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Abstract

We determine the spectra of cubic plane graphs whose faces have

sizes 3 and 6. Such graphs, “(3,6)-fullerenes”, have been studied by

chemists who are interested in their energy spectra. In particular we

prove a conjecture of Fowler, which asserts that all their eigenval-

ues come in pairs of the form {λ,−λ} except for the four eigenvalues

{3,−1,−1,−1}. We exhibit other families of graphs which are “spec-

trally nearly bipartite” in the sense that nearly all of their eigenvalues

come in pairs {λ,−λ}. Our proof utilizes a geometric representation

to recognize the algebraic structure of these graphs, which turn out

to be examples of Cayley sum graphs.
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1 Introduction

A (3, 6)-fullerene is a cubic plane graph whose faces have sizes 3 and 6.
(In fact, Euler’s formula implies that there are exactly four faces of size 3.)
These graphs have received recent attention from chemists due to their sim-
ilarity to ordinary fullerenes. (Such graphs are sometimes called (3, 6)-cages
in that community, but in graph theory this term already has a different,
well-established meaning.) In 1995, Patrick Fowler (see [7]) conjectured the
following result, which we prove here. Prior to this work, this result had
been established for several subfamilies of (3, 6)-fullerenes [7, 5, 14]. Recall
that the spectrum of a graph is the multiset of eigenvalues of its adjacency
matrix.

Theorem 1.1. If G is a (3, 6)-fullerene, then the spectrum of G has the
form {3,−1,−1,−1} ∪ L ∪ (−L) where L is a multiset of nonnegative real
numbers, and −L is the multiset of their negatives.

In fact we prove (as Theorem 3.2) an extended conjecture of Fowler
et al. [7]. They propose that a generalized class of graphs called (0, 3, 6)-
fullerenes also exhibit this “spectrally nearly bipartite” behavior. A semiedge
of a graph is an edge with one endpoint, but unlike a loop, a semiedge con-
tributes just one to both the valency of its endpoint1 and the corresponding
diagonal entry of the adjacency matrix. In a plane embedding, a semiedge
s with endpoint v is drawn as an arc with one end at v which sits in a
face f , and s contributes one to the length of f . A (0, 3, 6)-fullerene is a
connected 3-regular graph, possibly with semiedges, embedded in the plane
so that each face has length 3 or 6. (The “0” in the above definition comes
from the fact, that in physics literature, they treat semiedges as faces of
length 0.) Figure 1 displays some examples of small (0, 3, 6)-fullerenes. It
can be proved that (0, 3, 6)-fullerenes have at most four semiedges, see (1).

1Still, we use vv to denote a semiedge at a vertex v.
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Figure 1: Examples of some small (0, 3, 6)-fullerenes.

The outline of our proof is as follows. We show that every (0, 3, 6)-
fullerene can be represented as a quotient of a certain lattice-like graph in
the plane. This geometric description allows us to prove that these graphs
are Cayley sum graphs. Then we call on a theorem which describes the
spectral behavior of Cayley sum graphs in terms of the characters of the
group.

In fact, the geometric description of (0, 3, 6)-fullerenes which is inherent
in our proof is just a slight extension of a construction for (3, 6)-fullerenes
which has been discovered by several authors [5, 7, 16], and follows easily
from a deep theorem on the intrinsic metric of polygonal surfaces by Alexan-
drov [1]. In Section 4, we give a proper exposition of this construction, and
a proof that it is universal.

With this construction in hand, it is possible to explicitly compute the
spectrum of (0, 3, 6)-fullerenes, and in Section 5 we detail precisely how this
computation can be carried out. Finally, in Section 6, we generalize this
construction to show how a general Cayley sum graph can be obtained from
a similar construction.
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2 Cayley sum graphs

Let Γ be a finite additive abelian group, and let S ⊆ Γ. We define the Cayley
sum graph CayS(Γ, S) to be the graph (V,E) with V = Γ, and uv ∈ E if
and only if u + v ∈ S. If S is a multiset, then CayS(Γ, S) contains multiple
edges, and if there exists u ∈ Γ with 2u ∈ S, then the edge uu is a semiedge.
This definition is a variation of the well-studied Cayley graph Cay(Γ, S), in
which uv forms an edge if and only if u− v ∈ S.

In contrast with Cayley graphs, there are only a few appearances of
Cayley sum graphs in the literature (see [9] and references therein). For
this reason we state some of their elementary properties. The graph G =
CayS(Γ, S) is |S|-regular. While G is not generally vertex-transitive, the
map x 7→ x + t is an isomorphism from G to CayS(Γ, S + 2t), for every
t ∈ Γ. Finally, the squared graph G(2), which has an edge for each walk of
length 2 in G, is the ordinary Cayley graph Cay(Γ, S − S) where S − S is
the multiset {s1 − s2 | s1, s2 ∈ S}.

