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Abstract. A set A of vertices of a graph G is called d-scattered in
G if no two d-neighborhoods of (distinct) vertices of A intersect. In

other words, A is d-scattered if no two distinct vertices of A have

distance at most 2d. This notion was isolated in the context of finite
model theory by Gurevich and recently it played a prominent role in

the study of homomorphism preservation theorems for special classes

of structures (such as minor closed families). This in turn led to
the notions of wide, almost wide and quasi-wide classes of graphs.

It has been proved previously that minor closed classes and classes
of graphs with locally forbidden minors are examples of such classes

and thus (relativized) homomorphism preservation theorem holds for

them. In this paper we show that (more general) classes with bounded
expansion and (newly defined) classes with bounded local expansion

and even (very general) nowhere dense classes are quasi wide. This

not only strictly generalizes the previous results but it also provides
new proofs and algorithms for some of the old results. It appears that

bounded expansion and nowhere dense classes are perhaps a proper

setting for investigation of wide-type classes as in several instances
we obtain a structural characterization. This also puts classes of

bounded expansion in the new context. Our motivation stems from

finite dualities. As a corollary we obtain that any homomorphism
closed first order definable property restricted to a bounded expansion
class is a restricted duality.

1. Introduction

This paper is about special classes of graphs and structures. Typically
our classes are countable and contain only finite structures and our moti-
vation is database theory, algorithmic complexity and finite model theory,
particularly recently intensively studied homomorphism preservation theo-
rems.
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Classical model theory studies properties of abstract mathematical struc-
tures (finite or not) expressible in first-order logic [Hod93]. In this context,
three classical fundamental preservation theorems have been proved, which
connect syntactic and semantic properties of first-order formulas:

• the  Loś-Tarski theorem, which asserts that a first-order formula is
preserved under extensions on all structures if, and only if, it is
logically equivalent to an existential formula;

• Lyndon’s theorem, which asserts that a first-order formula is pre-
served under surjective homomorphisms on all structures if, and
only if, it is logically equivalent to a positive formula [Lyn59];

• the homomorphism preservation theorem which asserts that a first-
order formula is preserved under homomorphisms on all structures
if, and only if, it is logically equivalent to an existential-positive
formula.

The terms “all structures”, which means finite and infinite structures, is
crucial in the statement of these theorems.

Finite model theory is the study of first-order logic (and its various ex-
tensions) on finite structures [EF96], [Lib04]. In this context, it has been
proved that the two first theorems fail when relativized to the finite, that
is: there exists a first-order formula that is preserved under extensions on
finite structures, but is not equivalent in the finite to an existential formula
[Tai59][Gur84][AG97] and there exists a first-order formula that is preserved
under surjective homomorphisms on finite structures, but is not equivalent
in the finite to a positive formula [AG87][Sto95]. However, a bit surpris-
ingly, the relativized version of the homomorphism preservation theorem to
the finite has been recently proved by B. Rossman [Ros07].

Relativizations of homomorphism preservation theorem to specific classes
of structures have been studied and in this context A. Atserias and A.
Dawar defined classes of graphs called wide, almost wide and quasi-wide (cf.
[Daw07a] for instance). (These classes are defined in the Section 3.2.) For
instance, it has been proved in [ADG05] that the extension preservation
theorem holds in any class C that is wide, hereditary (i.e. closed under tak-
ing substructures) and closed under disjoint unions. Wide classes includes
classes with bounded maximum degree. We prove here that an hereditary
class of graphs is actually wide if and only if it has a bounded degree (The-
orem 3.3).

Also, it has been proved in [ADK04] [ADK06] that the homomorphism
preservation theorem holds in any class C that is almost wide, hereditary
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and closed under disjoint unions. Almost wide classes of graphs include
classes of graphs which exclude a minor [KS99]. We characterize almost
wide hereditary classes of graphs and prove, in particular, that topologically
closed classes of graphs are almost wide.

Dawar [Daw07b] announced that the homomorphism preservation theo-
rem holds in any hereditary quasi-wide class that is closed under disjoint
unions. This is a strengthening of the result proved in [ADK04]. Quasi-
wide classes of graphs include classes of graphs locally excluding a minor
[DGK07]. In this paper we prove that any class with bounded expansion
is quasi-wide (Theorem 3.19). Bounded expansion classes and algorithmic
applications have been introduced in [NOdM05a, NOdM05b, NOdM06a,
NOdM06b, NOdM07, NOdM08a, NOdM08b] and have been discussed in Z.
Dvořák’s PhD thesis [Dvo07a] and in X. Zhu paper [Zhu06].

We shall prove more: we actually give a complete characterization of
hereditary classes of graphs which are quasi-wide. This led us to the def-
inition of classes of nowhere dense structures. Classes of nowhere dense
structures are defined in this paper (in Section 2.3).

These classes strictly contain all previously studied -in this context-
classes of structures such as classes with bounded local tree width, locally ex-
cluded minors, etc, see [Cou90][KS99][ADK04][ADG05][ADK06] [DGK07];
see Fig 2 for the inclusion schema of these classes. Yet we can prove for
all classes of nowhere dense structures that the relativized homomorphism
preservation theorem holds even for them. Perhaps this also provides a
proper setting for this type of questions (about wide, semi-wide and quasi-
wide classes) and, as we remarked earlier, we obtain characterization theo-
rems.

If a class K is defined by an existentially positive First Order formula
then K is defined by the existence of a homomorphism from a finite set F
of structures. This in turn means that the complementary class is the class
of all structures A for which there is no homomorphism F −→ A for any
F ∈ F . This setting is close to (homomorphism ) dualities which were
studied recently intensively, [NT00][HN04][NT05].

Combining with the results of [NOdM08c] we prove perhaps surprising
fact that any homomorphism closed First Order property when restricted
to a Bounded Expansion class is a Restricted Finite Duality. This is stated
in Section 4.4 .

This paper is organized as follows: In Section 2 we review all necessary
definitions and, among others, we define notions of shallow minor, classes
with bounded expansion, classes with bounded local expansion and classes
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of nowhere dense graphs. We also review some background from finite
model theory, relational structures and mathematical logic. In the most of
this paper we deal with undirected graphs as the difficulty lies there. The
relational structures (and hypergraphs in particular) are treated usually by
means of Gaifman graph or, sometimes more conveniently, by the incidence
graph. (See Sections 2.4 and 4.) However for our purposes this does not
suffices and both incidence graphs and Gaifman graphs are too rough tool.
Thus in Section 4.1 we find it convenient to define yet another reduction of
relational structures (and hypergraphs) to graphs by means of Star Selector.

In Section 3 we prove the characterizations of classes which are wide,
almost wide and quasi-wide. This is nontrivial and we need a detail analysis
of functions ΦC and of its uniform variant ΦC (which is the key notion for
our analysis).

2. Definitions

For graphs and, more generally, relational structures, we use standard
notation and terminology. In this Section we give the key definitions of this
paper.

2.1. Distances, Independence and Scattered Sets. The distance in a
graph G between two vertices x and y is the minimum length of a path
linking x and y (or ∞ if x and y do not belong to the same connected
component of G) and is denoted by distG(x, y). Let G = (V,E) be a graph
and let d be an integer. The d-neighborhood NG

d (u) of a vertex u ∈ V is the
subset of vertices of G at distance at most d from u in G: NG

d (u) = {v ∈
V : distG(u, v) ≤ d}.

Let r ≥ 1 be an integer. A subset A of vertices of a graph G is r-
independent if the distance between any two distinct elements of A is strictly
greater than r. We denote by αr(G) the maximum size of an r-independent
set of G. Thus α1(G) is the usual independence number α(G) of G. A
subset A of vertices of G is d-scattered if NG

d (u) ∩ NG
d (v) = ∅ for every

two distinct vertices u, v ∈ A. Thus A is d-scattered if and only if it is
2r-independent.

