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1. Introduction

In this chapter we briefly outline the main motivation our work and we
relate it to other research. We do not include any definitions here.

1.1. Dense Graphs

Dense graphs have been extensively studied in the context of Extremal
Graph Theory. The outstanding Szemerédi Regularity Lemma [111] states
that any dense network has properties which are close to the ones of a ran-
dom graph. In particular, a large dense network cannot be too irregular.
This structural result is one of the cornerstones of contemporary combi-
natorics (and one would like to say mathematics in general). It also let to
manyfold applications and generalizations, see e.g. [66, 65, 72, 113, 41]. The
closest to our topic covered in this paper is the recent development which
is based on the study of homomorphisms of graphs (and structures). (It is
perhaps of interest note in how many different areas and a variety contexts
the notion of a homomorphism recently appeared, see [60]). Regularity is
viewed here as a sructural approximation in a proper metrics and also as
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a convergence. For a survey of this development see [15]. The main idea
here is to study the local structure of a large graph G by counting the ho-
momorphisms from various small graphs F into G (this relates to the area
called property testing), and to study the global structure of G by counting
its homomorphisms into various small graphs H (sometimes interpreted as
templates). Very schematically this may be outlined by the schema:

F1
))SSSSSS H1

. . . // G

55kkkkkk //
))SSSSSS . . .

Fp

55kkkkkk
Hq

This approach proved to be very fruitful and relates (among others) to
the notion of quasi-random graph, see e.g. [23], and to the full character-
izations of testable graph properties, see e.g. [5, 15]. Nevertheless, such
an approach fails when the considered structures become too sparse. In
particular, Szemerédi’s regularity lemma concerns graphs which have (at
least locally) a number m of edges which is quadratic with respect to the
number n of vertices, or at least as large as n1+ε if one consider extensions
and generalizations of this lemma to the sparse context, see e.g. [65]. It
is our ambition to deal exactly with sparse graphs which are not covered
by this spectrum of results. Yet our goals are similar: we are aiming for
regular and highly regular partitions.

1.2. Sparse Graphs

We aim (as in the Szemerédi regularity lemma) for structural theorems
for all graphs. The dense graphs display a remarkable stability (and many
of their properties do not change by deletions and additions of a small
proportion of all edges, see e.g. [117]) and, as has been discovered recently,
they may be studied by number of homomorphisms and by limit objects of
geometrical nature, [15, 41]. But our graphs have typically linearly many
edges, large independent sets and exponentially many endomorphism. As a
consequence we do not consider statistical properties but rather existential
properties, i.e. properties defined by the existence (and non-existence) of
mappings. In the other words we deal with the simplification of category of
graphs (or the homomorphism order), see e.g. [60]. But the first difficulty
we shall meet is the definition of what a “sparse graph” is. Let us consider
various approaches to this problem.

Of course, if we consider any dense graph and break every link by in-
serting a new vertex, the obtained graph has a number of links less than
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twice its number of vertices and nevertheless inherit most of the structure
of the original graph. So the degeneracy (or maximal average degree of
a subgraph) of our graphs is not sufficient. This also indicates that tests
which contain a bounded number vertices are not sufficient to our purposes.

Another possible (and finer) restriction is to consider graphs with no
minor belonging to some fixed family. In this way we get for example the
class of all planar graphs. The interest of such a restriction is twofold: first it
ensures a number of efficient algorithms, and also a large scientific literature.
One way of describing such a family is the following: if you consider disjoint
connected parts, you will never be able to find more than (fixed) p parts
which are pairwise adjacent. In the other words the complete graph Kp+1

is a forbidden minor. Classes like that are called proper minor closed. Such
restrictions are natural for geometric networks, but for our purposes do not
seem to be general enough. For instance, a very simple operation which
is to clone every node (with its links) does not preserve such properties.
Another feature is the lack of parametrization: one graph is “forbidden” at
all levels.

Another interesting restriction is to consider bounded degree graphs.
Such graphs almost surely have nice properties when large (they are almost
surely expanders). Nevertheless, important real networks like the WEB
surely does not fit this restriction. And this class does not include even the
class of all trees (which should be considered as sparse graphs).

A more general framework (a framework which include the above exam-
ples) concerns proper topologically closed classes of graphs. These classes
are characterized as follows: whenever a subdivision of a graph G belongs
to the class then G belongs to the class; moreover, not every graph be-
long to the class. Such classes are obviously defined by a (maybe infinite)
set of forbidden configurations. These classes naturally catch the classes
from geometrical origin, and also appear as a good approximation base for
real-world networks. Notice that such graphs still have a number of edges
which is bounded by a linear function of their orders. But still this lacks a
parametrization and our classes will strictly include these classes.

Our principal notion for sparse graphs is the notion of bounded expansion
class of graphs. These classes are characterized by the fact that the average
degree of minors obtained by contracting disjoint subgraphs each of radius at
most r is bounded by a function of r only. This means that local contractions
cannot make the graphs too dense. These classes will be introduced in
detail in the next chapter and we shall also indicate the various equivalent
definition and regularity properties of graphs belonging to these classes.
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The charecterization theorems are then summarized in the last chapter of
this article.

1.3. Nowhere Dense Graphs

For any class with bounded expansion all graphs in the class have linear
number of edges. There is numerous evidence that graphs with n1+ε edges
share many properties of random graphs (for example such graphs include
graphs with large girth and high chromatic number, a seminal result of
Erdős). Thus n1+ε edges of a graph with n vertices seems to be a natural
bound for our investigations of sparse graphs. This bound is natural. As
we will show (and motivated by problems from model theory) a new type
of graph classes arises here: classes of nowhere dense graphs. These classes
are characterized by the fact that the number m of edges of a graph in the
class is bounded by n1+o(1), where n is the order of the graph, and that
such a statement holds for the class of the minors obtained by contracting
disjoint balls of radius at most r for each fixed r. Again, this definition
should be compared with the fact that every sufficiently big graph G having
at least n1+ε edges has a big dense minor obtained by contracting balls
of radius at most r(ε) (by dense we mean: having a quadratic number
of edges). But not only that; the classes of nowhere dense graphs have a
characterization which combines virtually all concepts which were developed
for the study of bounded expansion classes and expose them in the new light.
To demonstrate this explicitely we included all characterization theorem in
the final section of this article.

2. Measuring sparsity

The distance in a graph G between two vertices x and y is the minimum
length of a path linking x and y (or∞ if x and y do not belong to the same
connected component of G) and is denoted by distG(x, y). Let G = (V,E)
be a graph and let d be an integer. The d-neighborhood NG

d (u) of a vertex
u ∈ V is the subset of vertices of G at distance at most d from u in G:
NG

d (u) = {v ∈ V : distG(u, v) ≤ d}.
We use standard graph theory terminology however we find it useful to

introduce the following: for a graph G = (V,E), we denote by |G| the order
of G (that is: |V |) and by ‖G‖ the size of G (that is: |E|).
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2.1. Shallow minors and Grads

≤ r

Figure 2.1. A shallow minor of depth r of a graph G is
a simple subgraph of a minor of G obtained by contracting
vertex disjoints subgraphs with radius at most r

For any graphs H and G and any integer d, the graph H is said to be
a shallow minor of G at depth d ([100] attributes this notion, then called
low depth minor, to Ch. Leiserson and S. Toledo) if there exists a subset
{x1, . . . , xp} of G and a collection of disjoint subsets V1 ⊆ NG

d (x1), . . . , Vp ⊆
NG

d (xp) such that H is a subgraph of the graph obtained from G by con-
tracting each Vi into xi and removing loops and multiple edges (see Fig. 2.1).
The set of all shallow minors of G at depth d is denoted by G O i. In par-
ticular, G O 0 is the set of all subgraphs of G.

The greatest reduced average density (shortly grad) with rank r of a graph
G [88] is defined by formula

(1) ∇r(G) = max
{
‖H‖
|H|

: H ∈ G O r

}
Also we denote by ∇(G) = ∇∞(G) the maximum edge-density of a minor

of G. Notice that this last invariant is related to the order of the largest
complete graph which is a minor of G, that is: the so-called Hadwiger
number η(G) of G. It follows from the definition that

η(G) ≤ 2∇(G) + 1.

By extension, for a class of graphs C, we denote by C O i the set of all
shallow minors at depth i of graphs of C, that is:

C O i =
⋃

G∈C
(G O i)
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Hence we have

C ⊆ C O 0 ⊆ C O 1 ⊆ · · · ⊆ C O i ⊆ · · · ⊆ C O∞.

Here we denoted by C O∞ the class of all minors of graphs from C. This is
of course a minor closed class of graphs (which may coincide with the class
of all finite simple graphs; think e.g. of the class of all cubic graphs).

Also, for a class C of graphs we define the expansion of the class C as:

∇i(C) = sup
G∈C
∇i(G)

∇(C) = sup
G∈C
∇(G)

Notice that ∇r(G) = ∇0(G O r).
A proper minor closed class of graphs C is a minor closed class of graphs

excluding at least one minor, i.e. such that C is not the class of all finite
simple graphs. Every proper minor closed class of graphs C is such that
∇(C) < ∞. Conversely, if C is a class of graphs such that ∇(C) < ∞ then
C is a subclass of a proper minor closed class of graphs (the smallest being
C O∞).

Also, a grad of particular importance is ∇0. It is related to the maximum
average degree (mad) of a graph by mad(G) = 2∇0(G). A class C of graphs
such that ∇0(G) < (k + 1)/2 (where k is an integer) is called k-degenerate.
The equivalent defining property of a k-degenerate class of graphs is that
every non-empty subgraph contains at least a vertex of degree at most k.
Thus there is also an easy (greedy) algorithm to determine ∇0(G).

It has to be noticed [38] that the determination of ∇r(G) is a difficult
problem whenever r ≥ 1.

2.2. Shallow Topological Minors and Top-grads

Our approach makes it possible to treat minors and topological subgraphs
similarly. For any (simple) graphs H and G and any integer d, the graph H is
said to be a shallow topological minor of G at depth d if there exists a subset
{x1, . . . , xp} of G and a collection of internally vertex disjoint paths P1 . . . Pq

each of length at most d + 1 of G with endpoints in {x1, . . . , xp} whose
contraction into single edges define on {x1, . . . , xp} a graph isomorphic to
H (see Fig. 2.2).

