ∈ [C − R,C + R], that is,
whether x∗ is necessarily efficient with respect to [C −R,C +R]. It can be
easily reduced to the maximal tolerance problem. Put G = R and calculate
the supremal tolerance δsup. If δsup > 1 then x∗ is necessarily efficient,
and if δsup < 1 then x∗ is not necessarily efficient. Eventually, δsup = 1
implies that x∗ is necessarily efficient if and only if δsup is also the maximal
tolerance.

3.4 Tolerances on edges

Theorem 3 below presents the opportunity of the calculation of the supremal
tolerances on edges. In the case of n = 2 we obtain exactly supremal
tolerance, but in higher dimensions we obtain only the upper bound.

Theorem 3. Let x∗ be an efficient solution to (1); hi, i ∈ I be directions
of all edges emerging from x∗ and δi be defined for i ∈ I as follows

δi = inf δ subject to Chi + δG|hi| 	 0, δ ≥ 0. (9)

Then
δsup ≤ min

i∈I
δi. (10)

Moreover, if n = 2, then
δsup = min

i∈I
δi. (11)

Proof. By the earlier consideration (2) we know that x∗ is an efficient solu-
tion to (1) iff two cones at x∗:

{x;A1(x− x∗) ≤ 0} and {x;C(x− x∗) 	 0}

are disjoint. Consider any C ′ ∈ [C − δG,C + δG], when we grow up a cone
{x;C ′(x−x∗) 	 0} by growing up δ until it reaches a cone {x;A1(x−x∗) ≤
0}, first we get one of its facets. Thus, we can consider in (6) only such
x, which are on facets of {x;A1(x − x∗) ≤ 0} at x∗. Now, we limit our

7

consideration to directions emerging from x∗. The formula (9) is taken
directly from problem (6) by changing (x − x∗) into hi. It is obvious that
considering only directions emerging from x∗, we consider only the part of
facets of {x;A1(x−x∗) ≤ 0} at x∗. Thus, by taking minimal of all δi by (9),
we obtain the upper bound of the supremal tolerance given by formula (10).
Moreover, if n = 2, the facets of {x;A1(x − x∗) ≤ 0} at x∗ are generated
by directions emerging from x∗, thus in this case, we obtain exactly the
supremal tolerance; this proves the formula (11).

Remark 1. Let us comment on Theorem 1 in the case of n = 2. If x∗

belongs to one of facets of {x;A1(x − x∗) ≤ 0}, there are two directions
emerging from it. Thus, we have I = {1, 2}. Moreover, to obtain the
supremal tolerance we do not need to solve the optimization problems (5)
or (7), but only some linear inequalities generated by (11) need to be solved.
The number δi can be interpreted as the tolerance connected with direction
hi. The illustration of the above consideration is presented in Example 1.

The formula (9) doesn’t seem simple at the first sight, but it is an easy
univariate optimization problem.

Theorem 4. The value δi from (9) is computable as follows. If G|hi| = 0
or there is k ∈ {1, . . . , s} such that Gk.|hi| = 0 and Ck.hi < 0 then δi =∞.
Otherwise

δi = max
k:Gk.|hi|>0

Ck.hi

Gk.|hi|
. (12)

Proof. When G|hi| = 0 then there is no feasible solution to (9) due to
efficiency of x∗. Thus there is no feasible solution for any δ ≥ 0. Similar
considerations hold true when Gk.|hi| = 0 and Ck.hi < 0 then δi = ∞ for
certain k ∈ {1, . . . , s}. For otherwise, there is always some k ∈ {1, . . . , s}
such thatGk.|hi| > 0 and Ck.hi ≥ 0. By elimination of δ from the inequality
Chi + δG|hi| 	 0 we obtain (12), and the value is non-negative.

We have proven that the formula (9) is easy to calculate. Thus the up-
per bound computation (10) is efficient as long as the number of edges is
mild. This is satisfied e.g. when the efficient solution x∗ is non-degenerate.
In this case, there are exactly n edges emerging from x∗ and can be explic-
itly characterized. Denote by B the optimal basis and by AB the matrix
consisting of the basic rows of A. Then the directions of edges are given as
columns of the matrix −A−1

B .

8

If x∗ is degenerate, then the number of outcoming edges may be expo-
nential in the worst case. However, we can choose a moderate number of
them and the statement of Theorem 3 remains true.

4 Examples

Example 1. We adopt the example from [6]

max(2.5x1 + 2x2, 3.5x1 + 0.65x2)
subject to 3x1 + 4x2 ≤ 42, 3x1 + x2 ≤ 24, x2 ≤ 9, x ≥ 0,

that is,

C =
(

2.5 2
3.5 0.65

)
, A =


3 4
3 1
0 1
−1 0
0 −1

 , b =


42
24
9
0
0

 .