2.2. Shallow minors and Grads. For a graph G = (V,E), we denote by
|G| the order of G (that is: |V |) and by ‖G‖ the size of G (that is: |E|).

For any graphs H and G and any integer d, the graph H is said to be a
shallow minor of G at depth d ([PRS94] attribute this notion, called then
low depth minor to Ch. Leiserson and S. Toledo) if there exists a subset
{x1, . . . , xp} of G and a collection of disjoint subsets V1 ⊆ NG

d (x1), . . . , Vp ⊆
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≤ r

Figure 1. A shallow minor of depth r of a graph G is a
simple subgraph of a minor of G obtained by contracting
vertex disjoints subgraphs with radius at most r

NG
d (xp), each including a connected subgraph of G, such that H is a sub-

graph of the graph obtained from G by contracting each Vi into xi and
removing loops and multiple edges (see Fig. 1). The set of all shallow mi-
nors of G at depth d is denoted by GO i. In particular, GO 0 is the set of
all subgraphs of G.

The greatest reduced average density (shortly grad) with rank r of a graph
G [NOdM08a, NOdM06a] is defined by formula

(1) ∇r(G) = max
{
‖H‖
|H|

: H ∈ GO r

}
By extension, for a class of graphs C, we denote by C O i the set of all

shallow minors at depth i of graphs of C, that is:

C O i =
⋃

G∈C
(GO i)

Hence we have
C ⊆ C O 0 ⊆ C O 1 ⊆ · · · ⊆ C O i ⊆ . . .

Also, for a class C of graphs we define the expansion of the class C as:

∇i(C) = sup
G∈C

∇i(G)

Notice that ∇i(C) = ∇0(C O i).

2.3. Classes of Graphs. Although almost all results of this paper can be
formulated in the “local” form (for a single graph with special properties)
we find it useful to formulate our results by means of properties of classes
of graphs.
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A class C of graphs is hereditary if every induced subgraph of a graph in
C to C, and it is monotone of every subgraph of a graph in C belongs to C.
Notice that for every class C, the smallest (inclusion minimal) super-class
of C which is monotone is C O 0.

Class C has bounded expansion [NOdM08a] if each of the classes C O i has
bounded density:

C has bounded expansion ⇐⇒ ∀i ≥ 0 : sup
G∈C O i

‖G‖
|G|

<∞

⇐⇒ ∀i ≥ 0 : ∇i(C) <∞

For an extensive studies of bounded expansion classes we refer the reader to
[NOdM08a] [NOdM08b] [NOdM08c] [Dvo07a] [Dvo07b]. We shall add two
more types of classes: bounded local expansion and class of nowhere dense
graphs.

The class C has bounded local expansion if the balls of bounded radius of
graphs in C have bounded expansion:

C has bounded local expansion ⇐⇒ ∀ρ, i ≥ 0 : sup
v∈G∈C

∇i(G[NG
ρ (v)]) <∞

As bounded expansion classes strictly contain proper minor closed classes
(as classes with constant expansion), bounded local expansion classes gen-
eralize classes which locally forbid a minor.

The class C is a class of nowhere dense graphs if no C O i contains all finite
graphs, that is: if each C O i has bounded clique number:

C is a class of nowhere dense graphs ⇐⇒ ∀i ≥ 0 : sup
G∈C O i

ω(G) <∞.

From an intuitive point of view, classes with bounded expansion corre-
spond to “classes of sparse graphs”, classes with bounded local expansion
to “classes of locally sparse graphs”. For a study of classes of nowhere dense
graphs, we refer the reader to our companion paper [NOdM08d]. The inclu-
sion of these classes and of several other types of graph classes is depicted
Fig. 2.
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Figure 2. Inclusion map of some important properties of
classes of graphs.

2.4. Relational Structures and First-Order Logic. Our notation and
terminology is standard, see e.g. [EF96]. As we remarked in the introduc-
tion most of our paper can be stated for graphs only. The transition to
general relational structures (and set-systems) will be explained now.

2.4.1. Relational Structures. A relational vocabulary σ is a finite set of re-
lation symbols, each with a specified arity. A σ-structure A consists of
a universe A, or domain, and an interpretation which associates to each
relation symbol R ∈ σ of some arity r, a relation RA ⊆ Ar.
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A σ-structure B is a substructure of A if B ⊆ A and RB ⊆ RA for every
R ∈ σ. It is an induced substructure if RB = RA ∩ Br for every R ∈ σ of
arity r. A substructure B of A is proper if A 6= B. If A is an induced
substructure of B, we say that B is an extension of A. If A is a proper
induced substructure, then B is a proper extension. If B is the disjoint
union of A with another σ-structure, we say that B is a disjoint extension
of A. If S ⊆ A is a subset of the universe of A, then A ∩ S denotes the
induced substructure generated by S; in other words, the universe of A∩S is
S, and the interpretation in A∩S of the r-ary relation symbol R is RA∩Sr.

(Note that in this paper we shall denote relational structures by boldface
letters such as A, B, and graphs by simple types such as G,H.)

2.4.2. First-Order Logic. Let σ be a relational vocabulary. The atomic for-
mulas of σ are those of the form R(x1, . . . , xr), where R ∈ σ is a relation
symbol of arity r, and x1, . . . , xr are first-order variables that are not nec-
essarily distinct. Formulas of the form x = y are also atomic.

The collection of first-order formulas is obtained by closing the atomic
formulas under negation, conjunction, disjunction, universal and existential
first-order quantification. The collection of existential first-order formulas
is obtained by closing the atomic formulas and the negated atomic formulas
under conjunction, disjunction, and existential quantification. The seman-
tics of first-order logic is standard.

The quantifier rank of a first-order formula is the maximum nesting of
quantifiers of its sub-formulas.

Let A be a σ-structure, and let a1, . . . , an be points in A. If φ(x1, . . . , xn)
is a formula with free variables x1, . . . , xn, we denote by A |= φ(a1, . . . , an)
the fact that φ is true in A when xi is interpreted by ai. If m is an integer,
the first-order m-type of a1, . . . , an in A is the collection of all first-order
formulas φ(x1, . . . , xn) of quantifier rank at most m, up to logical equiva-
lence, for which A |= φ(a1, . . . , an). If formulas φ, φ′ have the same m-type
then we write φ ≡n φ′.

2.4.3. Classes of Structures. The Gaifman graph of a σ-structure A, de-
noted by G(A), is the (undirected) graph whose set of nodes is the universe
of A, which is denoted by A, and whose set of edges consists of all pairs
(a, a′) of distinct elements of A such that a and a′ appear together in some
tuple of a relation in A. This notion coincides with the combinatorial notion
of 2-section in the sense of Berge, see e.g. [Ber83]. The degree of a structure
is the maximum degree of its Gaifman graph, that is, the maximum number
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of neighbors of nodes of the Gaifman graph. Other notions (such as shallow
minor or distance) are defined analogously via Gaifman graphs.

A class C of relational structures has bounded degree (resp. has bounded
expansion, resp. is a class of nowhere dense structures) if the class of graph
Ĉ = {G(A) : A ∈ C} has bounded degree (resp. has bounded expansion,
resp. is a class of nowhere dense graphs). The class C is hereditary if any
induced substructure of a structure in C also belongs to C. Notice that a
sufficient (but clearly not necessary) condition for C to be a hereditary class
of structures is Ĉ to be a hereditary class of graphs.