The set of all the shallow topological minors of G at depth d is denoted
by G Õ i. In particular, G Õ 0 is the set of all the subgraphs of G. Notice
that for every graph G and every integer i we clearly have (G Õ i) ⊆ (G O i).
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length ≤ r + 1

Figure 2.2. A shallow topological minor of depth r of a
graph G is a simple subgraph of a minor of G obtained
by contracting internally vertex disjoint paths of length at
most r + 1

The topological greatest reduced average density (top-grad) with rank r of
a graph G is:

(2) ∇̃r(G) = max
{
‖H‖
|H|

: H ∈ G Õ r

}
Also, we denote by ∇̃(G) the limit value ∇̃∞(G).

By extension, for a class of graphs C, we denote by C Õ i the set of all
shallow topological minors at depth i of graphs of C, that is:

C Õ i =
⋃

G∈C
(G Õ i)

Hence we have

C ⊆ C Õ 0 ⊆ C Õ 1 ⊆ · · · ⊆ C Õ i ⊆ · · · ⊆ C Õ∞

For a class C of graphs we define the topological expansion of C as:

∇̃i(C) = sup
G∈C
∇̃i(G)

∇̃(C) = sup
G∈C
∇̃(G)

Notice that ∇̃i(C) = ∇̃0(C Õ i).
Also, a class C is topologically closed if C = C Õ∞. A topologically closed

class C is proper if it is different from the class of all simple finite graphs.
Notice that a class C is a subclass of a proper topologically closed class of
graphs if and only if ∇̃(C) <∞.
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2.3. Hajós or Hadwiger?

Although any proper minor closed class of graphs is also a proper topolog-
ically closed class, the converse is not true. Also, some important properties
which holds from the former do not hold for the latter. A striking example
stands in the fundamental difference Hadwiger conjecture (which is at least
satisfied by almost every graphs) and Hajós conjecture (which is satisfied
by almost no graphs).

Hence it seems to be of great importance to decide whether we will choose
to define the sparsity of a class of graphs using the grad or the top-grad.
However, a bit surprisingly, this does not make a difference at all. This is
expressed by the following result of Zdeněk Dvořák, [38]:

Theorem 2.1. For every integer r, the invariants ∇r and ∇̃r are polyno-
mially equivalent. Precisely, for every graph G:

1
4

(
∇r(G)

4

) 1
(r+1)2

≤ ∇̃r(G) ≤ ∇r(G)

Similar correspondence as for edge density (expressed in terms of grads
and top-grads) but also for clique number ω(G):

Lemma 2.2 ([91]). Let r ∈ N. For any graph G:

ω(G Õ r) ≤ ω(G O r) ≤ 22r−1

(
ω

(
G Õ

9r+1 − 5
2

))2r+1

�
These two results are related by the following theorem, which has been

proved by Z. Dvořák in his thesis [38]:

Theorem 2.3. For each ε(0 < ε ≤ 1) there exist integers n0 and c0 and
a real number µ > 0 such that every graph G with n ≥ n0 vertices and
minimum degree at least nε contains the c-subdivision of Knµ as a subgraph,
for some c ≤ c0.

2.4. Stability with Respect to Lexicographic Product

Let G, H be graphs. The lexicographic product G •H is defined by

V (G •H) = V (G)× V (H)

E(G •H) = {{(x, y), (x′, y′) : {x, x′} ∈ E(G) or x = x′ and {y, y′} ∈ E(H)}.
Note that the lexicographic product (or blowing up of vertices) is incom-

patible with minors, since it is easily seen that every graph is a minor of
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Figure 2.3. Dominance of Invariants (up to polynomial transformation)
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G • K2 for some planar graph G. However the lexicographic product and
blow-up are natural constructions inthe context of homomorphisms and
quasi-randomness.

The long and difficult proof of the following Lemma is omitted here.

Lemma 2.4 ([88]). For every integer r there exists a polynomial Pr of
degree O

(
(2r+1)!

2rr!

)
such that for every graphs G and H:

∇r(G •H) ≤ Pr(|H|,∇r(G)).

We may notice a slight difference between the treatment of dense and
sparse graphs: In the case of dense graphs, it is usual to consider that any
blow-up of the vertices of a graph G produce a graph which is intrinsically
equivalent to G (hence the definition of the distance in [15]). However, in
the sparse case, we only allow to blow the vertices of the graphs a bounded
number of times, and the obtained graphs although not “equivalent” have
characteristic which are polynomially equivalent to the ones of the original
graph.

Also, Lemma 2.4 is the core of the proof of the existence of bounded
transitive fraternal augmentations for graphs with bounded grads, the heart
of our decomposition result for sparse graphs (see Section 3.6).

Notice also that we have an easy inequality the other way:

Lemma 2.5. For every integer r and for every graphs G and H:

∇r(G •H) ≥ ∇r(G)|H|.
Hence, for fixed r, ∇r(G)|H| and ∇r(G •H) are polynomially equivalent.

Proof. Consider a shallow minor G′ of G of depth r such that∇r(G) = ‖G′‖
|G′| .

Then G′ • H is obviously a minor of G • H and ‖G′•H‖
|G′•H| ≥

|H|2‖G′‖
|H||G′| =

|H|‖G
′‖

|G| . �

3. Sparse Classes of Graphs

3.1. Basic Definitions

A class C of graphs is hereditary if every induced subgraph of a graph
in C to C, and it is monotone of every subgraph of a graph in C belongs to
C. For a class of graphs C, we denote by H(C) the class containing all the
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induced subgraphs of graphs in C, that is the inclusion-minimal hereditary
class of graphs containing C.

3.1.1. Limits. Let C be an infinite class of graphs and let f : C → R be a
graph invariant. Let Inj(N, C) be the set of all injective mappings from N
to C. Then we define:

lim sup
G∈C

f(G) = sup
φ∈Inj(N,C)

lim sup
i→∞

f(φ(i))

Notice that lim supG∈C f(G) always exist and is either a real number or
±∞.

If lim supG∈C f(G) = α ∈ R = R ∪ {−∞,∞} we have the following two
properties:

• for every φ ∈ Inj(N, C), lim supi→∞ f(φ(i)) ≤ α;
• there exists φ ∈ Inj(N, C), lim supi→∞ f(φ(i)) = α.

The second property is easy to prove: consider a sequence φ1, . . . , φi, . . .
such that limi→∞ lim supj→∞ f(φi(j)) = α. For each i, let si(1) < · · · <
si(j) < . . . be such that lim supj→∞ f(φi(j)) = limj→∞ f(φi(si(j))). Then
iteratively define φ ∈ Inj by φ(1) = φ1(s1(1)) and φ(i) = φi(si(j)), where
j is the minimal integer greater or equal to i such that φi(si(j)) will be
different from φ(1), . . . , φ(i− 1). Then lim supj→∞ f(φ(j)) = α.

3.1.2. Derived classes. Graph operations naturally define operations on
graph classes: for a class C, an integer r and a graph H, we define:

C O r =
⋃

G∈C
G O r

Br(C) = {G ∈ C O 0 : ρ(G) ≤ r}
C •H = {G •H : G ∈ C}
C + H = {G + H : G ∈ C}

(Here G + H ofcourse means the disjoint union of graphs G and H.)

3.2. When is a Class Sparse or Dense?

Defining the boundary between sparse and dense classes is not an easy
task. Several definitions have been given for “sparse graphs”, which do not
allow a dense/sparse dichotomy (for instance: a graph is sparse if it has a
size which is linear with respect to its order, dense if it is quadratic). Instead
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of defining what is a “sparse graph” or a “dense graph”, we define “sparse
classes of graphs” and “dense classes of graphs” by the limit behaviour of the
“biggest” graphs in the class when their order tends to infinity. Moreover,
we will demand that our definition stays invariant in the context of derived
classes, i.e. when we perform lexicographic products with small graphs,
contractions of small balls, etc. It appears that the right measure of the
growth of edge densities is the fraction of logarithms. This leads to the
following trichotomy which is the starting point of our classification:

Lemma 3.1 ([91]). Let C be an infinite class of graphs. Then

lim
r→∞

lim sup
G∈C O r

log ‖G‖
log|G|

∈ {0, 1, 2}

�
The first case of Lemma 3.1, that is: limr→∞ lim supG∈C O r

log ‖G‖
log|G| = 0

corresponds to a class of graphs C such that the number of edges of the
graphs in C is bounded (for otherwise lim supG∈C O 0

log ‖G‖
log|G| > 0). Then the

graphs in C only contain isolated vertices with the exception of a bounded
number of vertices. We say that such a class is a class of bounded size
graphs.

The third case of Lemma 3.1, that is: limr→∞ lim supG∈C O r
log ‖G‖
log|G| = 2

corresponds to a class of graphs C such that by considering shallow minors
at some “reasonable” depth, one will find infinitely many dense graphs.
Actually (as shown in [91]) the property of such classes is even stronger:
there exists some threshold integer rC such that C O rC contains all finite
graphs! Such classes we call classes of somewhere dense graphs.