The spectrum of a (finite abelian) Cayley graph Cay(Γ, S) is easy to
describe (see [10, Ex. 11.8] or [11], where the nonabelian case is dealt with).
Every character χ of Γ is a (complex-valued) eigenvector corresponding to
the eigenvalue

χ(S) :=
∑
s∈S

χ(s) .

We may assume Γ = Zn1 × · · · × Znu
, where |Γ| =

∏
i ni and Zk denotes

the cyclic group of order k. To each a = (a1, . . . , au) ∈ Γ we associate the
group character

χa : (x1, . . . , xu) 7→ exp

2πi
∑

j

ajxj

nj

 .

The characters for a and −a satisfy χ−a(x) = χa(x), so χa is a real-valued
(indeed ±1-valued) eigenvector of Cay(Γ, S) if and only if a is an involutive
group element. If a is not involutive, then the real and imaginary parts
of χa provide real-valued eigenvectors for the conjugate pair of eigenvalues
χa(S), χ−a(S).

Cayley sum graphs exhibit a similar phenomenon. Let R = {χa | a +
a = 0} be the real-valued characters of Γ, and let C be a set containing
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exactly one character from each conjugate pair {χa, χ−a} (where a ∈ Γ and
a + a 6= 0). So the set of characters of Γ is R ∪ {χ, χ | χ ∈ C}. Versions of
the following result can be found in the literature [6, 2].

Theorem 2.1. Let G = CayS(Γ, S) be a Cayley sum graph on a finite
abelian group Γ, and let R, C be as above. The multiset of eigenvalues of G

is
{χ(S) : χ ∈ R} ∪ {±|χ(S)| : χ ∈ C}.

The corresponding eigenvectors are χ (for χ ∈ R), and the real and the
imaginary parts of αχ (for χ ∈ C with a suitable complex scalar α which
depends only on χ(S)).

Proof. Let χ be a character of Γ and u ∈ Γ a vertex of CayS(Γ, S). Then∑
v∈N(u)

χ(v) =
∑
s∈S

χ(s− u) = χ(S)χ(u) .

This shows that every real-valued character is an eigenvector corresponding
to the eigenvalue χ(S). If χ ∈ C, then χ is not an eigenvector. In this case
we choose a complex number α such that |α| = 1 and α2χ(S) = |χ(S)| and
we define x(v) = αχ(v). It follows that for every u ∈ Γ,∑

v∈N(u)

x(v) = α2χ(S) · α−1χ(u) = |χ(S)| · x(u).

Consequently, Re x and Im x are real eigenvectors corresponding to eigen-
values |χ(S)| and −|χ(S)|, respectively. Both of these vectors are nonzero,
as they generate the same 2-dimensional (complex) vector space as the char-
acters {χ, χ}. This, together with the orthogonality of characters, implies
that we have described the complete set of eigenvectors, and thus the entire
spectrum of CayS(Γ, S).

3 (0,3,6)-fullerenes as Cayley sum graphs

The goal of this section is to prove that (0, 3, 6)-fullerenes are Cayley sum
graphs, and to subsequently prove Fowler’s conjecture regarding their spec-
tra.
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The proof of Theorem 3.1 utilizes structural properties of 3-regular
hexagonal tilings (hereafter called hexangulations) of the torus. This class
of graphs was classified by Altshuler [4] and studied by many others (e.g.,
Thomassen [15]). In a recent work of Alspach and Dean [3], it is shown that
they are indeed Cayley graphs, and a description of the group is given. Al-
though the properties we require of these graphs are similar to those found
elsewhere, our approach is novel since it is inherently geometric.

A polygonal surface H is a connected 2-manifold without boundary
which is obtained from a collection of disjoint simple polygons in E2 by
identifying them along edges of equal length. Thus we view H both (com-
binatorially) as an embedded graph with vertices, edges, and faces, and as
a manifold with a (local) metric inherited from E2.

Theorem 3.1. Every (0, 3, 6)-fullerene is isomorphic to a Cayley sum graph
for an abelian group which can be generated by two elements.

Proof. Let G be a cubic (0, 3, 6)-fullerene with vertex set V . Let G2 =
G×K2 (the categorical graph product); G2 is also known as the Kronecker
double cover of G. Let (V•, V◦) be the corresponding bipartition of V (G2),
and for every v ∈ V , let v• ∈ V• and v◦ ∈ V◦ be the vertices of G2 which
cover v. Every semiedge vv ∈ E(G) lifts to the edge v•v◦ in G2. Each facial
walk of G bounding a face of size 6 lifts to two closed walks of length 6 in G2,
and each facial walk of G bounding a face of size 3 lifts to a closed walk of
length 6 in G2. Accordingly, we may extend G2 to a polygonal surface H by
treating all edges as having equal length and adding a regular hexagon to
each closed walk which is the preimage of a facial walk of G, with clockwise
orientation as given by the clockwise orientation of that face. Now, H is an
orientable polygonal surface, all vertices have degree three, and all faces are
regular hexagons, so H is a regular hexangulation of the flat torus. Let H̃
be the universal cover of H and let p : H̃ → H be the covering map. Then
H̃ (with the metric inherited from H) is the regular hexangulation of the
Euclidean plane. We define Ṽ• = p−1(V•), Ṽ◦ = p−1(V◦), and x̃ = p−1(x)
for x ∈ V• ∪ V◦.