Let us remark that alternatively we may convert any relational sys-
tem and any hypergraph (X,M) to a graph by means of incidence graph
Inc(X,M) which may be defined as the following graph (V,E) where V =
X ∪M, E = {(x, e) : x ∈ e ∈ M}. While the constructions of Gaifman
graph and incidence graph lead to similar results, sometimes the incidence
graph is preferable (for example in the case of unbounded arities in the hy-
pergraph). The third construction star selector will be introduced in Section
4.1.

3. How Wide is a Class?

3.1. Further Definitions. We find it useful to study wide, almost wide
and quasi-wide classes by means of the following functions ΦC and ΦC de-
fined for classes of graphs. It is essential for our approach that we also
define the uniform version of these concepts.

Function ΦC. This function has domain N and range N ∪ {∞} and ΦC(d)
is defined for d ≥ 1 as the minimum s such that the class C satisfies the
following property:

“There exists a function F : N → N such that for every
integer m, every graph G ∈ C with order at least F (m)
contains a subset S of size at most s so that G − S has a
d-independent set of size m.”

We put ΦC(d) = ∞ if C does not satisfy the above property for any value
of s. Moreover, we define ΦC(0) = 0.

Function ΦC. This function has domain N and range N ∪ {∞} and ΦC(d)
is defined for d ≥ 1 as the minimum s such that C satisfies the following
property:

“There exists a function F : N → N such that for every
integer m, every graph G ∈ C and every subset A of vertices
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of G of size at least F (m), the graph G contains a subset S
of size at most s so that A includes a d-independent set of
size m of G− S.”

We put ΦC(d) = ∞ if C does not satisfy the above property for any value
of s. Moreover, we define ΦC(0) = 0.

Notice that obviously ΦC ≥ ΦC for every class C and for every integer d.

Definition 3.1. A class of graphs C is wide (resp. almost wide, resp. quasi-
wide) if ΦC is identically 0 (resp. bounded, resp. finite) [Daw07a]:

C is wide ⇐⇒ ∀d ∈ N : ΦC(d) = 0

C is almost wide ⇐⇒ sup
d∈N

ΦC(d) <∞

C is quasi-wide ⇐⇒ ∀d ∈ N : ΦC(d) <∞

Notice that a hereditary class C is wide (resp. almost wide, resp. quasi-
wide) if and only if C O 0 is wide (resp. almost wide, resp. quasi-wide) as
deleting edges cannot make it more difficult to find independent sets.

We introduce the following (uniform) variation of Definition 3.1.

Definition 3.2. A class of graphs C is uniformly wide (resp. uniformly al-
most wide, resp. uniformly quasi-wide) if ΦC is identically 0 (resp. bounded,
resp. finite):

C is uniformly wide ⇐⇒ ∀d ∈ N : ΦC(d) = 0

C is uniformly almost wide ⇐⇒ sup
d∈N

ΦC(d) <∞

C is uniformly quasi-wide ⇐⇒ ∀d ∈ N : ΦC(d) <∞

Notice that a class C is uniformly wide (resp. uniformly almost wide, resp.
uniformly quasi-wide) if and only if C O 0 is uniformly wide (resp. uniformly
almost wide, resp. uniformly quasi-wide) as the property is hereditary in
nature and deleting edges cannot make it more difficult to find independent
sets.

Based on a construction of Kreidler and Seese [KS99], Atserias et al.
[ADK06] proved that if a class excludes a graph minor then it is almost
wide. Classes locally excluding a minor have been shown to be quasi-wide by
Grohe and Kreutzer [DGK07]. In this paper (in Section 3.5) we characterize
these classes.

3.2. Wide classes. As usual we denote by ∆(G) the maximal degree of a
vertex of graph G. For a class C we denote by ∆(C) the supremum of all
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∆(G) for G ∈ C. Thus ∆(C) = ∞ just means that the graphs in C may have
arbitrary large degrees.

Lemma 3.1. Let C be a hereditary class of graphs. If ∆(C) = ∞ then
ΦC(2) > 0.

Proof. Assume for contradiction that C satisfies ΦC(2) = 0. Then there
exists a function F : N → N such that every graph G ∈ C with order at
least F (2) has a 2-independent set of size 2. As ∆(C) = ∞, the class C
contains a graph G with maximum degree F (m) hence contains the star
graph SF (m) as C is hereditary. Although this graph has order greater than
F (m), it contains no 2-independent set of size 2. �

Lemma 3.2. Let G = (V,E) be a graph and let d,m be integers. If A ⊆ V
has size at least (∆(G)d + 1)m then A includes a d-independent set of size
at least m.

Proof. Notice that Gd has maximum degree at most ∆(G)d (hence chro-
matic number at most ∆(G)d + 1) and that any independent set of Gd is a
d-independent set of G. As at least one color class of Gd intersects A on a
subset of size at least |A|/χ(Gd) the lemma follows. �

As a consequence of previous lemmas we deduce our first characterization
theorem:

Theorem 3.3. Let C be a hereditary class of graphs. Then the following
are equivalent:

• ΦC(2) = 0,
• ΦC(2) = 0,
• ∆(C) <∞,
• C is wide,
• C is uniformly wide.

Proof. The theorem follows from the following implications (where the non-
obvious implications follow from the two above Lemmas).

C uniformly wide +3

��

ΦC(2) = 0

��

∆(C) <∞

(Lemma 3.2)

dl QQQQQQQQQQQQ

QQQQQQQQQQQQ

C wide +3 ΦC(2) = 0

(Lemma 3.1)

bj NNNNNNNNNN

NNNNNNNNNN
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Figure 3. Example of graphs whose maximal degree is
smaller than their girth

�

Although the hypothesis that C is hereditary is not necessary to prove
that C is uniformly wide if and only if ∆(C) is finite (because the property of
being uniformly wide is hereditary in nature), this assumption is necessary
in order to prove that a wide class has bounded maximum degree. This is
as shown by the next example:

Example 1. Consider the class C of all 2-connected graphs G satisfying
∆(G) ≤ girth(G) (some examples of this elusive class of graphs are on
Fig.3). Then C is wide although it does not have a bounded average degree:

Assume that a graph G ∈ C has diameter at most D. As G is 2-connected,
it includes a cycle of length girth(G) ≤ 2D. It follows that ∆(G) is at most
2D thus G has at most about (2D)D vertices. Hence for every integer d
and m, every graph in the class with at least (about) (2dm)dm vertices has
a d-independent set of size m.

Now we enter a technical part of this paper: In the next three sections
we first (in 3.3.1–4) develop techniques for finding d-independent sets (for
d = 1, 2, even and odd) and then (in 3.3.5) find obstructions to the existence
of such sets. This will then lead us (in 3.4) to the estimates for our function
ΦC . Finally, in Section 3.5, this will lead to the characterization of almost
wide and quasi-wide classes (Theorems 3.20 and 3.25).

3.3. Finding d-independent Sets in Graphs. In the following text,
R(i1, . . . , ik) denotes the k-colored Ramsey number, which is the minimum
order of a complete graph such that in any k-coloration of its edges one
finds either a complete graph of order i1 colored 1, or a complete graph of
order i2 colored 2, . . . or a complete graph of order ik colored k.
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3.3.1. Finding 1-independent sets in graphs. The following is a restatement
of the Ramsey theorem for graphs. It implies the existence of 1-independent
sets in graphs:

Lemma 3.4. Let G be a graph and let c, n be integers. Let A be a subset of
at least R(c, n) vertices of G. Then either G contains a Kc or A includes
an independent set of size n. �

3.3.2. Finding a 2-independent set in a 1-independent set.

Lemma 3.5. Let G = (A ∪ B,E) be a bipartite graph and let p, q, n be
integers. If |A| ≥ F (p, q, n) then at least one of the following properties
holds:

• A includes a 2-independent set of size p;
• A includes the principal vertices of a K̇q (the subdivision of Kq with

every its edge subdivided by exactly one vertex);
• B includes a vertex of degree at least n.