Between these two extreme cases which seem to be well characterized lie
the classes C such that:

lim
r→∞

lim sup
G∈C O r

log ‖G‖
log|G|

= 1

Such classes we call classes of nowhere dense graphs. They are alternatively
defined by the fact that there exists no integer r such that C O r contains all
finite graphs (i.e. such that ω(C O r) = ∞). The intristic structure of this
class and of its subclasses is the main subjet of this paper. The situation is
summarized in the following diagram:
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lim
r→∞

lim sup
G∈C O r

log ‖G‖
log|G|

=0

vvmmmmmmmmmmmmmm
=1

��

=2

((QQQQQQQQQQQQQQQ

Bounded SizeKS

��

Nowhere DenseKS

��

Somewhere DenseKS

��
supG∈C ‖G‖ <∞ ∀r : ω(C O r) <∞

KS

��

∃rC : ω(C O rC) =∞
KS

��
∀r : ω(C Õ r) <∞ ∃r′C : ω(C Õ r′C) =∞

3.3. Within the Nowhere Dense World

Why do we have to consider shallow minors (i.e. classes C O r)? Couldn’t
be a possible way to classify classes of nowhere dense graphs to look precisely
at the behaviour of log ‖G‖

log|G| − 1 for G ∈ C and |G| → ∞? Alas, it happens
that this value can be equivalent to any function of |G| which tends to zero:

Lemma 3.2. Let ε : N→ R be a function such that ε(n) > 0 and limn→∞ ε(n) =
0. Then there exists an infinite hereditary class of nowhere dense graphs Cε
such that

lim sup
G∈C

(
log ‖G‖
log|G|

− 1
)
∼ ε(|G|)

Proof. We can use well known constructions of expanders and even weaker
construction of [110], where a deterministic algorithm is given that con-
structs a graph of girth logk(n) + O(1) and minimum degree k− 1, n is the
number of vertices and number of edges is e = bnk/2c (where k < n

3 ). The
degree of each node is guaranteed to be k − 1, k, or k + 1, where k is the
average degree.

As limn→∞ ε(n) = 0, there exists N ∈ N such that ε(N) < 1 and N ε(N) <
N/3. For n ≥ N , let Gn be a graph of order n, average degree nε(n) and
girth gn = 1

ε(n) + O(1). Let C = {Gn}n∈N O 0.
For n, p, r ∈ N, assume Kp ∈ Gn Õ r. Then the girth of Gn is at most

3(2r+1) hence 1
ε(n) +O(1) ≥ 6r thus n ≤ h(r) for some function h : N→ N.
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As obviously p ≤ n we deduce p ≤ h(r). It follows that ω(C Õ r) ≤ h(r)
hence C is a class of nowhere dense graphs. �

Hence we will be more modest in our tentative classification: we will base
the classification on the rough behaviour of C with respect to bounded depth
contractions. From the fact that limr→∞ lim supG∈C O r

log ‖G‖
log|G| = 1, we can

prove that the grads are “almost bounded” in the sense that∇r(G) = |G|o(1)

for G ∈ C and |G| → ∞. This property suggest to consider the particular
case where the function ∇r(G) is actually bounded for every integer r. The
classes for which ∇r(G) is bounded by some value f(r) independent of G
are called classes with bounded expansion. That is:

C has bounded expansion ⇐⇒ ∀i ≥ 0 : sup
G∈C
∇i(G) <∞.

The expansion of a class C with bounded expansion is the function f defined
by:

f(r) = ∇r(C) = sup
G∈C
∇r(G).

Let us remark here that we are explaining our definitions in the reverse
chronologival order. Classes with bounded expansions were defined in 2005
(see e.g. [83, 84] while the importance of nowhere dense classes was re-
alized recently (see e.g. [87]. An intermediate level between classes with
bounded expansion and general classes of nowhere dense graphs are classes
with bounded local expansion, defined by the fact that for every ρ, the class
Bρ(C) of all balls of radius ρ in graphs inC has bounded expansion. Alter-
natively, this may be expressed as follows:

C has bounded local expansion ⇐⇒ ∀ρ, i ≥ 0 : sup
v∈G∈C

∇i(G[NG
ρ (v)]) <∞.

The interest in these classes is limited by the fact that adding an apex to
the graphs in the class destroy the property of a class to have bounded local
expansion if it does not actually have a bounded expansion. However classes
with bounded local expansion strictly contain classes with locally forbidden
minors and they in turn minor closed classes. They were studied extensively,
see e.g. [29]. A “standard example” of a class with bounded local expansion
is the class G of graphs G such that girth(G) ≥ ∆(G): consider any fixed
integer r and the subgraph Gv of G ∈ G induced by the r-neighborhood of v.
Either ∆(G) < 2r and thus |Gv| ≤ (2r)r or ∆(G) > 2r thus girth(G) > 2r
hence Gv is a tree. Thus, except for a bounded number of graphs, the class
Br(G) only includes forests.

15



Another approach to sparsity is to look for subsets of vertices which are
far away from each other. Intuitively, for any integer d, if a graph is sparse
and sufficiently large it will be sufficient to delete few vertices to find a
big subset of vertices, any two of which are at distance at least d. Such a
deletion is necessary (as we shall see) if we don’t want to restrict “sparsity”
to “bounded degree”.

Let r ≥ 1 be an integer. A subset A of vertices of a graph G is r-
independent if the distance between any two distinct elements of A is strictly
greater than r. We denote by αr(G) the maximum size of an r-independent
set of G. Thus α1(G) is the usual independence number α(G) of G. A
subset A of vertices of G is d-scattered if NG

d (u) ∩ NG
d (v) = ∅ for every

two distinct vertices u, v ∈ A. Thus A is d-scattered if and only if it is
2r-independent.

A class of graphs is wide if every sufficiently large graph in the class
contains an arbitrarily big d-scattered set. Following Dawar [28], a class if
almost wide if deleting at most some number of vertices (bounded indepen-
dently to d) makes it possible to find an arbitrarily big d-scattered set in
a sufficiently large graph in the class. The class is quasi-wide classes when
the number of vertices to delete may depend on d. Precisely:

C is wide ⇐⇒ ∀d ∈ N, lim inf
G∈C

αd(G) =∞

C is almost wide ⇐⇒ ∃s ∈ N, ∀d ∈ N, lim inf
G∈C

max
|S|≤s

αd(G− S) =∞

C is quasi wide ⇐⇒ ∃s : N→ N, ∀d ∈ N, lim inf
G∈C

max
|S|≤s(d)

αd(G− S) =∞

It has been proved in [9] that classes with bounded degree are wide, and
in [27] that proper minor closed classes of graphs are almost wide. In [87]
we characterized these classes and showed how they relate to the classes of
nowhere dense graphs. In particular, we prove that a hereditary class of
graph is quasi-wide if and only if it is a class of nowhere dense graphs, see
Section 5.2.

3.4. Classes with Bounded Expansion

For an extensive study of bounded expansion classes we refer the reader
to [88] [89] [90] [38] [39].

Let us list some examples of classes with bounded expansion. Some
inclusions of these classes are schematically depicted on Fig 3.1. However,

16



bounded expansion66lllllllllllllllllll

ggPPPPPPPPPPPPPPP

no Kp subdivisions highly subdividedOO hhPPPPPPPPPPPPPPPPP

bounded degree no Kp minors
OO ggPPPPPPPPPPPPPPP

d-dimensional meshes planar

with bounded aspect ratio

Figure 3.1. Classes with Bounded Expansion

we should remark that these classes may correspond to different expansion
functions.
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• d-dimensional meshes with bounded aspect ratio. [75] in-
troduces classes of graphs which occur naturally in finite-element
and finite-difference problems. Theses classes, the classes of d-
dimensional meshes with bounded aspect ratio, are formed by the
interior skeletons of a family of d-dimensional simplicial complexes
with bounded aspect ratio. As such graphs exclude Kh as a depth
L minor if h = Ω(Ld) [114] they form (for each d) a class with poly-
nomially bounded expansion. Our results (and particularly linear
algorithm for low tree depth decompositions, see Sections 3.5 and
3.6) present a natural link of applicable results [75].

• bounded degree classes. Let ∆ be an integer. Then the class of
graphs with maximum degree at most ∆ has expansion bounded by
the exponential function f(r) = ∆r+1.
• planar graphs. Any planar graph graph G of order n has size

at most 3n − 6, hence ∇0(G) < 3 for every planar graph. As any
minor of a planar graph is also planar, ∇r(G) < 3 for every integer
r ≥ 0 and any planar graph G. Hence the class of planar graphs
has bounded expansion.

• proper minor closed classes. More generally, any proper minor
closed class of graphs has expansion bounded by a constant func-
tion. Conversely, any class of graphs with expansion bounded by a
constant is included in some proper minor closed class of graphs.

• proper topologically closed classes. These classes are defined
by a (possibly infinite) set S of forbidden configurations, in the sense
of Kuratowski’s configurations: a graph G belongs to the class if no
subdivision of a graph in S is isomorphic to a subgraph of G. Such
classes have expansion bounded by a double exponential function
f(r) = 2r−1(minH∈S |V (H)|)2r+1

(see [83]).
• highly subdivided cliques. For any non-decreasing function f :

N → N \ {0, 1, 2} we may construct a class Cf of graphs with ex-
pansion f by including (for each integer r) the complete graph of
2f(r) + 1 vertices whose edges are subdivided 3r − 1 times.
• union of bounded expansion classes. Union of finitely many

classes each with bounded expansion is itself a class with bounded
expansion.

3.5. Proper Minor Closed Classes

Minor closed classes have been extensively studied by Robertson and
Seymour (see [102] for instance). From our point of view, proper minor
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closed classes of graphs (that is: minor closed classes excluding at least
one minor) form the very extreme case where the expansion of the class is
uniformly bounded by a constant.

Important results have been obtained concerning proper minor closed
graphs, such as the celebrated proof of Wagner’s conjecture (the minor
relation is a well quasi-order) and the Structure Theorem. This field is also
strongly connected to the study of another fundamental conjecture, namely
Hadwiger’s conjecture.

In their study of classes of graphs excluding a minor, Robertson and
Seymour have shown the particular importance of the tree-width tw(G) and
of classes with bounded tree-width. Structural and algorithmic importance
of tree-width [103] also appeared in the context of Monadic Second-order
Logic (MSL) through the results of Courcelle [25] [26].

In [84], we introduced yet a more restrictive type of classes of graphs,
related to a new invariant: the tree-depth td(G). Although a class of graphs
has bounded tree-width if and only if it excludes some grid as a minor, it has
bounded tree-depth if and only if it excludes some path as a minor. Classes
with bounded tree-depth appear to behave like classes of “almost finite”
graphs. For instance, only a bounded number of graphs with tree-depth at
most fixed k have no non-trivial involutive automorphism (see Section 3.2).