Fix a vertex u• ∈ V•, and treat H̃ as a regular hexangulation of E2 with
p((0, 0)) = u•. This equips H̃ with an (additive abelian) group structure.
The point set Ṽ• is a geometric lattice. The point set ũ• is a sublattice of
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Ṽ•. Any fundamental parallelogram of ũ• is a fundamental region of the
cover p. We may identify H with H̃/ũ•, and this equips H with a group
structure whose identity is u•.

For every y ∈ H (y ∈ H̃) the map x 7→ x + y is an isometry of H (H̃, re-
spectively). This map may or may not preserve the combinatorial structure
of H (H̃). An isometry µ : H → H is respectful if µ is an automorphism of
the embedded graph associated with H. An isometry µ̃ : H̃ → H̃ is respect-
ful if it is a lift of a respectful isometry of H. Now, for every y ∈ Ṽ• the map
x 7→ x + y is a respectful isometry of H̃. Accordingly, V• is a subgroup of
H with identity u•, and for every y ∈ V• the map x 7→ x + y is a respectful
isometry of H.

Let ρ be the automorphism of the graph G2 given by the rule ρ(v◦) = v•
and ρ(v•) = v◦ for every v ∈ V . Now, ρ extends naturally to a respectful
isometry of H which preserves the orientation of the hexagons, but inter-
changes V◦ and V•. We choose a respectful isometry ρ̃ of E2 so that ρ lifts
to ρ̃. Because ρ̃ preserves the orientation of E2, the isometry ρ̃ is either a
rotation or translation. Since ρ̃ is respectful and maps Ṽ• to Ṽ◦, it easily
follows that either ρ̃ is a rotation by π about the center of an edge or a face,
or ρ̃ is a rotation by π/3 about the center of a face F .

We first consider the latter case. Here, all three vertices of Ṽ• which
are on the boundary of F , lie in the same orbit of ρ̃2. Since ρ2 is the
identity, all three vertices cover the same vertex, say v• in H. The other
three vertices of F cover v◦. In this case G2 is the theta-graph with vertex
set {v•, v◦}; we have G ∼= CayS({0}, {0, 0, 0}), the graph with one vertex
and three semiedges, and there is nothing left to prove.

We henceforth assume that ρ̃ is a rotation by π. Let x, y ∈ V• and choose
x̃, ỹ ∈ Ṽ• which project (respectively) to x, y. Then (using the fact that ρ̃

is a rotation by π) we find that

ρ(ρ(x) + y) = p(ρ̃(ρ̃(x̃) + ỹ))

= p(x̃− ỹ)

= x− y.

In other words, for any fixed y ∈ V•, conjugating the map on H given by
x 7→ x + y, by ρ yields the map x 7→ x− y.
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We define a labeling ` : V• ∪ V◦ → V• by the rule `(v•) = `(v◦) = v•.
We regard ` to be a labeling of V (G2) by elements of the abelian group V•.
Let v ∈ V and y ∈ V•. Then we have

`(v• + y) = `(v•) + y

and

`(v◦ + y) = `(ρ(v◦ + y))

= `(ρ(ρ(v•) + y))

= `(v• − y)

= `(v◦)− y.

That is, the group V• acts on the labels of points in V• by addition and on
the labels of points in V◦ by subtraction. Let S be the multiset of labels
of the three vertices in V◦ which are adjacent to u• (recall that u• is the
group identity for V•). Then, for every v• ∈ V•, the labels of the three
neighbors of v• in G2 form the multiset S − v•. In particular, v and v′ are
adjacent vertices in G if and only if `(v•) + `(v′◦) = v• + v′• ∈ S. It follows
immediately from this that G ∼= CayS(V•, S). Since Ṽ• can be generated by
two elements, V• = Ṽ•/ũ• can also be generated by two elements, and this
completes the proof.

We need only one quick observation before we resolve Theorem 1.1 and
the extended conjecture of Fowler et al. If G is a cubic plane graph with s

semiedges, and fi faces of size i for every i ≥ 1, then 3|V (G)| = 2|E(G)|−s =∑
i≥1 ifi. Applying Euler’s formula, we find that

∑
i≥1(6− i)fi = 12− 3s.