Proof. Assume that B includes no vertex of degree at least n. Let k = |B|
and let b1, b2, . . . , bk be the vertices in B in any arbitrary order. Let Γ be the
complete graph with vertex set A, whose edges are colored using

(
n−1

2

)
+ 1

colors and which is constructed as follows: We start with Γ with vertex set
A and without edges. Then we add the edges in k + 1 steps. At step i ≤ k
we add to Γ all the edges (which are not already been added) between the
neighbors of bi, coloring them with integers between 1 and

(
n−1

2

)
in such

a way that no two edges added at this step get the same color. This is
possible as the degree of bi is at most n− 1. At step k + 1, we add all the
missing edges and assign to them the color

(
n−1

2

)
+ 1.

As |A| ≥ F (p, q, n), there exists in Γ a monochromatic clique of size q
with color in {1, . . . ,

(
n−1

2

)
} or a monochromatic clique of size p with color(

n−1
2

)
+ 1. If the edges of the clique have color

(
n−1

2

)
+ 1, its vertices

define a 2-independent set of G of size p. Otherwise, all the edges of the
monochromatic clique of size q have been added at different

(
q
2

)
steps as they

got the same color, hence G includes a K̇q having its principal (”branching”)
vertices in A. �

Lemma 3.6. Let m,a, b, s be integers. Let us define inductively the number
Θ(m,a, b, s) by:

Θ(m,a, b, s) =

{
F (m,a, b), if s = 0;

F (m,a, b,Θ(m,a, b, s− 1)), otherwise.
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Let G = (A ∪ B,E) be a bipartite graph such that |A| ≥ Θ(m,a, b, s).
Then at least one of the following properties holds:

• there exists in B a subset of size at most s whose removal leaves in
A a 2-independent set of size m;

• A includes all principal vertices of a K̇a;
• B includes the s+ 1 vertices of the complete bipartite graph Ks+1,b.

Proof. We proceed by induction on s.
Assume s = 0. Let p = m, q = a, n = b. According to Lemma 3.5, either

A includes a 2-independent set of size m of G includes a K̇a with principal
vertices in A or B includes a vertex of degree at least b hence G includes a
star K1,b with the center of the star in B.

Assume that s > 0 and that the result has been proved for s − 1. Let
p = m, q = a, n = Θ(m,a, b, s − 1). According to Lemma 3.5, either A
includes a 2-independent set of size m or G includes a K̇a with principal
vertices in A or B includes a vertex of degree at least Θ(m,a, b, s− 1).

In the two first cases we are done thus we may assume that G contains
a vertex v of degree at least Θ(m,a, b, s− 1). Let G′ be the subgraph of G
induced by the neighborhood A′ of v and the set B′ of the vertices in B− v
having at least a neighbor in common with v. Then |A′| ≥ Θ(m,a, b, s− 1).
By induction, either the deletion of a subset C ′ of s−1 vertices in B′ leaves
in A′ of 2-independent set of size m (hence the deletion of the vertices in
C ′ ∪{v} leaves in A a 2-independent set of size m) or G′ includes Ks,b with
the s vertices in B′ (thus G includes a Ks+1,b with the s+1 vertices in B as
v is adjacent to all the vertices in A′) or G′ (hence G) contains a K̇a with
principal vertices in A′ ⊆ A. �

Lemma 3.7. Let G be a graph and let A be an independent set of G of
order at least Θ(m,a, b, s). Then at least one of the following properties
holds:

• there exists in G a subset of size at most s whose removal leaves in
A a 2-independent set of size m;

• G includes a K̇a or a Ks+1,b.

Proof. Consider the bipartite graph G′ = (A ∪B,E′) where B is the set of
all the vertices of G adjacent to a least a vertex in A and E′ is the subset
of the edges of G linking a vertex in A to a vertex in B. The result is then
a direct consequence of Lemma 3.6. �

3.3.3. Finding a (2r + 1)-independent set in a 2r-independent set.
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Lemma 3.8. Let G be a graph and let c, n be integers. Let A be a 2r-
independent subset of G of size at least R(c, n). Then either Kc ∈ GO r or
A includes a (2r + 1)-independent set of size n.

Proof. Consider the graph H ∈ GO r obtained from G by contracting the
r-neighborhoods of the vertices in A into a set A′ identified to A (see Fig. 4).
According to Lemma 3.4, either H contains a Kc (thus Kc ∈ GO r) or A′

includes an independent set of size n of H, which corresponds to a (2r+ 1)-
independent set of G included in A. �

G

r

H

Figure 4. The reduced graph H is obtained by contract-
ing the r-neighborhoods of the vertices in A.

3.3.4. Finding a (2r + 2)-independent set in a (2r + 1)-independent set.

Lemma 3.9. Let G be a graph and let A be a (2r+1)-independent set of G
of order at least Θ(m,a, b, s). Then at least one of the following properties
holds:

• there exists in G a subset of size at most s whose removal leaves in
A a (2r + 2)-independent set of size m;

• GO r includes a K̇a or a Ks+1,b.
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Proof. Consider the graph H ∈ GO r obtained from G by contracting the
r-neighborhoods of the vertices in A into a set A′ identified to A (see Fig. 4).
According to Lemma 3.7, either H contains a K̇a or a Ks+1,b (thus K̇a ∈
GO r or Ks+1,b ∈ GO r) or A′ includes a 2-independent set of size n of H,
which corresponds to a (2r + 2)-independent set of G included in A. �

3.3.5. Obstructions.

Lemma 3.10. Let s be an integer. Let Y be a tree of diameter at most 2r.
Assume the set L of the leaves of Y is partitioned into two sets A and B,
such that |B| < s. Then the deletion of a subset S of at most s vertices of
Y cannot leave more than 2r(|B|s+

(
s
2

)
) < 3rs2 vertices in the union of the

connected components of Y − S having no vertex in A.

Proof. Let S be a subset of at most s vertices of Y . Root Y at a leaf
t ∈ A \ S. We order the elements v1, . . . , vk of this set in such a way that
if vi is an ancestor of vj in the tree then i > j. Let b = |B|. We prove by
induction that after the ith vertex deletion, the connected component of t
has at most b+ i leaves which are not in A, and that the number of in the
union Xi of the vertex sets of the connected components of Y −v1−· · ·−vi

having no vertex in A is at most 2r(bi +
(

i
2

)
). For i = 0 the induction

obviously holds. Assume it holds for 0 ≤ i < s. According to the definition
of the order of the vi’s, the vertex vi+1 belongs to the connected component
of Y −v1−· · ·−vi containing t. The deletion of vi+1 disconnects a collection
of sub-trees of this connected component from t. The number of leaves of
Y − v1 − · · · − vi+1 increase at most by one (the father of vi+1 in the tree).
Xi+1 is increased by the order of all the sub-trees disconnected from t by
vi+1 which include no vertex from A. This order is bounded by above by
the sum of the orders of the paths from vi+1 to the leaves of these sub-trees,
hence by 2r(b+ i). Thus |Xi+1| ≤ 2r(b+ i)+ |Xi| ≤ 2r(b(i+1)+

(
i+1
2

)
). �

Lemma 3.11. Let r, s be integers, let G,H be graphs such that H ∈ GO r.
Assume H is (s+ 1)-connected and let D = max|X|≤s Diam(H −X). Then
G has a subgraph G′ such that H ∈ G′ O r and such that the deletion of any
s vertices leaves small connected components of total order at most 2rs2

and a big connected component containing all the other vertices and having
diameter strictly smaller than (2r + 1)(D + 1).