3.6. The Full Picture

The hierarchy of some important properties of hereditary sparse classes
of graphs is depicted Fig. 3.2. It is interesting to note that all the properties
shown in Fig. 3.2 are preserved when considering depth 1 shallow minors.
This means that the considered properties are “weakly minor closed”. For
instance, C has bounded degree if and only if C O 1 has bounded degree. We
give a short proof for the case of bounded local tree-width for completeness
(a similar proof applies for locally excluded minors):

Lemma 3.3. Let C be a class of graphs. Then C has bounded local tree-width
if and only if C O 1 has bounded local tree-width.

Proof. It is sufficient to prove that if C has bounded local tree-width, so
has C O 1. Let f : N → N be such that for every connected H ⊆ G ∈ C
and every t ∈ N we have ρ(H) ≤ t =⇒ tw(H) ≤ f(t) (where ρ(H) is the
radius of H). Let G ∈ C and let H ∈ G O 1. Then there is G′ ⊆ G such
that H ∈ G′ O 1 and ρ(G′) ≤ 3ρ(H). As tw is minor-monotone, we deduce
tw(H) ≤ tw(G′) ≤ f(ρ(G′)) ≤ f(3ρ(H)). It follows that C O 1 has bounded
local tree-width. �
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4. Regular Partitions of Sparse Graphs

4.1. Tree-width

The concept of tree-width [59],[101],[116] is central to the analysis of
graphs with forbidden minors of Robertson and Seymour. This concept
gained much algorithmic attention thanks to the general complexity result
of Courcelle about monadic second-order logic graph properties decidability
for graphs with bounded tree-width [25],[26]. It appeared that many NP-
complete problems may be solved in polynomial time when restricted to
a class with bounded tree-width. However, bounded tree-width is quite a
strong restriction, as planar graphs for instance do not have bounded tree-
width.

Let k be an integer. A k-tree is a graph which is either a clique of size
at most k or a graph G inductively constructed from a k-tree with order
one less G′ by adding a vertex adjacent to a clique of size at most k of
G′. A partial k-tree is a subgraph of a k-tree. Although it is not the usual
definition of tree-width (but is equivalent to it) we define the tree-width of
a graph in terms of partial k-trees: The tree-width td(G) of a graph G is
the minimum k such that G is a partial k-tree. Notice that a graph G with
tree-width k is k-degenerate is the sense that every non-empty subgraph of
G has at least one vertex of degree at most k (this of course doesn’y hold
conversely).

It is NP-complete to determine whether a given graph G has tree-width
at most a given variable k [6]. However, when k is any fixed constant, the
graphs with tree-width k can be recognized in linear time [13].

The notion of tree-width is closely related to the one of vertex-separator.
An α-vertex separator of a graph G of order n is a subset S of vertices such
that every connected component of G− S contains at most αn vertices. It
is proved in [103] that any graph of tree-width at most k has a 1

2 -vertex
separator of size at most k + 1.

4.2. Tree-depth

The concept of tree-depth has been introduced in [80] [84] to study gen-
eralized chromatic numbers of graphs (which will be introduced in Section
3.5).

A rooted forest is a disjoint union of rooted trees. The height of a vertex
x in a rooted forest F is the number of vertices of a path from the root
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(of the tree to which x belongs to) to x and is noted height(x, F ). The
height of F is the maximum height of the vertices of F . Let x, y be vertices
of F . The vertex x is an ancestor of y in F if x belongs to the path
linking y and the root of the tree of F to which y belongs to. The closure
clos(F ) of a rooted forest F is the graph with vertex set V (F ) and edge
set {{x, y} : x is an ancestor of y in F, x 6= y}. A rooted forest F defines a
partial order on its set of vertices: x ≤F y if x is an ancestor of y in F . The
comparability graph of this partial order is obviously clos(F ).

The tree-depth td(G) of a graph G is the minimum height of a rooted for-
est F such that G ⊆ clos(F ). This definition is analogous to the definition
of rank function of a graph which has been used for analysis of countable
graphs, see e.g. [95]. The concept also plays a key role in the recent beau-
tifull proof of Rossmann [105].

The tree-depth of a graph may alternatively be defined inductively as
follows: Let G be a graph and let G1, . . . , Gp be its connected components.
Then

td(G) =


1, if |V (G)| = 1;

1 + minv∈V (G) td(G− v), if p = 1 and |V (G)| > 1;

maxp
i=1 td(Gi), otherwise.

The tree-depth is minor monotone: if H is a minor of G then td(H) ≤
td(G). The tree-depth td(G) of a graph G is related to the order l(G) of a
longest path of G by:

l(G) ≤ td(G) ≤ 2l(G)

and to its tree-width (see [84] [14]) by:

tw(G) + 1 ≤ td(G) ≤ (tw(G) + 1) log2 n.

The upper bound is, for instance, attained for paths (see Fig 4.1).
The tree-depth is also related to vertex-separators: for a graph G of

order n and an integer i ≤ n, let sG(i) be the maximum size of a 1
2 -vertex

separator of a subgraph of G of order at most i. Then:

td(G) ≤
log2 n∑
i=1

sG

( n

2i

)
what implies that every graph G of order n with no minor isomorphic to
Kh has tree-depth at most (2 +

√
2)
√

h3n (as a graph of order i with no Kh

minor has a 1
2 -vertex separator of size at most

√
h3i [4]).
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Figure 4.1. The tree-depth of a path is logarithmic in the
order of the path

Although there is an (easy) polynomial algorithm to decide whether
td(G) ≤ k for any fixed k, if P6=NP then no polynomial time approxi-
mation algorithm for the tree-depth can guarantee an error bounded by nε,
where ε is a constant with 0 < ε < 1 and n is the order of the graph [14].

One of the strongest properties of tree-depth is “finiteness” of graphs
with bounded tree-depth. Precisely, there exists a function z : N × N →
N with the following property: For any integer N , any graph G of order
n > z(N, td(G)) and any coloring g : V (G) → {1, . . . , N}, there exists
a non trivial involuting g-preserving automorphism µ : G → G. As a
consequence, any asymmetric (or rigid) graph of tree-depth t has order at
most z(1, t). Also, any graph G is hom-equivalent to one of its induced
subgraph of order at most z(1, td(G)). Hence the class Dk of all graphs
G with td(G) ≤ k includes a finite subset D̂k such that, for every graph
G ∈ Dk, there exists Ĝ ∈ D̂k which is hom-equivalent to G and isomorphic
to an induced subgraph of G.

The finitness is a deep property of finite structures which are ”spanned”
by a branching and it has many forms. For example we can consider the
category of all pairs (G, T ) where G is a graph (or a structure), T a rooted
tree (or branching) and G ⊆ clos(F ). Such objects can be callet graphtr.
The morphisms between graphtrs are mappings which preserve both edges
of the graph and arcs of the branchings. The above results about involutory
automorphisms and finitely many hom-equivalent objects hold also in this
category. Many variations are possible, see also [105] where tree depth
corresponds to the quantfier rank. At ts place we want to mention that the
above function z grows very fast and it has Ackerman growth.

The tree-depth is intimately related to special types of colorings:
A centered coloring of a graph G is a vertex coloring such that, for any

(induced) connected subgraph H, some color c(H) appears exactly once
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in H. Note that a centered coloring is necessarily proper. Actually, the
minimum number of colors in a centered coloring of a graph G is exactly
td(G) [84].

We can also relate the minimum number of colors in a centered color-
ing to the notion of vertex ranking number which has been investigated in
[30],[106]: The vertex ranking (or ordered coloring) of a graph is a vertex
coloring by a linearly ordered set of colors such that for every path in the
graph with end vertices of the same color there is a vertex on this path
with a higher color. A vertex-coloring c : V (G)→ {1, . . . , t} with this prop-
erty is a vertex t-ranking of G. The minimum t such that G has a vertex
t-ranking is the vertex ranking number of G (see [30],[106]). This parameter
also equals td(G) [84].

4.3. Generalized Coloring Numbers

Consider the following ordering game played by Alice and Bob with Al-
ice playing first. The players take turns choosing vertices from the set of
unchosen vertices. This creates a linear order L of the vertices of G with
x < y if and only if x is chosen before y. Given a linear order L on V ,
the back degree of a vertex x relative to L is the number of neighbors of x
which precedes x in L. The back degree of L is the maximum back degree
of a vertex relative to L. Alice’s goal is to minimize the back degree of L,
while Bob’s goal is to maximize the back degree of L. This is a zero-sum
two person game. Therefore each player has an optimal strategy. The game
coloring number colg(G) is the smallest (largest) integer t for which Alice
(Bob) has a strategy to ensure that the linear order produced by playing
the game has back degree at most (at least) t− 1.

For instance, the complete bipartite graph Kn,n has game coloring num-
ber n+1. It was proved by Faigle et al. [47] that the game coloring number
of a forest is at most 4, and that the game coloring number of an interval
graph G is at most 3ω−2. It was proved by Zhu [118] that the game coloring
number of the planar graphs is at most 19 and this bound has been further
reduced by Kierstead to 18 [62] and by Zhu to 17 [121]. It has also been
shown by Guan and Zhu [55] that the outerplanar graphs have game color-
ing number at most 7. The game coloring number of graphs with bounded
∇1 is bounded (see [85], [121] p 3 and [38]).

As a generalization of both arrangeability and coloring number Kierstead
and Yang introduced in [63] two new series of invariants colk and wcolk, that
is: the coloring number of rank k and the weak coloring number of rank k.
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Let L be a linear order on the vertex set of a graph G, and let x, y
be vertices of G. We say y is weakly k-accessible from x if y <L x and
there exists an x-y-path P of length at most k (i.e. with at most k edges)
with minimum vertex y with respect to <L (see Fig. 4.2). The vertex is
k-accessible from x if y <L x and there exists an x-y-path P of length at
most k with minimum vertex y and second minimum vertex x with respect
to <L.

xy

<

G

P

Figure 4.2. The vertex y is weakly 8-accessible from x

let Qk(G, L, x) and Rk(G, L, x) be the sets of vertices that are respec-
tively weakly k-accessible and k-accessible from x:

Qk(G, L, x) = {y : ∃x–y path P such that min P = y}
Rk(G, L, x) = {y : ∃x–y path P such that min P = y and min(P − y) = x}

The weak k-coloring number wcolk(G) and the k-coloring number colk(G)
of G are defined by:

wcolk(G) = 1 + min
L

max
v∈V (G)

|Qk(G, L, v)|,

colk(G) = 1 + min
L

max
v∈V (G)

|Rk(G, L, v)|.