In particular, every (0, 3, 6)-fullerene satisfies

s + f3 = 4. (1)

Theorem 3.2. If G is a (0, 3, 6)-fullerene with s semiedges, then the spec-
trum of G may be partitioned as M ∪ L ∪ (−L) where one of the following
holds:

(a) s = 0 and M = {3,−1,−1,−1},
(b) s = 2 and M = {3,−1},
(c) s = 3 and M = {3}, or
(d) s = 4 and M = {3, 1}.
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Proof. By the previous theorem, there is an abelian group Γ which can
be generated by two elements so that G ∼= CayS(Γ, S) for some S ⊆ Γ
with |S| = 3. By Theorem 2.1, we may partition the eigenvalues of G into
multisets M,L,−L where M = {χ(S) : χ ∈ R} and R is the set of ±1-
valued characters of Γ. Every eigenvalue in M is the sum of three integers
in {±1}. The identity character corresponds to 3 ∈ M . Since G is not
bipartite,2 we have −3 /∈ M , so every other element of M is ±1. The trace
of the adjacency matrix is equal to s, and is also equal to the sum of the
eigenvalues. Since L and −L sum to 0, we conclude that s =

∑
M .

We have |R| ∈ {1, 2, 4} because Γ has 2k involutive elements, for some
k ≤ 2. If |R| = 1, then M = {3} and s = 3 as in the statement. If |R| = 2,
then s =

∑
M = 3 ± 1, so we have either the case s = 2 or s = 4 of the

statement. Finally, we assume |R| = 4. By Equation (1) we have s ≤ 4,
so

∑
M ∈ {0, 2, 4}. If

∑
M = 0, then s = 0 (G is a (3, 6)-fullerene), and

we have case (a). Finally, if
∑

M ∈ {2, 4}, then M contains both a 1 and
a −1. By transferring these two entries from M to the multisets L and −L,
we find ourselves again in either the case s = 2 or the case s = 4 of the
statement. This completes the proof.

We remark that there are infinitely many (0, 3, 6)-fullerenes with s semi-
edges, for each s = 0, 2, 3, 4. As shown by Theorem 3.2, there are none with
s = 1, a fact that is non-trivial to prove from the first principles (compare
Theorem 2 (with k = 3) in [8, Sec. 13.4, p. 272]).

4 An explicit construction

It is known (see references in the Introduction) that all (3, 6)-fullerenes arise
from the so-called grid construction. Roughly speaking, the grid construc-
tion expresses the dual plane graph, which is a triangulation of the sphere,
as a quotient of the regular triangular grid. The grid construction is also
used by physicists [5, 14] (sometimes without formal justification) since it is
a convenient way to classify (3, 6)-fullerenes and compute their invariants.

We describe an extension of the grid construction and show that it
characterizes the (0, 3, 6)-fullerenes. The construction makes clear how

2Note that in this context, no graph with semiedge is bipartite.
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semiedges arise. The group structure of (0, 3, 6)-fullerenes is explicitly de-
termined as a quotient of the group of translations of the triangular grid.
With this, we can easily find the Cayley sum graph representation via stan-
dard lattice computations, and thereby determine the spectrum and the
eigenvectors of every (0, 3, 6)-fullerene.

In the following, T denotes the infinite triangular grid. Its vertices
(called gridpoints) form the so-called A2 lattice. The midpoint of any edge
in T is called an edgepoint. The dual G∗ of a plane graph G with semiedges
is defined as an obvious extension of the dual of an ordinary graph; every
semiedge in G which is incident with vertex v and face f corresponds to a
semiedge in G∗ which is incident with the dual vertex f∗ and the dual face
v∗.

Construction 4.1. The following procedure results in a (0, 3, 6)-fullerene
G.

1. Let 4ABC be a triangle having no obtuse angle, and whose vertices
are gridpoints of T . Let Ā, B̄, C̄ be the midpoints of the edges which
are opposite to A, B, C (respectively) in 4ABC.

2. Optionally, translate 4ABC so that A coincides with an edgepoint of
T .

3. From 4ABC, we fold an (isosceles) tetrahedron Q = AĀB̄C̄ by iden-
tifying the boundary segment ĀB with ĀC, B̄C with B̄A, and C̄A with
C̄B (so A, B, and C are identified into a single vertex in Q). The
portion of T lying within 4ABC becomes a finite graph G∗, possibly
with semiedges, and drawn on the surface of Q.

4. Let G be the dual of the plane graph G∗.

Every gridpoint within or on the boundary of 4ABC, except A, Ā, B̄,
and C̄, has degree 6 in G∗, and corresponds to a hexagonal face of G. After
Step 2, each of A, Ā, B̄, C̄ is either a gridpoint or an edgepoint of T . If
X ∈ {A, Ā, B̄, C̄} is a gridpoint, then X becomes a vertex of degree 3 in
G∗, and corresponds to a triangular face in G. If X is an edgepoint, then
X becomes one end of a semiedge in G∗, which corresponds to a semiedge
in G. It follows that Construction 4.1 results in a (0, 3, 6)-fullerene.
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Figure 2: An example of Construction 4.1.