Proof. Let h be the order of H. As H ∈ GO r, there are in G h ver-
tices x1, . . . , xh and h vertex disjoint subgraphs B1, . . . , Bh with centers
x1, . . . , xh and radius at most r such that H is a subgraph of the graph
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obtained from G by deleting all the vertices of out
⋃

iBi and contracting
all the Bi’s. We denote by yi the vertex of H corresponding to the ball Bi.

We construct the subgraph G′ of G as follows: first we delete all the
vertices which are not in

⋃
iBi. For every adjacent yi and yj in H we keep

exactly one edge in G′ linking a vertex in Bi and a vertex in Bj (chosen
arbitrarily), while for every non-adjacent yi and yj in H we delete all the
edges between Bi and Bj . In each Bi, we keep only the edges of a shortest
path tree (i.e. a BFS-tree) from xi. Then we iteratively delete any vertex
in Bi which has degree 1 in G′.

The so-obtained G′ is a subgraph of G which is so that H ∈ G′ O r.
Assume we delete in G′ a subset X of s vertices, s1 in Bi1 , s2 in Bi2 ,. . . , sk

in Bik
(thus s1 + s2 + · · · + sk = s and k ≤ s). According to Lemma 3.10

and as H is (s + 1)-connected, the order of the connected components of
G′ disconnected from the Bi’s (for i /∈ {i1, . . . , ik} by the deletion of the
vertices in S is at most 2r

∑
i s

2
i ≤ 2rs2 (in the application of Lemma 3.10

to Bij , the set B is the set of the leaves linked to some other Bij′ ).
The upper bound on the diameter of the big connected components

presents no particular difficulties. �

3.4. Computing ΦC.

Lemma 3.12. Let C be a monotone class of graphs and let r ≥ 0 be an
integer. Assume C O r contains every Kc (c ∈ N). Then ΦC(2r + 1) = ∞.

Proof. Assume for contradiction that C O r contains every Kc (c ∈ N) but
ΦC(2r + 1) = s < ∞. Let m = 2rs2 + 2 and let N be any big integer. As
KN ∈ C O r, according to Lemma 3.11 there exists in C a graph G′ such
that the deletion of s vertices cannot leave a (2r+1)-independent set of size
bigger than 2rs2 + 1 < m. �

Lemma 3.13. Let C be a monotone class of graphs and let r ≥ 0 be an
integer. If C O r contains every K̇a (a ∈ N). Then ΦC(2r + 2) = ∞.

Proof. Assume for contradiction that C O r contains every K̇a (a ∈ N) but
ΦC(2r + 2) = s <∞.

Let m = and let N be any big integer. As K̇N ∈ C O r, there exists in
C a graph G having K̇N has a depth r minor. According to the proof of
Lemma 3.11, this graphs may be chosen with the following structure: the
graph G is covered by vertex disjoint induced sub-trees Yi (1 ≤ i ≤ N)
rooted at xi and having height at most r, every leaf of Yi is adjacent to
some leaf of Yj (with j 6= i) and for every i 6= j there exists exactly one edge
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between Yi and Yj . Let A = {x1, . . . , xN}. By deleting at most s vertices,
one leaves at least unmodified a subgraph induced by at least N − s of the
Yi’s. As two xi’s in this subgraph have distance at most 2r + 2, the set A
includes no (2r + 2)-independent set of size greater than s+ 1. �

Lemma 3.14. Let C be a monotone class of graphs and let r ≥ 0 be an
integer. If C O r contains every Ks,b (b ∈ N). Then ΦC(2r + 2) ≥ s.

Proof. The proof is similar to the one of Lemma 3.13: assume for contra-
diction that C O r contains every Ks, b (b ∈ N) but ΦC(2r + 2) = s− 1.

Let m = and let N be any big integer. As K̇N ∈ C O r, there exists in
C a graph G having Ks,N has a depth r minor. According to the proof of
Lemma 3.11, this graphs may be chosen with the following structure: the
graph G is covered by vertex disjoint induced sub-trees Yi (1 ≤ i ≤ s) and
Yj (1 ≤ j ≤ N), respectively rooted at xi and x′j , having height at most r,
every leaf of Yi is adjacent to some leaf of some Y ′

j and for every 1 ≤ i ≤ s
and 1 ≤ j ≤ N there exists exactly one edge between Yi and Y ′

j s. Let
A = {x′1, . . . , x′N}. By deleting at most s − 1 vertices, one leaves at least
unmodified a subgraph induced by at least N − s of the Y ′

i s and one of Yi.
As two vertices x′i and x′j in this subgraph have distance at most 2r+2, the
set A includes no (2r + 2)-independent set of size greater than s+ 1. �

Lemma 3.15. Let C be a hereditary class of graphs and let r ≥ 0 be an
integer.

• If ω(C O r) = ∞ then ΦC(2r + 1) = ΦC(2r + 1) = ∞;
• otherwise, ΦC(2r + 1) = ΦC(2r) and ΦC(2r + 1) = ΦC(2r).

Proof. The case where r = 0 is settle by Lemma 3.4: If ω(C O 0) = ∞ then
ΦC(1) = ΦC(1) = ∞; otherwise, ΦC(1) = ΦC(1) = 0 = ΦC(0) = ΦC(0). So
we shall assume r ≥ 1.

Assume every Kc (c ∈ N) belong to C O r (i.e. ω(C O r) = ∞). According
to Lemma 3.12, ΦC(2r+1) = ∞ = ΦC(2r+1). Otherwise, let c = ω(C O r)+
1.

As ΦC and ΦC are non decreasing, if ΦC(2r) = ∞ (resp. ΦC(2r) = ∞)
then ΦC(2r + 1) = ΦC(2r) (resp. ΦC(2r + 1) = ∞).

Let s = ΦC(2r) and let m be an integer. Then every graph G ∈ C of
order at least F (R(c,m)) contains a subset S of at most s vertices such that
α2r(G−S) ≥ R(c,m). According to Lemma 3.8, we have α2r+1(G−S) ≥ m
as c > ω(C O r). Hence ΦC(2r+ 1) ≤ s. As ΦC is non decreasing, we deduce
ΦC(2r + 1) = ΦC(2r).
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Let s = ΦC(2r) and let m be an integer. Then for every graph G ∈ C
and every subset A of size at least F (R(c,m)), G contains a subset S of at
most s vertices such that A includes a subset A′ of size R(c,m) which is
2r-independent in G−S. According to Lemma 3.8, A′ includes a subset A′′

of size m which is (2r + 1)-independent in G − S as c > ω(C O r). Hence
ΦC(2r+1) ≤ s. As ΦC is non decreasing, we deduce ΦC(2r+1) = ΦC(2r). �

Lemma 3.16. Let G = (V,E) be a graph, let d ≥ 1,m, s be integers and
let A be a subset of V .

Assume there is S ⊆ V and A′ ⊆ A such that A′ is 2d-independent in
G− S and |A′| ≥ m2s.

Then there exists C ⊆ S and A′′ ⊆ A′ such that A′′ is 2d-independent in
G− C, |A′′| = m and K|C|,m ∈ GO (d− 1).