These two graph invariants are polynomially dependent, as shown in [63]:

colk(G) ≤ wcolk(G) ≤ (colk(G))k

They form two non-decreasing sequences, the sequence of weak-coloring
numbers having the tree-depth as its maximum:

col(G) = wcol1(G) ≤ wcol2(G) ≤ · · · ≤ wcolk(G) ≤ · · · ≤ wcol∞(G) = td(G)
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Generalized coloring numbers are strongly related to grads: it has been
proved by X. Zhu that there exists polynomials Fk such that the following
holds:

Theorem 4.1 ([120]). For every integer k and every graph G:

∇b k−1
4 c(G) ≤ wcolk(G) ≤ Fk(∇bk/2c(G))

4.4. Low tree-width coloring

A class C has a low tree-width coloring if, for any integer p ≥ 1, there
exists an integer N(p) such that any graph G ∈ C may be vertex-colored
using N(p) colors so that each of the connected components of the subgraph
induced by any i ≤ p parts has tree-width at most (i − 1). According to
this definition, the result of DeVos et al. may be expressed as

Theorem 4.2 ([31]). Any minor closed class of graphs excluding at least
one graph has a low tree-width coloring.

4.5. Low tree-depth coloring and p-centered colorings

As we introduced low tree-width coloring, we say that a class C has a
low tree-depth coloring if, for any integer p ≥ 1, there exists an integer N(p)
such that any graph G ∈ C may be vertex-colored using N(p) colors so that
each of the connected components of the subgraph induced by any i ≤ p
parts has tree-depth at most i. As td(G) ≥ tw(G) − 1, a class having a
low-tree depth coloring has a low tree-width coloring.

Vertex Partitions

Parameter Tree-Width Tree-Depth

1 proper coloring

2 acyclic coloring [16] star coloring [54]

p low tree-width decom-
position [31]

low tree-depth decom-
position [84]

Following [84], we will make use of the notation χp(G) for the minimum
number of colors need for a vertex coloring of G such that i < p parts induce
a subgraph of tree-depth at most i. These graph invariants (“generalized
chromatc numbers”) form a non-decreasing sequence:

χ(G) = χ1(G) ≤ χ2(G) ≤ · · · ≤ χp(G) ≤ · · · ≤ χ∞(G) = td(G).
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Also, we say that a vertex coloring of a graph G is a p-centered coloring
if, for any (induced) connected subgraph H, either some color c(H) appears
exactly once in H, or H gets at least p colors.

The main result of [88] is the proof that these notions are related and that
asking for the χp’s to be bounded on a class of graph (with bounds depending
on p) is the same as requiring that the class has bounded expansion:

Theorem 4.3 ([88]). Let C be a class of graphs. The following conditions
are equivalent:

(1) C has low tree-width colorings,
(2) C has low tree-depth colorings,
(3) for every integer p, {χp(G) : G ∈ C} is bounded,
(4) for every integer p, there exists an integer X(p) such that every

graph G ∈ C has a p-centered colorings using at most X(p) colors,
(5) C has bounded expansion.

�
More precisely, the properties of having bounded χp and bounded ∇r are

related in [88] as shown Fig. 4.3:

bounded χ(G) bounded∇0(G)oo (degenerate)

bounded χ2(G)

OO 44iiiiiiiiiii
bounded∇1(G)oo

OO

bounded χp(G)

OO

bounded∇p(G)

OO

bounded χ2p+2(G)

OO 44jjjjjjjjjjj
bounded∇pp(G)

jjTTTTTTTTTTT

OO

χr(G) < g(r)

OO

oo // ∇r(G) < f(r)

OO

(bounded expansion)

bounded td(G)

OO

// bounded ∇(G)

OO

(proper minor closed)

Figure 4.3. Invariant dependence

Further improvements have been obtained in bounding χp(G) in terms
of the grads of G [120] [38]. The best bound up to now is:
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Theorem 4.4 ([38]). For each p > 0, there exists a polynomial P of degree
O(8p) such that for each graph G,

χp(G) ≤ P (∇2p−1−1(G))

As a consequence of these results (and of the above dependency schema),
we also have the following equivalence:

Theorem 4.5 ([91]). Let C be an infinite (and not size bounded) class of
graphs. The following conditions are equivalent:

• lim
p→∞

lim sup
G∈C

log χp(G)
log|G|

= 0,

• lim
r→∞

lim sup
G∈C

log∇r(G)
log|G|

= 0,

• C is a class of nowhere dense graphs.

Further characterizations are stated in the final Chapter.

4.6. Algorithmic Considerations

The decomposition algorithms we present here are those described in
[83] [89]. They are based on indegree bounded orientations and transitive
fraternal augmentations of these (see [88] for the relation between transitive
fraternal augmentations and low tree-depth decompositions; see also [79]
[82]).

Let ~G be a directed graph. A 1-transitive fraternal augmentation of ~G

is a directed graph ~H with the same vertex set, including all the arcs of ~G
and such that, for every vertices x, y, z,

• if (x, z) and (z, y) are arcs of ~G then (x, y) is an arc of ~H (transi-
tivity),
• if (x, z) and (y, z) are arcs of ~G then (x, y) or (y, x) is an arc of ~H

(fraternity).

A 1-transitive fraternal augmentation ~H of ~G is tight if for each arc (x, y)
in ~H which is not in ~G there exists a vertex z so that (x, z) and at least one
of (z, y), (y, z) are arcs of ~G.

A transitive fraternal augmentation of a directed graph ~G is a sequence
~G = ~G1 ⊆ ~G2 ⊆ · · · ⊆ ~Gi ⊆ ~Gi+1 ⊆ · · · , such that ~Gi+1 is a 1-transitive fra-
ternal augmentation of ~Gi for every i ≥ 1. The transitive fraternal augmen-
tation is tight if all the 1-transitive fraternal augmentations of the sequence
are tight.
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Figure 4.4. The Transitive Fraternal Augmentation of a Graph

4.6.1. Computing a Transitive Fraternal Augmentation. We describe
an algorithm which computes, given any directed graph ~G of order n, a 1-
tight transitive fraternal augmentation ~H in O(∆−(~G)2n)-time, such that:

∆−( ~H) ≤ f(∆−(~G,∇1(~G))

∇r( ~H) ≤ gr(∆−(~G),∇2r+1(~G))

for some polynomials f and gr (r ∈ N).
In the augmentation process, we add two kind of arcs: transitivity arcs

and fraternity arcs. Let us start with transitivity ones:

Require: D represents the directed graph to be augmented.
Ensure: D′ represents the array of the added arcs.

Initialize D′.
for all v ∈ {1, . . . , n} do

for all (u, e) ∈ D[v] do
for all (x, f) ∈ D[u] do

m← m + 1; append (x, m) to D′[v].
end for

end for
end for

This algorithm runs in O(∆−(~G)2n) time, where ∆−(~G) is the maximum
indegree of the graph to be augmented. It computes the list array D′ of the
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transitivity arcs which are missing in ~G, missing arcs may appear more than
once in the list, but the number of added edges cannot exceed ∆−(~G)2n.

Now, we shall consider the fraternity edges.

Require: D represents the directed graph to be augmented.
Ensure: L represents the list of edges to be added.

L = ().
for all v ∈ {1, . . . , n} do

for all (x, e) ∈ D[v] do
for all (y, f) ∈ D[v] do

if x < y then
append (x, y) to L.

end if
end for

end for
end for

This algorithm runs in O(∆−(~G)2n)-time and computes the list of the
fraternity edges. Edges may appear in this list more than once but the
length of the list L cannot exceed ∆−(~G)2n/2.

The simplification of L (that is the removal of multiple instances of a
same edge in the list), the computation of an acyclic orientation of the
graph with edge set L having minimum possible maximum indegree and
the merge/simplification with the arcs in D and D′ may be achieved in
O(∆−(~G)2n)-time.

Let G be a graph. Define f(r) = ∇r(G) and F (x, y) = x2 + 2y and let
R(p) = 1 + (p − 1)(2 + dlog2 pe). The tight fraternal augmentation ~G =
~G1 ⊆ ~G2 ⊆ · · · ⊆ ~GR(p) of G computed by iterating R(p) times the tight 1-
transitive fraternal augmentation algorithm is such that any proper coloring
of GR(p) defines a p-centered coloring of G. Using the fact that a proper
coloring of GR(p) using at most b2∇0(GR(p))c + 1 colors may easily been
computed in O(n)-time, we get an algorithm which computes a p-centered
coloring of G using at most Cp(∇pp(G)) colors in time C ′

p(∇pp(G))n where
Cp and C ′

p are polynomials.
From this follows, in particular that for every fixed p, our p-centered

coloring algorithm has the following properties:
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p-centered coloring characteristics

Class type Max number of color Max running time

with bounded expansion O(1) O(n)

of nowhere dense graphs no(1) ≤ n1+o(1)

5. Algorithmic Applications

In this Chapter we give a sample of algorithmic applicatons. Such ap-
plications seem to be typified by this situaton: Results which were proved
earlier for planar graphs, and later sometimes generalized for proper minor
closed classes can be sometimes proved for general classes with bounded
expansion. And for bounded degree graphs we can sometimes proceede
similarly. We review sample of such instances, for other applications see
[83].

5.1. Subgraph Isomorphism Problem

Eppstein [44] gives a linear time algorithm to solve the subgraph iso-
morphism problem for a fixed pattern in a planar graph. He also gives a
linear time bound for a fixed pattern and an input graph with bounded tree
width decomposition. From this lemma and using our p-centered coloring
algorithm, we deduce an extension of Eppstein’s result of [44][45] to classes
with bounded expansion:

Theorem 5.1. Let C be a class with bounded expansion and let H be a fixed
graph. Then there exists a linear time algorithm which computes, from a
pair (G, S) formed by a graph G ∈ C and a subset S of vertices of G, the
number of isomorphs of H in G that include some vertex in S. There also
exists an algorithm running in time O(n)+O(k) listing all such isomorphism
where k denotes the number of isomorphs (thus represents the output size).