We remark that Construction 4.1 works even if 4ABC has an obtuse
angle (although it does not yield a geometric tetrahedron). However, this
does not give any new (0, 3, 6)-fullerenes, as the following theorem shows.
By forbidding obtuse triangles, we lose no generality and gain canonicality.

Theorem 4.2. Every (0, 3, 6)-fullerene arises from Construction 4.1.

Proof. Let G be a (0, 3, 6)-fullerene. If G has just one vertex, then G arises
from the construction when 4ABC is a triangular face of T . We assume
next that G has at least two vertices. The proof of Theorem 3.1 shows that
the direct product G2 = G ×K2 is a bipartite hexangulation H of the flat
torus. Moreover, H is the image of a covering map p : H̃ → H from a
hexagonal tessellation of the plane.

We further recall that there is an isometry ρ of H which is respectful of
G2 and interchanges its partite sets V• and V◦. This isometry lifts to an
isometry of H̃ which is a rotation ρ̃ by π about a point, say A ∈ H̃, which
is either the center of a hexagonal face, or the midpoint of an edge of H̃.
(More precisely ρ̃ : x 7→ 2A − x is the central symmetry through A.) The
kernel of p (more precisely, the set p−1(p(A))) is a geometric lattice Λ in
H̃, and rotation by π about any point in the scaled lattice 1

2Λ projects to
ρ. Let B, C be points in H̃ such that the vectors AB, AC form a lattice
basis for Λ. By possibly translating C by a (unique) integer multiple of AB,
we can assume that 4ABC has no obtuse angles. This lattice basis defines
a fundamental parallelogram ABDC where AD = AB + AC. Scaling the
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parallelogram by 1
2 results in a fundamental parallelogram for 1

2Λ whose
vertices we may label AC̄ĀB̄ as in Construction 4.1.

Now each vertex v of G lifts to a unique pair of vertices v•, v◦ in the
(half-open) parallelogram ABDC. If one of the vertices in {v◦, v•} is not
on the boundary of 4ABC, then v◦, v• are centrally symmetric about Ā;
we may represent v by the unique vertex in {v◦, v•} which lies in 4ABC.
Otherwise, both vertices in {v◦, v•} lie on the same edge of4ABC, and they
are centrally symmetric about either Ā, B̄, or C̄, so they will be identified
in Step 3 of the construction. In this way we obtain an isomorphic copy
of G. Finally, Construction 4.1 is stated in terms of the triangular grid T ,
which is the plane dual of H̃.

We remark that Construction 4.1 in fact produces a (0, 3, 6)-fullerene G

rooted at a triangle or a semiedge labeled with A. Two triangles drawn in T
result in isomorphic pairs (G, A) if and only if the triangles are congruent.
Therefore the map 4ABC 7→ G is at most 4-to-1 up to symmetries of T .

5 Computing the spectrum

In this section, we use Construction 4.1 to compute the group and spectrum
of any particular (0, 3, 6)-fullerene G.

The faces of T consist of up-triangles (∆) and down-triangles (∇). Let
Λ• be the set of (the centers of) the up-triangles in T . We regard Λ• to
be a lattice (called the A2-lattice) generated by unit-length vectors a,b
with ∠ab = π/3. With A being the gridpoint selected in Step 1 of Con-
struction 4.1, we shall assume that the origin of Λ• is (the center of) the
up-triangle u• := 4A(A + a)(A + b). Note that Λ• is a translation of
the gridpoints of T and corresponds to Ṽ• in the proof of Theorem 3.1.
We denote by Λ the sublattice of Λ• generated by vectors

−−→
AB and

−→
AC. (A

translation of Λ is used in the proof of Theorem 4.2.) In Step 2, we translate
4ABC by a vector

c :=
p1

2
a +

p2

2
b (2)

for integers p1, p2. We may assume without loss of generality that p1, p2 ∈
{0, 1}, so, after Step 2, the point A is either a vertex or an edgepoint on the
boundary of u•.
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Let p, q, r, s be integers satisfying

AB = pa + qb, AC = ra + sb. (3)

(Observe that the construction results in a graph G with no semiedges if
and only if each of p1, p2, p, q, r, s is an even integer.) Let Ā, B̄, C̄ and T

be as in the construction of G.
To express G as a Cayley sum graph we label the faces of T with elements

of the finite abelian group presented as Γ = 〈α, β | pα+ qβ = 0, rα+ sβ =
0 〉. We define f : Λ• → Γ by

f(ia + jb) = iα + jβ, (4)

and extend f to the down-triangles in such a way that triangles which are
centrally symmetric with respect to A receive the same value of f . The
kernel of f is the lattice Λ generated by AB and AC. We observe the
following properties:

• f assigns the same value to triangles that are identified during the
‘folding’ stage of the construction. This is because the triangles that
are identified are symmetric with respect to one of C̄, B̄, and Ā; each
of these symmetries is a composition of the symmetry through A and
a translation by an element of Λ = ker f .