Proof. For v ∈ A′, let Lv be a minimal subset of S such that NG−Lv

d (v) ∩
(S \ Lv) = ∅. Such a set obviously exists (it can be S). As S has only 2s

distinct subsets, there exists a subset A′′ ⊂ A′ of size m such that Lx = Ly

for every x, y ∈ A′′ (call this set C). Let x, y be any two distinct elements
of A′′. We have NG−C

d (x) ∩ NG−C
d (y) = ∅ for otherwise there would exist

an x–y path of length at most 2d avoiding C but not S because A′′ is 2d-
independent in G−S thus some element of S \C would belong to Lx or Ly.
Thus A′′ is 2d-independent in G − C. Moreover, by the minimality of Lx,
every vertex v ∈ Lx is such that NG−(C−v)

d (x)∩ (S \ (C − v)) 6= ∅ and more
precisely v ∈ NG−(C−v)

d (x). It follows that for every x ∈ A′′ there exists a
tree Yx of depth at most d, which leaves are exactly the vertices in C and
such that the Yx’s are pairwise internally vertex disjoint. �

Define β(C) to be supremum of the integers s such that {Ks,n, n ∈ N} ⊆
C.:

Lemma 3.17. Let C be a class of graphs and let r ≥ 0 be an integer.
• If β(C O r) = ∞ or C O r includes all the K̇a (a ∈ N) then ΦC(2r +

2) = ∞;
• otherwise, ΦC(2r + 2) = β(C O r).

Proof. If β(C O r) = ∞ or C O r includes all the K̇a (a ∈ N) then ΦC(2r+2) =
∞, according to Lemmas 3.13 and 3.14.

Otherwise, as β(C O r) < ∞ we have ω(C O r) < ∞. It follows (using
Lemma 3.15 and induction) that ΦC(2r+1) <∞. According to Lemma 3.9,
we get ΦC(2r+2) <∞. According to Lemma 3.16 we have then ΦC(2r+2) ≤
β(C O r). According to Lemma 3.14 we have ΦC(2r + 2) ≥ β(C O r). �
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Theorem 3.18. Let C be a class of graphs and let r ≥ 0 be an integer.
Then

• If ω(C O r) = ∞ then ΦC(2r + 1) = ∞; otherwise, ΦC(2r + 1) =
ΦC(2r) = β(C O (r − 1)).

• If β(C O r) = ∞ or C O r includes all the K̇a (a ∈ N) then ΦC(2r +
2) = ∞; otherwise, ΦC(2r + 2) = β(C O r).

Proof. The second item is a direct consequence of Lemma 3.17. The first
item is a consequence of both Lemma 3.15 (to prove the finiteness) and also
Lemma 3.17 (to get the value, as the obstructions for 2r-case would induce
big complete minors in C O r). �

Problem 3.1. Is there a similar characterization for ΦC (where C is a
hereditary class of graphs)?

3.5. Almost Wide Classes and Quasi-Wide Classes. The following
three characterizations follow from Theorem 3.25 which is presented next.
We chose this order to conform to the natural progression of the results.

Theorem 3.19. Let C be a class with bounded expansion. Then Φd(C) ≤
∇bd/2c−1(C).

Proof. According to Theorem 3.25, C is uniformly quasi-wide, hence ΦC(d) <
∞ for every d. According to Theorem 3.18, ΦC(d) = β(C O (bd/2c − 1)).
As ∇bd/2c−1(C) = ∇0(C O (bd/2c − 1)) ≥ supn∈N∇0(Kβ(C O (bd/2c−1)),n) =
β(C O (bd/2c − 1)) we conclude. �

We have the following characterization of hereditary almost wide classes
of graphs:

Theorem 3.20. Let C be a hereditary class of graphs. Then the following
are equivalent:

• C is almost wide;
• C is uniformly almost wide;
• There are s ∈ N and t : N → N such that Ks,t(r) /∈ C O r (for all
r ∈ N).

Proof. If C is almost wide then the two next items follow from Theorem 3.18.
If C is such that each C O r excludes some Ks,t(r), then it is uniformly quasi-
wide according to Theorem 3.25 and the bounding of ΦC(d) then follows
from Theorem 3.18. �
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To prove that topological closed classes are almost wide, we need the
following technical lemma:

Lemma 3.21. Let G be a graph, let p, r be integers and let t(r) =
(
p
(
p
2

))r+2.
If K(p+1

2 ),t(r) ∈ GO r then G includes a ≤ (8r + 4)-subdivision of Kp.

Proof. Let q = p
(
p
2

)
and t(r) = qr+1, assume K(p+1

2 ),t(r) ∈ GO r and con-
sider a minimal subgraph H of G such that K(p+1

2 ),t(r) ∈ H O r. The first
part of K(p+1

2 ),t(r) we label as follows: x1, . . . , xp (for the first p vertices)

and z{1,2}, . . . , z{i,j}, . . . , z{p−1,p} for the
(
p
2

)
next ones. The second part

of K(p+1
2 ),t(r) we label y1, . . . , yt(r). Then, in H, each of these vertices will

correspond to rooted trees of height at most r:
• x1, . . . , xp will correspond to rooted trees X1, . . . , Xp;
• z{1,2}, . . . , z{i,j}, . . . , z{p−1,p} will correspond to rooted trees Z{1,2}, . . . ,
. . . , Z{i,j}, . . . , Z{p−1,p};

• y1, . . . , yt(r) will correspond to rooted trees Y1, . . . , Yt(r).
Moreover, by minimality of H, there exists exactly one edge between one
vertex of a Xi or a Z{a,b} and one vertex of a Yj , and each leaf of a Xi or
a Y{a,b} is adjacent to a vertex of some Yj .

EachXi either include a vertex of degree at least q orXi has order at most
qr+1 hence at least one vertex of Xi is adjacent to at least t(r)/qr+1 = q
trees Yj . For each i, we can select

(
p
2

)
trees Yki,j

(for j 6= i). By construction,
we get p spiders (i.e. subdivision of stars) with centers in X1, . . . , Xp, the
spider with center in Xi having its leaves in Yki,j for j 6= i. By assumption,
there exists a path from Yki,j

to Ykj,i
going through Z{i,j}. Altogether, we

get a ≤ (8r + 4)-subdivision of Kp in H hence in G. �

We deduce that excluding a topological minor is sufficient to ensure that
a class is almost wide:

Theorem 3.22. Let C be a proper topologically closed class of graphs (i.e. a
class of graphs without subdivisions of some fixed graph). Then C is almost
wide.

Proof. Let C be a proper topologically closed class of graphs. Without loss of
generality, we may assume that C excludes some KN as a topological minor.
Assume for contradiction that for every s ∈ N there exists r(s) such that
for every t ∈ N, Ks,t ∈ C O r(s). Then K(N+1

2 ),(N(N
2 ))r(N)+2 ∈ GO r(N) for

some G ∈ C. According to Lemma 3.21 the graph G includes a subdivision
of KN , a contradiction. �
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Remark 3.23. Uniformly almost wide classes do not need to be topologically
closed and not even have bounded local expansion: Consider the class C
of all graphs G satisfying ∆(G) ≤ girth(G). Then C is uniformly almost
wide although it does not have a bounded average degree: As the class is
hereditary, it is sufficient to prove that C is almost wide. Let d and m be
integers. If a graph G ∈ C has diameter at least D = dm then G includes
a d-independent set of size m. Otherwise, if G includes a cycle, then this
cycle has length girth(G) ≤ 2D, hence ∆(G) ≤ 2D and G has at most about
(2D)D vertices. Otherwise, if G is acyclic, it is a forest, and the deletion
of one vertex is sufficient to get a big d-independent set. Hence C is almost
wide. Also, let D = {G + K1 : G ∈ C}. Obviously, D is also uniformly
almost wide but does not have a bounded local expansion.

We may be more precise when C is actually minor closed:

Theorem 3.24. Let C be a minor closed class of graphs and let s be an
integer. Then the following are equivalent:

• C is almost wide and ΦC(d) < s for every integer d ≥ 2;
• C is uniformly almost wide and ΦC(d) < s for every integer d ≥ 2;
• C excludes some graph Ks,t.