It is also possible to extend this result to classes of nowhere dense graphs,
with a complexity increasing from O(n) to n1+o(1). All of these results are
summarized in the following table:
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Subgraph isomorphism problem

Context Complexity Reference(s)

General O(n0.792 |V (H)|) [92] using [24]

Bounded tree-width O(n) [44] (also [25][26])

Planar O(n) [43][44]

Bounded genus O(n) [45]

Bounded expansion O(n) [83][89]
(includes the three
previous classes)

Nowhere dense ≤ n1+o(1) [91]

5.2. Small Distance Checking

The following result is a weighted extension of the basic observation that
bounded orientations allows O(1)-time checking of adjacency [22].

Theorem 5.2. For any class C with bounded expansion and for any integer
k, there exists a linear time preprocessing algorithm so that for any prepro-
cessed G ∈ C and any pair {x, y} of vertices of G the value min(k, dist(x, y))
may be computed in O(1)-time.

�
Also, this results may be extended to classes of nowhere dense graphs,

using a preprocessing algorithm in n1+o(1)-time allowing min(k, dist(x, y))
to be computed in no(1)-time.

5.3. Existential First-order Properties

Monadic second-order logic (MSOL) is an extension of first-order logic
(FOL) that includes subsets of vertex sets (i.e. we expand our language by
monadic predicates). The following theorem of Courcelle has been applied
to solve many optimization problems.

Theorem 5.3 (Courcelle [25][26]). Let K be class of finite graphs G =
〈V,E,R〉 represented as τ2-structures, that is: by two sorts of elements (ver-
tices V and edges E) and an incidence relation R. Let φ be a MSOL(τ2)
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sentence. If K has bounded tree width and G ∈ K, then checking whether
G � φ can be done in linear time.

From this theorem and our results (especially low tree depth decomposi-
tion) we deduce (see e.g. [83]):

Theorem 5.4. Let C be a class with bounded expansion and let p be a fixed
integer. Let φ be an existential FOL(τ2) sentence. Then there exists a linear
time algorithms to check whether an input graph G ∈ C satisfies φ or not.

Thus for instance we have([83]):

Theorem 5.5. Let K be a class with bounded expansion and let H be a
fixed graph. Then, for each of the next properties there exists a linear time
algorithm to decide whether a graph G ∈ K satisfies them:

• H has a homomorphism to G,
• H is a subgraph of G,
• H is an induced subgraph of G.

5.4. Dominating Sets

The Dominating Set problem (DSP) is defined as follows.
Input: A graph G = (V,E) and an integer parameter k.
Question: Does there exist a dominating set of size k or less for G,

i.e., a set V ′ ⊆ V with |V ′| ≤ k and such that for all u ∈ V − V ′

there is a v in V ′ for which uv ∈ E?
This is a classic NP-complete problem [50] which is also apparently not fixed
parameter tractable (with respect to the parameter k) because it is known to
be W[2]-complete in the W-hierarchy of fixed parameter complexity theory
[34]. In this theory, any graph problem for which there is an algorithm with
time complexity O(f(k)nα), for some problem parameter k, where n is the
number of nodes in the graph and where α is a constant independent of k
and n, is said to be fixed parameter tractable (fpt).

DSP is fixed parameter tractable with respect to, for example, tree-width
[6] and tree decompositions are computable in linear time, for fixed tree-
width [13]. DSP is similar in definition to the vertex cover problem (VCP),
but they seem to differ considerably in their fixed parameter tractability
properties. The Robertson-Seymour theory of graph minors [104] can be
used to show that VCP is fixed parameter tractable because vertex cover is
closed with respect to taking minors, and fpt algorithms have been described
[34] for VCP. But DSP is not closed with respect to taking minors.
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DSP remains NP-complete when restricted to planar graphs [50]. Fellows
and Downey [33, 34] gave a search tree algorithm for this problem which
has time complexity O(11kn), when the input is restricted to planar graphs.

In [42] it is shown, using the search tree approach, that the dominating
set problem is fixed parameter tractable for graphs of bounded genus, with
time complexity of O((4g + 40)kn2) for graphs of genus g ≥ 1.

The idea to make this problem tractable, is to consider the strong prop-
erties of small dominating sets on classes with bounded tree-depth.

Let G = (V,E) be a graph. A subset X ⊆ V of G is a dominating set of
G if every vertex of G not in X is adjacent to some vertex in X. We note
D(G) the family of all dominating sets of G and by Dk(G) the family of the
dominating sets of G having cardinality at most k.

For subsets X, W ⊆ V , we say that X dominates W if every vertex in
W \X has a neighbor in X. We denote Dk(G, W ) the family of the subsets
dominating W and having cardinality at most k.

Lemma 5.6. For every integers k, l ≥ 1 for every graph G = (V,E) with
tree-depth at most l and for every subset W ⊆ V of vertices, there exists
a (blocker) subset A = A(G, W ) ⊆ V of at most kl vertices meeting every
X ∈ Dk(G, W ). Moreover, if a rooted forest Y of height l is given such that
G ⊆ clos(Y ) then we can find the blocker set A in O(kl)-time.

From this Lemma, using a low tree-depth decomposition, we deduce:

Lemma 5.7. Let C be a class with bounded expansion. Then there exists a
function f : N→ N such that for every integer k, for every G = (V,E) ∈ C
and for every W ⊆ V a set A(G, W ) of cardinality at most f(k) may be
computed in O(n)-time (where n is the order of G) which meets every set
in Dk(G, W ).

Hence, by an easy induction on k:

Theorem 5.8. Let C be a class with bounded expansion. Then there exists
a function g : N → N such that for every integer k, every G = (V,E) ∈ C
and every W ⊆ V one may compute in time O(g(k)n) a set X which is
either minimal set cardinality at most k dominating W or the empty set if
G has no dominating set of cardinality at most k.

Actually, we also deduce that any graph G has at most F (k,∇kk(G))
dominating sets of size at most k and that they may be all enumerated
in time O(φ(k,∇kk(G))n). Notice that the result does not extend to the
problem of finding a set X of cardinality at most k such that every vertex
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not in X is at distance at most 2 from X (consider k disjoint stars of order
n/k, giving (n/k)k possible solutions to the problem.

5.5. Induced Matchings

A matching in a graph G is a subset of pairwise non-adjacent edges. An
induced matching in a graph G is a matching of G which is an induced
subgraph of G, that is a matching with the property that no endpoint of
an edge in the matching is adjacent to an endpoint of another edge in the
matching.

The problem of finding a maximum induced matching (that is: an induced
matching with maximum cardinality) has been introduced by Stockmeyer
and Vazirani [108] as the ”risk-free marriage problem” and it was studied
extensively [37, 46, 48, 53, 107]. For a graph G we denote by β*(G) the size
of a maximum induced matching.

It is known that the problem of deciding whether a given graph has
an induced matching of size at least k (for given k) is NP-complete [108],
even for bipartite graphs of maximum degree 4. However, this problem
has been shown to be solvable in polynomial time for several graph classes
[17, 18, 19, 20, 21, 52, 53, 64, 73, 74] and even in linear time for trees
[49, 53, 122].

We consider here the approximation version of this problem. Given a
NP-complete optimization problem P (for example the computation of the
size of a maximum induced matching), it is usual to look for an approxima-
tion algorithm AP .If the ratio of the cost of a feasible solution computed by
AP and the cost of an optimal solution is bounded by some constant then
RAP

called the performance ratio of AP . If P admits an approximation algo-
rithm with performance ratio c, then we say that P is approximable within c.
The class APX is the class of optimization problems that are approximable
within c, for some constant c [12]. The approximation problem associated to
the maximum induced matching problem consists in looking for an induced
matching the size of which is at least within a factor c from the maximum.
We say that P admits a polynomial time approximation scheme (PTAS) if,
given any ε > 0 there exists a polynomial-time approximation algorithm
AP,ε with performance ratio at most 1 + ε [76]. An APX-complete opti-
mization problem is an optimization problem which belongs to APX and to
which any APX problem has an L-reduction in polynomial time (see [99]
and [11] for a formal definition of an L-reduction). An important prop-
erty of APX-completeness is that an APX-complete optimization problem
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Q does not admit a PTAS unless P = NP [11]. In particular, there is some
constant c such that the problem of approximating Q within c is NP-hard.

Particularly, it is proved in [36] that in the class of d-regular graphs
(d ≥ 3) the computation of β*(G) is approximable with asymptotic per-
formance ratio (d− 1) (hence belongs to APX) but is APX-complete. The
approximability is extended in [86] by proving that the problem of comput-
ing β*(G) is in APX when restricted to graphs with bounded ∇1(G) (and
thus to all bounded expansion classes).

A vertex v of a graph G is a clone if G has a vertex u 6= v with the
same neighbourhood as v. In that say we say that v is a clone of u. We
denoted by ∼ be the equivalence relation defined by x ∼ y if x and y have
the same neighbors (i.e. are clones). Let G/∼ be the graph obtained by
keeping exactly one vertex per equivalence class of ∼.

Theorem 5.9. Let G be a connected graph. Then
|V (G/∼)|

f(∇0(G),∇1(G))
≤ β*(G) ≤ |V (G/∼)|

2

where

f(x, y) = 4x(22y + y + 1)
(
2x(22y + y + 1) + 1

)2

�
There is also an easy approximation algorithm: simply delete the clones

in a graph.
Actually, a more general result is proved in [86]:

Theorem 5.10. For every integer k > 2 and every C > 0 there exists
ε > 0 such that every connected graph G of order n with no involutive
automorphism ϕ exchanging two connected Pk-free subgraphs and such that
∇bk/2c(G) < C has a subset of kεn vertices inducing εn disjoint paths of
order k.