• f is a bijection from V (G) to Γ. By construction, the up-triangles
within the fundamental region ABDC correspond to elements of Γ.
The down-triangles within the triangle ABC correspond to up-triangles
within DCB.

• If u1 and u2 are two up-triangles, then f(u2) = f(u1) + f(u2−u1). If
d1 and d2 are two down-triangles then f(d2) = f(d1)− f(d2 − d1).

Now let u be any up-triangle and d1, d2, d3 its neighbors. We define the sum-
set S = {f(u) + f(di) | i = 1, 2, 3}. From the above-mentioned properties
of f it follows that S does not depend on the choice of u. The symmetry
around A shows that we get the same sum-set if we consider neighbors of a
down-triangle to define S. It follows that G ∼= CayS(Γ, S).

We can explicitly compute Γ and S by applying standard lattice com-
putations. We recall that the Smith normal form of a nonsingular integer
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matrix M is the unique matrix diag(δ1, δ2, . . . , δk) = UMV where U and V

are unimodular and δ1 | δ2 | . . . . The product δ1δ2 · · · δi is the g.c.d. of the
order i subdeterminants of M , whenever 1 ≤ i ≤ k (see, e.g., [12, Section
4.4]).

Lemma 5.1. Let G be a (0, 3, 6)-fullerene obtained from Construction 4.1,
and let c, p, q, r, s be as in (2) and (3). Let diag(m,n) = UMV be

the Smith normal form of the matrix M =
(

p r

q s

)
. Let u, v denote the

columns of U . Then G = CayS(Γ, S) where Γ = Zm × Zn and

S = { (p1 − 1)u + p2v, p1u + (p2 − 1)v, (p1 − 1)u + (p2 − 1)v }.

Here we interpret each column vector
(
x1
x2

)
∈ S to be the group element

(x1 mod m, x2 mod n) ∈ Γ.

Proof. The columns of the matrix B := (a,b) form a lattice basis for Λ•
whereas those of BM generate the sublattice Λ. Since U and V are uni-
modular, the columns of B′ := BU−1 also generate Λ•. Accordingly, Λ
is generated by the columns of BMV = B′ diag(m,n). It follows that
Γ = Λ•/Λ ∼= Zm×Zn. If we index the up-triangles with respect to the basis
B′, then the mapping f : B′(i′

j′

)
7→ (i′ mod m, j′ mod n) is the one defined

in (4). Changing the basis to B = B′U , we find that f(ia + jb) = iu + jv,
where we again interpret iu + jv to be an element of Zm × Zn.

After Step 1 of the construction, the three down-triangles which are
neighbours of u• reflect through A to the up-triangles at −a, −b and −a−b.
When A is translated by c in Step 2, the three up-triangles are accordingly
translated by 2c = p1a + p2b. Therefore

S = {f((p1 − 1)u + p2v), f(p1u + (p2 − 1)v), f((p1 − 1)u + (p2 − 1)v)}

as claimed.

We present a sample computation illustrating the determination of the
group and spectrum.

Example 5.2. The example of Figure 2 corresponds to (p1, p2) = (0, 0) and
(p, q, r, s) = (6, 2,−2, 6). All six integers are even, so the resulting graph G
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has no semiedges. We compute the Smith normal form to be

UMV =
(

0 1
−1 −7

) (
6 −2
2 6

) (
−2 −3
1 1

)
=

(
2 0
0 20

)
.

Hence Γ = Z2 × Z20. Furthermore, the generating set is

S = {−u + 0v, 0u− v,−u− v} =
{(

0
1

)
,

(
1
7

)
,

(
1
8

)}
.

This implies G has eigenvalues 3,−1,−1,−1, and

{±|εb + (−1)aε7b + (−1)aε8b| : 0 ≤ a ≤ 1, 1 ≤ b ≤ 9} ,

where ε = e2πi/20.
If we were to translate 4ABC by ( 1

2a, 0), then we get a (0, 3, 6)-fullerene
G′ with four semiedges. Here we have (p1, p2) = (1, 0), which has the effect
of translating the generating set by u. That is,

G′ =CayS( Z2 × Z20, {(0, 0), (1, 6), (1, 7)} ),

and the spectrum of G′ is

{3, 1, 1,−1} ∪ {±|1 + (−1)aε6b + (−1)aε7b| : 0 ≤ a ≤ 1, 1 ≤ b ≤ 9} .