Consider the efficient solution x∗ = (6, 6)T . First, put Gij = 1 for all
i, j. In [6], an admissible tolerance δ = 0.7161 was calculated, but it is not
the maximal one. Here, we will proceed along the presented algorithm to
compute the maximal/supremal tolerance. The tangent cone to x∗ reads

3x1 + 4x2 ≤ 42, 3x1 + x2 ≤ 24,

so we have

A1 =
(

3 4
3 1

)
.

The sets A1(x− x∗) ≤ 0 and C(x− x∗) 	 0 are illustrated in Figure 1,
where one can see that these sets are disjoint, so it illustrates x∗ to be an
efficient solution as well. Now, we call (8) for all z ∈ {±1}2, and we obtain
the following results

z δz
(1, 1) ∞

(1,−1) 0.875
(−1, 1) 1.7214

(−1,−1) 2

9

x1

x2

A1(x− x∗) ≤ 0

C(x− x∗) 	 0

Figure 1: The considered cones connected with x∗ in Example 1.

Observe the minimal value is 0.875, so the supremal tolerance reads δsup =
0.875. That is, all objective function coefficients may perturb up to almost
0.875 and x∗ remains efficient. We check if it is also the maximal tolerance.
The minimal value of δz is attained for only one minimizer z = (1,−1), so
it suffices to verify whether x∗ is efficient for

C ′ = C + δsupGdiag(z) =
(

3.375 1.125
4.375 −0.225

)
. (13)

It is easy to calculate that x∗ is not efficient in this setting, and it is domi-
nated by the feasible points on the edge emerging from x∗ in the direction
of (1,−3). See Figure 2, where C ′ is given by (13).

Analyse the geometrical interpretation of the obtained results. The con-
straint y = diag(z)(x − x∗) ≥ 0 (see (8)) divides our space R2 into four
orthants with origin in x∗. By solving problem (8) we find an optimal solu-
tion over these orthants. The illustration of obtaining δz is given in Figure 3.
Notice that in the case of z = (1, 1) we obtain the empty feasible set, thus
δ(1,1) =∞ (see Figure 3(a)). In the cases of z = (1,−1) and z = (−1, 1) we
obtain δz on the edges emerging from x∗ (see Figures 3(b) and 3(c)). For
z = (−1,−1) we obtain δz on the edge of the corresponding orthant (see
Figure 3(d)).

Now, we illustrate Theorem 3 by using Figure 3. We have I = 1, 2
and h1 = (1,−3), h2 = (−4, 3). By using (9) we obtain δ1 = 0.875 and
δ2 = 1.7214. Figure 3(b) presents obtaining δ1 on edge h1 and Figure 3(c)
shows obtaining δ2 on edge h2. Moreover, notice that δ1 = δ(1,−1) and

10

x1

x2

A1(x− x∗) ≤ 0

C ′(x− x∗) 	 0

Figure 2: Checking whether δsup is the maximal tolerance in Example 1.

δ2 = δ(−1,1), because the considered edges belong to the orthants generated
by z = (1,−1) and z = (−1, 1) respectively.

Example 2. We consider Example 1 with a new matrix G = |C|. In [6], an
admissible tolerance δ = 1

3 was calculated, but it is not the maximal one,
either. By (8), we calculate

z δz
(1, 1) ∞

(1,−1) 0.4118
(−1, 1) 0.7555

(−1,−1) 1

Thus, the supremal tolerance is δsup = 0.4118. In other words, the objec-
tive function coefficients may perturb up to almost 41.18% while preserving
efficiency of x∗. In a similar manner as above we verify that the maximal
tolerance is not attained.

Example 3. It might seem that the maximal tolerance is never attained.
This is not true, as observed by the following example. Consider the fea-
sible set from Example 1 with new objective and tolerance scale matrices
respectively

C =
(

3.5 3.5
6 7.5

)
, G =

(
1 1
0 1

)
.

11

x1

x2

(a) z = (1, 1)

x1

x2

(b) z = (1,−1)

x1

x2

(c) z = (−1, 1)

x1

x2

(d) z = (−1,−1)

Figure 3: Obtaining δz in Example 1, the filled sets are the same as in
Figure 1.

Herein, x∗ = (6, 6)T is an efficient solution, too. The supremal tolerance
computed δsup = 0.5, and it corresponds to a unique minimizer z = (−1, 1).
Testing efficiency for

C ′ = C + δsupGdiag(z) =
(

3 4
6 8

)
. (14)

becomes successful, see Figure 4, where C ′ is given by (14). Therefore, the
maximal tolerance is attained, i.e., δsup = δmax. Checking whether δsup

is the maximal tolerance in Examples 1 and 3 gives us some geometrical
intuition, but characterization of existence of the maximal tolerance is a
more complex question in general, and needs further research.