�

5.6. Vertex Separators

A celebrated theorem of Lipton and Tarjan [71] states that any planar
graph has a separator of size O(

√
n). Alon, Seymour and Thomas [4][3]

showed that excluding Kh as a minor ensures the existence of a separator
of size at most O(h3/2

√
n). Gilbert, Hutchinson, and Tarjan [51] further

proved that graphs with genus g have a separator of size O(
√

gn) (this
result is optimal).
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Plotkin et al. [100] introduced the concept of limited-depth minor exclu-
sion and have shown that exclusion of small limited-depth minors implies
the existence of a small separator. Precisely, they prove that any graph ex-
cluding Kh as a depth l minor has a separator of size O(lh2 log n+n/l) hence
proving that excluding a Kh minor ensures the existence of a separator of
size O(h

√
n log n).

Plotkin et al. [100] proved that for graphs with m edges and n nodes,
and integers l and h, there is an O(mn/l) time algorithm that will either
produce a Kh-minor of depth at most l log n or will find a separator of size
at most O(n/l + 4lh2 log n). We deduce that classes with sub-exponential
expansions have separators of sub-linear size. Random cubic graphs having
expansion bounded by f(x) = 2x and almost surely Ω(n) bisection width
[67] (thus Ω(n) separators) show that this result is optimal.

Theorem 5.11. Let C be a class of graphs with expansion bounded by a
function f such that log f(x) = o(x).

Then the graphs of order n in C have separators of size s(n) = o(n) which
may be computed in time O(ns(n)) = o(n2).

�
As random cubic graphs almost surely have bisection width at least

0.101n, they have almost surely no separator of size smaller than n/20 It
follows that if log f(x) = (log 2)x, the graphs have no sublinear separators
any more. This shows the optimality of Theorem 5.11. More: as proved by
Dvořák, the abscence of small vertex separators implies that the expansion
of a class of graphs has to be sub-exponential. Precisely:

Theorem 5.12 ([38]). If C is a monotone class of graphs such that each
graph in C of order n has a vertex separator of size o

(
n

log n

)
, then C has

subexponential expansion.

6. Homomorphisms and Logic

In this chapter we relate our theory to some problems treated in the
context of model theory and mathematical logic: In Section 6.1 we deal
with dualities and in Section 6.2 we deal with homomorphisms preservation
theorems. Both these questions were intensively studied in the unrestricted
cases [97, 105, 7] as well as under various restrictions (to minor closed classes
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and classes of bounded degree graphs; see e.g. [8, 10, 27, 29, 35, 58, 84].
This research continued by considering classes of bounded expansion and,
more recently, classes of nowhere dense graphs. A bit surprisingly, all the
main results may be generalized by restriction to these classes.

This is proper place to say that the results of this section hold for more
general structures than undirected graphs. They hold for oriented graphs,
for colored graphs, hypergraphs and finite relational structures. It is easy
to transform the results for graphs to results for hypergraphs and relational
systems. This can be done using incidence graphs and, in most cases alter-
natively, using 2-sections (known in model theory as Gaifman graphs), see
[91]. However to keep the style of this paper uniform we state most of the
results for graphs only.

6.1. Restricted Dualities

Recall that a homomorphism from a graph G to a graph H is a mapping
f : V → V (H) which preserves adjacency: {f(x), f(y)} ∈ E(H) whenever

{x, y} ∈ E(G). We denote by G
f // H or f : G // H that f is a

homomorphism from G to H. The existence of a homomorphism from G to
H is denoted by G // H, while the non-existence of such a homomor-
phism is denoted by G //�

H. Graphs G, G′ are said to be homomorphism
equivalent if we have both G // G′ and G′ // G. It is also clear that
the relation G ≤ H defined as G // H is a quasiorder on the class of all
finite graphs. This quasiorder becomes a partial order if we restrict it to the
class of all non-isomorphic minimal retracts (i.e. cores). This partial order
is called the homomorphism order. All graphs considered in this paper are
finite. A class is a (possibly infinite) class of finite graphs. See [60] for a
recent introduction to graphs and homomorphisms.

The following definition is the central definition of this section:

Definition 6.1. A class of graphs K has all restricted dualities if, for any
finite set of connected graphs F = {F1, F2, . . . , Ft}, there exists a set of
finite graphs DKF such that Fi

//� D for i = 1, . . . , t and every D ∈ DKF ,
and such that for all G ∈ K,
(3)

(Fi
//� G for all i = 1, 2, . . . , t) ⇐⇒ (G // D for some D ∈ DK

F ).

Any instance of (3) is called a restricted finite duality (for the class K),
or K-restricted duality.
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In the extremal case that F and DKF consists from single element sets we
speak about restricted singleton duality (this case is however the key to the
general case). Also note that if all graphs are connected then the set DKF
can be chosen with one element.

We now justify this general definition by the following two examples and
by the context in which this definition crystallized.

Example 1. The Grötzsch’s celebrated theorem (see e.g. [115]) says that
every triangle-free planar graph is 3-colorable. In the language of homomor-
phisms this says that for every triangle-free planar graph G there is a ho-
momorphism of G into K3. Using the partial order terminology, Grötzsch’s
theorem says that K3 is an upper bound (in the homomorphism order) for
the class P3 of all planar triangle-free graphs. It is K3 6∈ P3 and this sug-
gests a natural question (first formulated in [78]): Is there yet a smaller
bound? The answer, which may be viewed as a strengthening of Grötzsch’s
theorem, is positive: there exists a triangle free 3-colorable graph H such
that G // H for every graph G ∈ P3. This has been proved in [84, 82]
in a stronger form for all proper minor-closed classes. (The case of triangle-
free planar graphs is interesting in its own and it has been related to a
conjecture by Seymour and to Guenin’s theorem [56] (see [77]) and seems
to find a proper setting in the context of TT -continuous mappings, [94].)
One can view these results as restricted dualities (which hold in the class of
planar graphs). Restricted duality results have since been generalized not
only to proper minor closed classes of graphs and but also to other forbid-
den subgraphs, in fact to any finite set of connected graphs, [84]. This then
implies that Grötzsch’s theorem can be strengthened by a sequence of even
stronger bounds and that the supremum (in the homomorphism order) of
the class of all triangle free planar graphs does not exist, [81].

Example 2. A graph is sub-cubic if the degrees of all its vertices are ≤ 3.
By Brooks theorem (see e.g. [32]) every sub-cubic connected graph is 3-
colorable with the single exception of K4. What about the class of all
sub-cubic triangle-free graphs? Does there exists a triangle free 3-colorable
bound? The positive answer to this question is given in [35] and [58]. In fact
for every finite set F = {F1, F2, . . . , Ft} of connected graphs there exists a
graph H with the following property:

G // H for every sub-cubic graph G ∈ Forbh(F).
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(Here Forbh(F) is the class of all graphs G which satisfy Fi
//� G for

every i = 1, 2, . . . , t. Thus Forbh(K3) is the class of all triangle free graphs.)
It follows that the class of all sub-cubic graphs has all restricted dualities.

Note that while sub-cubic graphs, and more generally graphs with bounded
degrees, have all restricted dualities, this is not true for classes of degenerate
graphs [78, 81].

Where lies the boundary for validity of restricted dualities? This is the
central question of this area. We give a very general sufficient condition for
a class to have all restricted dualities. To motivate these results we first
introduce the original context of (unrestricted) dualities.

The following is a partial order formulation of an important homomor-
phism (or coloring; or Constraint Satisfaction) problem (this time we for-
mulate the definition for finite structures):

Definition 6.2. A pair F,D of structures is called a dual pair if for every
structure G,

(4) F //� G ⇐⇒ G // D.

We also say that F and D form a duality, D is called (singleton) dual of
F . Dual pairs of graphs and of finite relational structures were characterized
in [97], the notion itself goes back to [93]. Equivalently, one can describe a
dual pair F,D by saying that the structure D is the maximum graph in the
class Forbh(F ) (maximum in the homomorphism order).

It appears (and this is the main result of [97]) that (up to homomorphism
equivalence) all the dualities are of the form (T,DT ) where T is a finite (re-
lational) tree. Every dual DT is uniquely determined (up to homomorphism
equivalence) by the tree T (but its structure is far more difficult to describe,
see e.g. [98, 96, 69]). These results imply infinitely many examples of du-
alities. But a much richer spectrum (and in fact a surprising richness of
results) is obtained by restricting the validity of (4) to a particular class of
graphs K. This then is expressed by the notion of a restricted duality.

It is easy to see that using the homomorphism order we can reformulate
the restricted duality as follows: A class K has all restricted dualities if for
any finite set of connected graphs F = {F1, F2, . . . , Ft} the class Forbh(F)∩
K has an upper bound in the homomorphism order (namely DK

F ) which
belongs to the class Forbh(F).

Bounded expansion classes of graphs and structures provide a rich spec-
trum of restricted dualities. This has been shown in [88, 89, 90, 83]. The
following may be see as one of the main results:
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Theorem 6.1. Any class of graphs (and more generally structures) with
bounded expansion has all restricted dualities.

As both proper minor closed classes and bounded degree graphs form
classes of bounded expansion this result generalizes both Examples 1 and
2. In fact the seeming incomparability of bounded degree graphs and minor
closed classes led us to the definition of bounded expansion classes.

6.2. Homomorphism Preservation

Homomorphisms are one of the key concept of model theory as they are
naturally related to the satisfiability of formulas. This we shall illustrate
on homomorphism preservation theorems. This application provided the
motivation for the concept of nowhere dense graphs and structures.

Classical model theory studies properties of abstract mathematical struc-
tures (finite or not) expressible in first-order logic, see e.g. [61]. In this con-
text, three classical fundamental preservation theorems have been proved,
which connect syntactic and semantic properties of first-order formulas:

• the  Loś-Tarski theorem, which asserts that a first-order formula is
preserved under extensions on all structures if, and only if, it is
logically equivalent to an existential formula;
• Lyndon’s theorem, which asserts that a first-order formula is pre-

served under surjective homomorphisms on all structures if, and
only if, it is logically equivalent to a positive formula;
• the homomorphism preservation theorem which asserts that a first-

order formula is preserved under homomorphisms on all structures
if, and only if, it is logically equivalent to an existential-positive
formula.