It is worth noting that the symmetric parts of the spectra of G and G′

coincide. The four semiedges of G′ are incident with the vertices (0, 0),
(1, 0), (0, 10), (1, 10) ∈ Γ.

6 The geometry of Cayley sum graphs

In Section 4 we saw how the geometric description of (0, 3, 6)-fullerenes in
terms of the A2 lattice implies that they are Cayley sum graphs. There-
fore their eigenvectors are easy to calculate, and their spectra are “nearly
bipartite.” Here we explore the circumstances under which Cayley sum
graphs arise from geometric lattices in this manner. In fact we will see that
every Cayley sum graph arises as a quotient of two cosets of a geometric
lattice. We then exhibit some families of Cayley sum graphs which have a
recognizable crystallographic local structure.
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It is an easy fact that a graph G is a Cayley graph on a group Γ if and
only if Γ is isomorphic to a subgroup of the automorphism group which
acts regularly on V (G). Next we shall describe a similar equivalence for
Cayley Sum graphs. Let G2 = G×K2 be the Kronecker double cover with
bipartition (V•, V◦). Note that G2 has a natural automorphism, ρ, – we
call it the inversion map – which transposes the two vertices within each
fibre. By following the proof of Theorem 1.1, we find that G is a Cayley
sum graph on an abelian group Γ if (and only if) Γ acts regularly on each
of V• and V◦ as a group of G2-automorphisms, and this action satisfies

ρ−1gρ = −g, for each g ∈ Γ. (5)

Our construction proceeds with a sequence of graphs

G̃ 7→ G̃2 7→ G2 7→ G.

We start with a geometric lattice Λ• ⊂ Ed and a Cayley sum graph G̃ =
CayS(Λ•, S). When G̃ is drawn with edges as straight line segments, each
generator s ∈ S corresponds to a set of edges of G̃ whose midpoints are
concurrent at the point 1

2s. Let Λ◦ be any nontrivial coset of Λ•, and let
A ∈ Rd be such that Λ◦ = 2A + Λ•. Let ρ̃ : x 7→ 2A − x be the inversion
map through A. Note that (since Λ• is a lattice) we have ρ̃(Λ•) = Λ◦. As
above, we construct G̃2 = G̃ × K2 with partite sets (Ṽ•, Ṽ◦) = (Λ•,Λ◦),
where the fibres of G̃2 are the orbits of ρ̃. Note that the adjacency rule
in G̃2 is similar to that of Cayley graphs (vertices u ∈ Λ• and v ∈ Λ◦ are
adjacent iff u− v ∈ S − 2A); the vertex set, however, is not a group.

The graph G̃2 is drawn in Euclidean d-space Ed with straight line seg-
ments for edges. Let Ed/ρ̃ denote the quotient space (an orbifold) whose
points are the ρ̃-orbits {x, ρ̃(x)}, x ∈ Ed. Geometrically speaking, Ed/ρ̃ is
a cone with apex A having the solid angle of a halfspace. By mapping each
point in Ed to its ρ̃-orbit, we may view G̃ ∼= G̃2/ρ̃ as being naturally embed-
ded in Ed/ρ̃. Every edge of G̃2 whose midpoint is A folds to a semiedge of
G̃. In the case of (0, 3, 6)-fullerenes, G̃2 is the plane hexagonal grid, and G̃

is a grid drawn on a cone where every face is a hexagon except at A, where
A is either the midpoint of a triangular face, or the end of a semiedge.

Now let Λ be any sublattice of Λ•, and let p be the natural projection
from Ed to the d-torus Ed/Λ. Then G2 := p(G̃2) is a finite bipartite graph
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with partite sets (V•, V◦) := (p(Λ•),p(Λ◦)), which is embedded in Ed/Λ.
Then ρ̃ projects to ρ, a symmetry of order 2 in the d-torus. Evidently
ρ is an inversion map for G2 satisfying (5) with Γ = Λ•/Λ. Therefore
G ∼= G2/ρ is a finite Cayley sum graph embedded in the orbifold (Ed/Λ)/ρ

(hereafter denoted by Ed/ρΛ). Let A ⊂ Ed/Λ be the fixed points of ρ.
Then A = p(A + 1

2Λ) consists of exactly 2d points and ρ acts on Ed/Λ as
an inversion through any point in A. As an orbifold, Ed/ρΛ is orientable
if and only if d is even. To visualize Ed/ρΛ, it is convenient to select a
fundamental region for Ed/Λ whose 2d extreme points belong to A + Λ.
Choose a hyperplane H, which contains the region’s centroid and let T be
the part of the region which lies on the positive side of H. All points in
A lie on the boundary of T so we obtain Ed/ρΛ by an appropriate gluing
of the boundary of T . The graph G is embedded in T with each vertex
{x, ρ(x)} represented by the unique point in {x, ρ(x)} ∩ T . For example,
E2/ρΛ is an isosceles tetrahedron, whose four extreme points comprise A.
The grid construction of (0, 3, 6)-fullerenes corresponds to selecting H to be
a diagonal of a fundamental parallelogram. The Cayley sum graph G has
one semiedge for every point of A which lies on an edge of G2. Figure 3
summarizes the commuting projections and the four embedded graphs.