Proof. If Ks,N belongs to C for every N ∈ N then ΦC(d) ≥ ΦC(d) ≥ ΦC(2) ≥
s. Otherwise, according to Theorem 3.18 we have s > ΦC(d) ≥ ΦC(d). �

Finally, we have the following characterization of quasi-wide classes:

Theorem 3.25. Let C be a hereditary class of graphs. The following con-
ditions are equivalent:

• C is quasi-wide;
• C is uniformly quasi-wide;
• for every integer d there is an integer N such that KN /∈ C O d;
• C is a class of nowhere dense graphs.

Proof. Assume C is a class of nowhere dense graphs. According to Lem-
mas 3.4, 3.7, 3.8 and 3.9 then C is uniformly quasi-wide hence quasi-wide.
Conversely, if C is not a class of nowhere dense graphs, then it is not quasi-
wide according to Lemma 3.12 hence also not uniformly quasi-wide. �

Example 2. For a surface Σ, let CΣ be the class of the graphs which embed
on Σ. It has been proved in [ADK06] that CΣ is almost wide for every
surface Σ and that ΦCΣ(d) is at most equal to the order of the smallest
clique which does not embed on Σ. Again, according to Theorem 3.25, the
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class CΣ is uniformly quasi wide. Hence by Theorem 3.18, we deduce that
ΦCΣ(d) = ΦCΣ(d) = 2 for every integer d, as every K2,n embed on any
surface but not every K3,n does.

Remark 3.26. The classes of nowhere dense graphs are very interesting
classes in themselves from both algorithmic and structural point of view.
They admit a characterization which combine virtually all concepts which
were developed for the study of bounded expansion classes and expose them
in the new light. It also appears that classes of nowhere dense graphs
are a quantitative generalization of bounded expansion classes developed in
[NOdM05a, NOdM05b, NOdM06a, NOdM06b, NOdM07, NOdM08a] and
[NOdM08b, Dvo07a] and that there is an evidence these classes reach the
limit for structural properties. We postpone this to our companion paper
[NOdM08d]

4. Applications

4.1. Structures. Using incidence (or Gaifman) graph construction the char-
acterization theorems translate almost verbatim to general finite relational
structures. Thus for example we have (as an analogy to Theorem 3.3):

Theorem 4.1. Let C be a hereditary class of structures. Then the class C
is wide iff C is uniformly wide iff there is a uniform bound to any degree of
a vertex of a structure in C.

For a class C of structures, recall that Ĉ denotes the class of the Gaifman
graphs of the structures in C. From Theorem 3.25 and Theorem 3.24 we
get:

Theorem 4.2. Let C be a hereditary class of structures.
• If Ĉ is a class of nowhere dense graphs then C is uniformly quasi-

wide;
• Moreover, if there are s ∈ N and t : N → N such that Ks,t(r) /∈ Ĉ O r

(for all r ∈ N), then C is uniformly almost wide.

However the situation is not so simple and we should aim for more. The
fact that the condition that Ĉ should be a class of nowhere dense graphs is
not necessary is displayed by the next example:

Example 3. Let An be the triple system on {1, . . . , n} with triples (1, i, j)
where 1 < i < j and let C = {An : n ∈ N}. It is obvious that C is
almost wide (as deleting point 1 disconnects all the structure An) although
Ĉ = {Kn : n ∈ N} is not a class of nowhere dense graphs.
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This example actually shows that Gaifman graphs do not constitute a
good approach to determining whether a class of structures is almost wide
(resp. quasi-wide) or not. (And that may be one of the first instances of
such phenomenon.) Another approach may be used, which will allow to
handle class of structures like the one given in Example 3.

Let A be a structure and let StarSel(A) denotes the set of all graphs
obtained from the incidence graph of A by contracting exactly one edge at
each vertex representing a relation (hence each relation tuple appears as a
star in the graph). The graphs in StarSel(A) we call the star selectors of
A. Let C be a class of structures. A function σ mapping each A ∈ C to
σ(A) ∈ StarSel(A) is called a star selector choice on C. We denote by S(C)
the set of all the star selector choices on C and, for σ ∈ S(C), we denote by
σ(C) the class of graphs {σ(A) : A ∈ C}.

Theorem 4.3. Let C be an infinite class of structures. Then:

• Let s be an integer. Then C is almost wide (for s) if and only if
there exists σ ∈ S(C), such that σ(C) is almost wide (for s);

• C is quasi-wide if and only if there exists σ ∈ S(C), such that σ(C)
is quasi-wide.

Proof. Assume C is almost wide. Then, there exists s ∈ N such that for
every d ∈ N there exists N(d) such that every structure A ∈ C of order
at least N(d) has a set S of at most s points whose deletion leaves in A a
d-independent set of size at least d. Let ψ : C → N be defined as follows:
for A ∈ C, ψ(A) is the maximum d ∈ N such that A has a subset of at
most s points whose deletion leaves in A a d-independent set of size at least
d. By assumption we have: ∀A ∈ C, if A has order at least N(d) then
ψ(A) ≥ d. For A ∈ C, there exists a subset S at most s points of A whose
deletion leaves in A a ψ(A)-independent set of size at most ψ(A). Let
GA ∈ StarSel(A) be a star selector of A such that for any relation R, if R
meets S then the star representing R has its center in S. (For other tuples
we select stars arbitrarily.) Obviously, the deletion in GA of the vertices
corresponding to S leaves in GA a ψ(d)-independent set of size at least ψ(d).
Let σ ∈ S(C) be such that σ(A) = GA (for every A ∈ C). Then the class
of graphs σ(C) is almost wide and Φσ(C)(d) ≤ s for every d ∈ N.

Conversely, if the deletion of s elements in σ(A) leaves a 2d-independent
set of size m (for some integers s, d,m), then the deletions of the cor-
responding s elements in A leaves a d-independent set of size m hence
ΦC(2d) ≤ Φσ(C)(d).
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Thus, combining both cases, we see that σ(C) is almost wide (for s) if
and only if C is almost wide (for s). Moreover, the inequality ΦC(2d) ≤
Φσ(C)(d) also shows that C is quasi-wide if σ(C) is quasi-wide. To prove the
equivalence for quasi-wide we have to prove the opposite direction.

Assume now C is quasi-wide. Then there exists functions f : N → N and
N : N2 → N such that for every d ∈ N and every m ∈ N, every A ∈ C
of order at least N(d,m) has a subset of size at most f(d) whose deletions
leaves in A a d-independent set of size m. For A ∈ C and d ∈ N, let ζd(A)
be the maximum size of a d-independent set we can get in A by deleting at
most f(d) points. Then the assumption that C is quasi-wide rewrites as

∀d ∈ N : lim inf
A∈C

ζd(A) = ∞

Let A ∈ C. Then there exists a sequence S1, S2, . . . , Sd, . . . of subsets of
points of A such that |Sd| ≤ f(d) and the deletions of Sd leaves in A a
d-independent set of size ζd(A). Define the graph GA as follows: for a
relation R of A, if there exists i such that R meets Si choose the minimum
such i and represent R by a star with center in Si; otherwise, represent R
by any star. Let d ∈ N. Delete in GA the points in

⋃d
i=1 Si. Then, all

the stars corresponding to relations meeting Sd have their center removed
(because this center has to belong to some Si for i ≤ d) hence this deletion
leaves in GA a d-independent set of size at least ζd(A)−

∑d−1
i=1 f(i). Define

σ(A) = GA for every A ∈ C. Then σ(C) is quasi wide (with function
f+(d) =

∑d
i=1 f(i). �

Combining this with Theorems 3.20 and 3.25 we obtain the following
characterization of classes of almost wide and quasi-wide structures. Ad-
vancing this let us call class C of structures strongly monotone if C is closed
on substructures (i.e. if it is monotone) and in addition if it is closed on
taking contractions: For a structure A and x ∈ X(A) contraction of vertex
x is the structure A′ with vertices X(A′) = X(A) \ {x} with signature
σ′ ∪ σ where the relational system R′ (corresponding to the k-nary, k > 1,
relational symbol R) is k − 1-ary and consists from all k − 1-tuples which
we obtain from k-tuples of R by removing x. Contraction is defined by
iterating this construction.