12

x1

x2

A1(x− x∗) ≤ 0

C ′(x− x∗) 	 0

Figure 4: Checking whether δsup is the maximal tolerance in Example 3.

5 Conclusion

We proposed an algorithm for determining the supremal tolerance interval
in which objective function coefficients may simultaneously vary while a
given point remains efficient. The algorithm is exponential in the worst
case, which is not surprising with respect to NP-hardness of the problem.
Moreover, we propose a procedure to check whether the supremal tolerance
is the maximal tolerance as well. What we leave as an open problem is any
theoretical characterization of the situation when the maximal tolerance is
attained.

References

[1] A. R. P. Borges and C. H. Antunes. A visual interactive tolerance ap-
proach to sensitivity analysis in MOLP. Eur. J. Oper. Res., 142(2):357–
381, 2002.

[2] A. R. P. Borges and C. H. Antunes. Stability of efficient solutions
against weight changes in multi-objective linear programming models.
In Proceedings of the MOPGP’06 – 7th International Conference on
Multi-Objective Programming and Goal Programming, June 2006.

[3] M. Ehrgott. Multicriteria optimization. 2nd ed. Springer, Berlin, 2005.

13

[4] R. W. Freund and F. Jarre. An interior-point method for multifrac-
tional programs with convex constraints. J. Optim. Theory Appl.,
85(1):125–161, 1995.

[5] P. Hansen, M. Labbé, and R. E. Wendell. Sensitivity analysis in mul-
tiple objective linear programming: The tolerance approach. Eur. J.
Oper. Res., 38(1):63–69, 1989.

[6] M. Hlad́ık. Additive and multiplicative tolerance in multiobjective lin-
ear programming. Oper. Res. Lett., 36(3):393–396, 2008.

[7] M. Hlad́ık. Computing the tolerances in multiobjective linear program-
ming. Optim. Methods Softw., 23(5):731–739, 2008.

[8] M. Hlad́ık. Tolerance analysis in linear programming. Technical report
KAM-DIMATIA Series (2008-901), Department of Applied Mathemat-
ics, Charles University, Prague, 2008.

[9] M. Hlad́ık. Complexity of necessary efficiency in interval LP and
MOLP. Technical report KAM-DIMATIA Series (2010-980), Depart-
ment of Applied Mathematics, Charles University, Prague, 2010.

[10] M. Hlad́ık. On necessary efficient solutions in interval multiobjective
linear programming. In C. H. Antunes, D. R. Insua, and L. C. Dias,
editors, CD-ROM Proceedings of the 25th Mini-EURO Conference Un-
certainty and Robustness in Planning and Decision Making URPDM
2010, April 15-17, Coimbra, Portugal, pages 1–10, 2010.

[11] A. M. Mármol and J. Puerto. Special cases of the tolerance approach in
multiobjective linear programming. Eur. J. Oper. Res., 98(3):610–616,
1997.

[12] Y. E. Nesterov and A. S. Nemirovskij. An interior-point method
for generalized linear-fractional programming. Math. Program.,
69(1B):177–204, 1995.

[13] C. Oliveira and C. H. Antunes. Multiple objective linear programming
models with interval coefficients – an illustrated overview. Eur. J. Oper.
Res., 181(3):1434–1463, 2007.

[14] S. Sitarz. Postoptimal analysis in multicriteria linear programming.
Eur. J. Oper. Res., 191(1):7–18, 2008.

14

[15] S. Sitarz. Sensitivity analysis of weak efficiency in multiple objective
linear programming. Asia-Pac. J. Oper. Res., 2010. in press.

[16] S. Sitarz. Standard sensitivity analysis and additive tolerance approach
in MOLP. Ann. Oper. Res., 181(1):219–232, 2010.

[17] J. E. Ward and R. E. Wendell. Approaches to sensitivity analysis in
linear programming. Ann. Oper. Res., 27:3–38, 1990.

[18] R. E. Wendell. A preview of a tolerance approach to sensitivity analysis
in linear programming. Discrete Math., 38:121–126, 1982.

[19] R. E. Wendell. Using bounds on the data in linear programming: The
tolerance approach to sensitivity analysis. Math. Program., 29:304–322,
1984.

[20] R. E. Wendell. Linear programming. III: The tolerance approach. In
Gal, Tomas et al., editor, Advances in sensitivity analysis and paramet-
ric programming, chapter 5, pages 1–21. Kluwer Academic Publishers,
Dordrecht, 1997.

15