Since every finite abelian group is the quotient of two geometric lattices,
it follows that every finite Cayley sum graph G arises from a quadruple
(Λ•, S,A,Λ) as described above. By employing a linear transformation we
can even assume that Λ• = Zd. We do not make this assumption here,
since that would obfuscate the following examples. When the sum set S

is a set of lattice points which are close to 2A, then each edge of G̃2 is a
short line segment, and G̃2 is often a recognizable bipartite crystallographic
configuration. After selecting Λ and applying the above construction, we
obtain a finite Cayley sum graph embedded in T with a local geometry that
reflects the crystallographic structure of G̃2. We present some examples.

• For d = 1, if G̃2 is the two-way infinite path, then G̃ is the infinite
ray with a semiedge at its origin, and G2 is an even cycle. The inver-
sion ρ identifies points reflected through a line which bisects a pair of
opposite edges of the cycle (when it is drawn as a regular polygon).
Consequently, G is a finite path with a semiedge at each end. It is
easy to observe (either directly, or by realizing G as a Cayley sum
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G ⊂ E
d/ρΛ

G2 ⊂ E
d/Λ

G̃ ⊂ E
d/ρ̃

G̃2 ⊂ E
d

p

p
∼=

CayS(Λ•, S)

×
K 2

A

A

A

A

A

A

A

A

A

A

Figure 3: Constructing finite Cayley sum graph from a lattice. Illustrated
with the D2-lattice, resulting in a 28-vertex Cayley sum graph which is also
a 4-regular quadrangulation of the tetrahedron (one semiedge appears in
each corner of the tetrahedron).

graph) that the spectrum of G takes the form M ∪ L ∪ (−L) where
M = {2} or M = {2, 0} (depending on the parity of |V (G)|).

• (Grid-like examples) If Λ• = Dd, the lattice of integer points of even
weight, and Λ◦ = Λ• + (1, 0, 0, . . . ), then Λ• ∪ Λ◦ = Zd, and we may
(by a suitable choice of S) take G̃2 to be the standard cartesian grid. If
A = (1

2 , 0, 0, . . . ), then applying the construction with any sublattice
Λ of Λ• leads to a Cayley sum graph G having exactly 2d semiedges.

If d = 2, then G is a 4-regular quadrangulation of an isosceles tetra-
hedron, with a semiedge at each tetrahedral vertex. Such a graph is
illustrated in Figure 3. The set of unmatched eigenvalues of G is either
M = {4} or M = {4, 0}. Indeed, every 4-regular quadrangulation of
a sphere can be expressed in this way. To see this fact, we need only
adapt the proof of Theorem 3.1.

Another possibility (for an odd d > 1) is to start with the same Λ•,
Λ◦ and S as above, and to take A = (1

2 , 1
2 , 1

2 , . . . ). Since A is not on
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an edge of the ‘hypercubic’ grid, this results in a grid-like Cayley sum
graph G having fewer than 2d semiedges. Indeed G has no semiedges
at all if Λ is a sublattice of 2Λ•.

• (Diamond-like examples) Again we take Λ• to be the Dd-lattice, but
put Λ◦ = Λ• + (1

2 , 1
2 , 1

2 , . . . ). The set Λ• ∪ Λ◦ is commonly called the
generalized diamond packing, and is denoted by D+

d (see [13, p. 119]).
The diamond grid is the graph G̃2 in which each point in Λ• is joined
to the 2d−1 nearest points in Λ◦. Putting A = ( 1

4 , 1
4 , 1

4 , . . . ) results
in a Cayley sum graph having at least 2d−1 semiedges. A more at-
tractive option is to put A = ( 5

4 , 1
4 , 1

4 , . . . ), which lies on no edge of
G̃2. Provided that Λ is a sublattice of 2Λ•, this results in a Cayley
sum graph having no semiedges. When d = 3, this construction gives
a class of Cayley sum graphs having the local structure of diamond
crystal. Such graphs satisfy M = {4, 0,−2,−2}. Another attractive
class is based on D+

8 , otherwise known as the E8 lattice.

• The 24-dimensional Leech lattice Λ24 arises as the union of two cosets
of a lattice hΛ24 which is obtained from the binary Golay code (see [13,
p. 124]). This yields a particularly attractive class of crystallographic
Cayley sum graphs of high dimension.

We have constructed infinite families of Cayley sum graphs whose spec-
tra have the form M ∪L∪(−L), where M is a fixed finite multiset. It would
be interesting to find other natural examples of this phenomenon.
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