Corollary 4.4. Let C be a strongly monotone class of structures. Then the
following are equivalent:

• C is almost wide;
• C is uniformly almost wide;
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• There exists σ ∈ S(C) and there are s ∈ N and t : N → N such that
Ks,t(r) /∈ (σ(C)) O r (for all r ∈ N).

Proof. If C is almost wide then the two next items follow from Theorem 3.18.
If C is such that each C O r excludes some Ks,t(r), then it is uniformly quasi-
wide according to Theorem 3.25 and the bounding of ΦC(d) then follows
from Theorem 3.18. �

Corollary 4.5. Let C be a strongly monotone class of graphs. The following
conditions are equivalent:

• C is quasi-wide;
• C is uniformly quasi-wide;
• There exists σ ∈ S(C) such that for every integer d there is an

integer N such that KN /∈ σ(C) O d;
• There exists σ ∈ S(C) such that σ(C) is a class of nowhere dense

graphs.

One could aim for a more explicit characterization of almost wide and
quasi-wide classes of structures (with no reference to existence of a special
star-selector). This is leading to an interesting combinatorial problems and
it will appear elsewhere.

Finally, let us remark that for hypergraphs (i.e. set systems of unre-
stricted edge sizes) we have analogous results.

4.2. Algorithmic Consequences. Low tree depth colorations (i.e. col-
orations such that any i ≤ r colors induce a subgraph with tree-depth at
most i) may be computed efficiently:

Theorem 4.6 ([NOdM08b]). For every graph G and every integer r, a
coloration of G using Pr(∇rr (G)) colors such that any i ≤ r colors induce a
subgraph with tree-depth at most i may be computed in O(Pr(∇rr (G)) · |G|)-
time.

It follows that for input graphs in a class C, counting the isomorphs of a
fixed graph, testing whether a graph contains a fixed graph has a subgraph,
etc. may be computed in time

O(n) if C is a class with bounded expansion,

n1+o(1) if C is a class of nowhere dense graphs,

where n is the order of the graph (see [NOdM08b]).
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4.3. Caricatures of Structures. It has been proved in [Ros07] (Corollary
6.14) that there exists a function r such that for every integer n and every
finite relational structures A and B such that A �r(n) B there exists finite
relational structures Ã and B̃ such that A � Ã ≡n B̃ � B. (Here we
write A � B if A,B are homomorphic equivalent. We write A �r(n) B
if all substructures in A and B with homomorphisms equivalent (as sets).
Finally we write A ≡n B if A |= φ iff B |= φ holds for every first-order
formula φ with quantifier rank n. See [Ros07] for details and context of
these definitions.)

In particular, for every m there exists a function f such that for every
structure A there exists a caricature structure Ap such that Ap has size at
most f(p) and A � Ã ≡n Ap.

Theorem 4.7. For every class of structures C and for every integer p, there
is an algorithm which computes for A ∈ C, |A| = n, its caricature Ap in time

O(n) if C is a class with bounded expansion,

n1+o(1) if C is a class of nowhere dense structures,

where n is the size of A.

Corollary 4.8. Let C be a class of structure and let φ be a first-order
property which is preserved in C under homomorphism equivalence (i.e. A |=
φ and A � B imply B |= φ). Then there is an algorithm that checks whether
an input structure A ∈ C satisfies φ or not in time

O(n) if C is a class with bounded expansion,

n1+o(1) if C is a class of nowhere dense structures,

where n is the size of A.

4.4. Homomorphism Preservation Theorem and Restricted Dual-
ities. According to the result announced by Dawar [Daw07b] and to The-
orem 3.25, a first-order formula is preserved under homomorphisms on a
class C of nowhere dense structures if, and only if, it is logically equivalent
on C to an existential-positive formula.

Particularly, for every first-order formula φ preserved under homomor-
phisms on a class C with bounded expansion there exists a finite set Fφ

of finite structures such that for every structure A ∈ C holds F 2 φ if
and only if F 9 A for every F ∈ Fφ. Moreover, according to the results of
[NOdM08c], there exists a finite set Dφ of finite structures such that F 9 A
for every F ∈ Fφ if and only if A → D for some D ∈ Dφ. Moreover, Dφ
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may be chosen in such a way that no F ∈ Fφ has a homomorphism to any
D ∈ Dφ, that is:

∀A ∈ C : F |= φ ⇐⇒ (∃F ∈ Fφ : F → A) ⇐⇒ (∀D ∈ Dφ : A 9 D)

∀(F,D) ∈ Fφ ×Dφ : F 9 D

This can be put more symbolically as

∀A ∈ C : F |= φ ⇐⇒ (Fφ → A) ⇐⇒ (A 9 Dφ)
Fφ 9 Dφ

Such statements are called restricted finite dualities and the above state-
ment is then rephrased as “every bounded expansion class has all restricted
dualities”, see [NOdM06c][NOdM06a][NOdM08c].

As a combination of the above we obtain (perhaps suprising) characteri-
zation of relativized first order definable subclasses of a class with bounded
expansion:

Corollary 4.9. Let C be a class with bounded expansion. For a homomor-
phism closed subclass K of C are the following statements equivalent:

• K is the restriction of a first order definable class to C;
• K = {A : F 9 A for every F ∈ F} for a finite subset F of K;
• K is defined by a restricted duality.

This is an analogy of a result for unrestricted dualities on structures, we
refer the reader to [NT00, ADK04, Ros07]. The smaller difference is that
we do not assume that the class K is (relativized) CSP class, there are much
more dualities, in fact all of them!

Problem 4.1. Can we require that no Dφ ∈ Dφ satisfies φ? It is easy to
see that this is the case when φ is an existential-positive formula. However,
as the structures in Dφ don’t have to belong to C, the fact that φ is logically
equivalent on C to an existential-positive formula is not so helpful.

Example 4. It should be noticed that these duality properties fail to be true
in general for classes of nowhere dense structures and even for classes of
graphs with bounded local tree-width: consider the class C of the graphs
whose girth is strictly bigger than their maximum degree. Then every sub-
graph of bounded diameter r has either maximum degree at most r (there
are finitely many such graphs) or is a tree, hence has bounded tree-width.
However, the triangle free graphs in the class do not have bounded chro-
matic number hence the class C fails to have all restricted dualities.
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and A. Kučera, editors, Mathematical Foundations of Computer Science
2007, volume 4708 of Lecture Notes in Computer Science, pages 2–12.

Springer, 2007.
[Daw07b] A. Dawar. On preservation theorems in finite model theory. Invited talk at

the 6th Panhellenic Logic Symposium - Volos, Greece, July 2007.

[DGK07] A. Dawar, M. Grohe, and S. Kreutzer. Locally excluding a minor. In Proc.
22nd IEEE Symp. on Logic in Computer Science, 2007.
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[NOdM08d] J. Nešetřil and P. Ossona de Mendez. On nowhere dense graphs. European

Journal of Combinatorics, 2008. submitted.
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Centre d’Analyse et de Mathématiques Sociales, CNRS, UMR 8557, 54 Bd
Raspail, 75006 Paris, France

E-mail address: pom@ehess.fr

31