The terms “all structures”, which means finite and infinite structures, is
crucial in the statement of these theorems.

Finite model theory is the study of the first-order logic (and its various
extensions) on finite structures [40], [70]. In this context, it has been proved
that the two first theorems fail when relativized to the finite, that is: there
exists a first-order formula that is preserved under extensions on finite struc-
tures, but is not equivalent in the finite to an existential formula [112][57][2]
and there exists a first-order formula that is preserved under surjective ho-
momorphisms on finite structures, but is not equivalent in the finite to a
positive formula [1][109]. However, a bit surprisingly, the relativized version
of the homomorphism preservation theorem to the finite has been recently
proved by B. Rossman [105].
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Relativizations of homomorphism preservation theorem to specific classes
of structures have been studied and in this context e.g. in [9, 8, 10] and
in this context A. Dawar defined classes of graphs called wide, almost wide
and quasi-wide (see e.g. [27]) and thay were introduced in Section 2.3. Here
we treat these interesting classes in a greater detail.

For instance, it has been proved in [8] that the extension preservation
theorem holds in any class C that is wide, hereditary (i.e. closed under tak-
ing substructures) and closed under disjoint unions. Wide classes includes
classes with bounded maximum degree. We prove here (and see [87] that
an hereditary class of graphs is actually wide if and only if it has a bounded
degree (Theorem 6.2).

Also, it has been proved in [9] [10] that the homomorphism preservation
theorem holds in any class C that is almost wide, hereditary and closed
under disjoint unions. Almost wide classes of graphs include classes of
graphs which exclude a minor [68].

Dawar and Malod [28] recently announced that the homomorphism preser-
vation theorem holds in any hereditary quasi-wide class that is closed under
disjoint unions. This is a strengthening of the result proved in [9]. Clearly,
quasi-wide quasi-wide classes of graphs include classes of graphs locally
excluding a minor [29]. Using the theory developed for classes of sparse
graphs we shall give a complete characterization of hereditary classes of
graphs which are wide, almost wide and quasi-wide. In fact this led us to
the definition of classes of nowhere dense structures.

We find it useful to study wide (and almost wide and quasi-wide) classes
(defined already in Section 2.3) by means of the following functions ΦC and
ΦC defined for classes of graphs. It is essential for our approach that we
also define the uniform version of these concepts.

Function ΦC This function has domain N and range N∪{∞} and ΦC(d)
is defined for d ≥ 1 as the minimum s such that the class C satisfies the
following property:

“There exists a function F : N→ N such that for every integer m, every
graph G ∈ C with order at least F (m) contains a subset S of size at most s
so that G− S has a d-independent set of size m.”

We put ΦC(d) =∞ if C does not satisfy the above property for any value
of s). Moreover, we define ΦC(0) = 0.

Function ΦC This function has domain N and range N∪{∞} and ΦC(d)
is defined for d ≥ 1 as the minimum s such that C satisfies the following
property:
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“There exists a function F : N→ N such that for every integer m, every
graph G ∈ C and every subset A of vertices of G of size at least F (m),
the graph G contains a subset S of size at most s so that A includes a
d-independent set of size m of G− S.”

We put ΦC(d) =∞ if C does not satisfy the above property for any value
of s). Moreover, we define ΦC(0) = 0.

Notice that obviously ΦC ≥ ΦC for every class C and for every integer d.
Using these functions we can formulate notions of wide, almost wide and

quasi-wide classes (which were defined in Section 3.3) as follows:
A class of graphs C is wide (resp. almost wide, resp. quasi-wide) if ΦC is

identically 0 (resp. bounded, resp. finite) [27]:

C is wide ⇐⇒ ∀d ∈ N : ΦC(d) = 0

C is almost wide ⇐⇒ sup
d∈N

ΦC(d) <∞

C is quasi-wide ⇐⇒ ∀d ∈ N : ΦC(d) <∞

Notice that a hereditary class C is wide (resp. almost wide, resp. quasi-
wide) if and only if C O 0 is wide (resp. almost wide, resp. quasi-wide) as
deleting edges cannot make it more difficult to find independent sets.

We introduce the following variation of the above definitions: A class of
graphs C is uniformly wide (resp. uniformly almost wide, resp. uniformly
quasi-wide) if ΦC is identically 0 (resp. bounded, resp. finite):

C is uniformly wide ⇐⇒ ∀d ∈ N : ΦC(d) = 0

C is uniformly almost wide ⇐⇒ sup
d∈N

ΦC(d) <∞

C is uniformly quasi-wide ⇐⇒ ∀d ∈ N : ΦC(d) <∞

Notice that a class C is uniformly wide (resp. uniformly almost wide, resp.
uniformly quasi-wide) if and only if C O 0 is uniformly wide (resp. uniformly
almost wide, resp. uniformly quasi-wide) as the property is hereditary in
nature and deleting edges cannot make it more difficult to find independent
sets.

Theorem 6.2 ([87]). Let C be a hereditary class of graphs. Then the fol-
lowing are equivalent:

• ∆(C) <∞,
• C is wide,
• C is uniformly wide.
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Before characterizing almost wide classes we state a quantitative result
relating these classes to bounded expansion.

Theorem 6.3 ([87]). Let C be a class with bounded expansion. Then
Φd(C) ≤ ∇bd/2c−1(C).

As a consequence we have the following characterization of hereditary
almost wide classes of graphs, which gives a positive answer to a question of
Dawar whether classes of graphs more general than those excluding a minor
could be proved to be almost wide [27].

Theorem 6.4 ([87]). Let C be a hereditary class of graphs. Then the fol-
lowing are equivalent:

• C is almost wide;
• C is uniformly almost wide;
• There are s ∈ N and t : N → N such that Ks,t(r) /∈ C O r (for all

r ∈ N).

If C is actually minor closed class the we can be more precise:

Theorem 6.5 ([87]). Let C be a minor closed class of graphs and let s be
an integer. Then the following are equivalent:

• C is almost wide and ΦC(d) < s for every integer d ≥ 2;
• C is uniformly almost wide and ΦC(d) < s for every integer d ≥ 2;
• C excludes some graph Ks,t.

For instance, consider a surface Σ and let CΣ be the class of the graphs
which embed on Σ. It has been proved in [10] that CΣ is almost wide (for
every surface Σ) and that ΦCΣ(d) is at most equal to the order of the smallest
clique which does not embed on Σ. Actually, ΦCΣ(d) = ΦCΣ(d) = 2 for every
integer d, as every K2,n embed on any surface but not every K3,n does.

Finally, we have the following characterization of quasi-wide classes:

Theorem 6.6 ([87]). Let C be a hereditary class of graphs. The following
conditions are equivalent:

• C is quasi-wide;
• C is uniformly quasi-wide;
• for every integer d there is an integer N such that KN /∈ C O d;
• C is a class of nowhere dense graphs.

This then implies (using the above mentioned result of Dawar and Molod
[28]) that the relativized homomorphism preservation theorem holds for all
classes of nowhere dense graphs. Perhaps these result indicate that classes
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with bounded expansion and classes of nowhere dense graphs provide a
proper setting for this type of questions (about wide, semi-wide and quasi-
wide classes) and we obtain characterization theorems (which are reviewed
in the last chapter).

6.3. Richness of First Order

A class K is said to be first order definable if there exists a first order
formula Φ such that K is the class of all structures which are models of Φ.
This can be obviously relativized: A subclass L of K is said to be first order
definable in the class K if L is just the class of all structures in K which
model Φ. However, if a class L is defined by an existentially positive first
order formula then L is defined as the class of all structures in K for which
there exist a homomorphism from a finite set F of structures. This in turn
means that the complementary class L′ of L is the class of all structures
A for which there is no homomorphism F −→ A for any F ∈ F . In the
other words the complementary class is the class Forbh(F). This setting
is close to (homomorphism ) dualities and to homomorphism preservation
theorems.

Combining the above Theorems 6.3, 6.1 we obtain the following:

Theorem 6.7. Let K be a bounded expansion class of structures. For a ho-
momorphism closed subclass L of K are the following statements equivalent:

• L is first order definable in K;
• L′ = Forbh(F) for a finite set F of structures;
• L is defined by a (finite) K-restricted duality.

Combining with the results of [90] we prove perhaps surprising fact that
any homomorphism closed first order property when restricted to a class
with bounded expansion is a restricted finite duality. Thus we obtained
the restricted analogy of the following first order characterization of (unre-
stricted) dualities:

Theorem 6.8. For a homomorphism closed subclass L of graphs (struc-
tures) are the following statements equivalent:

• L is first order definable;
• L′ = Forbh(F) for a finite set F of structures;
• L is defined by a (finite) duality.

This is a combinatorion of [97] and [7] (and also [105]).
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7. Summary (Characterization Theorems)

7.1. Polynomial Dependence

Two graph invariants f and g are polynomially dependent, and we note
f � g, if there exists polynomials P,Q such that for every graph G:

f(G) ≤ P (g(G)) and g(G) ≤ Q(f(G)).

Notice that f � g is equivalent to log f = Θ(log g).

For instance we have seen above in Section 2.3 and in Section 1.3 that

colp � wcolp,

∇r � ∇̃r.

Also, we may extend this property to functions of more than one graph and
express concisely the main result of Section 1.4:

∇r(G •H) � ∇r(G)|H|.
(This is a direct consequence of Lemma 2.4 and Lema 2.5.)

We also consider a weaker form of dependence for invariant sequences:
(fi)i∈N and (gi)i∈N which are said to be weakly polynomially dependent, and
we note (fi)i∈N

?� (gi)i∈N if there exists α, β : N → N and polynomials
(Pi)i∈N, (Qi)i∈N such that for every integer i and every graph G:

fi(G) ≤ Pi(gα(i)(G)) and gi(G) ≤ Qi(fβ(i)(G)).

In this notation we have for instance:

(χi)i∈N
?� (∇i)i∈N

?� (wcoli)i∈N

and

(ωi)i∈N
?� (ω̃i)i∈N,

where ωi(G) = ω(G O i) and ω̃i(G) = ω(G Õ i).

7.2. Characterizations

In this section, we state some characterizations of sparse classes, which
are mainly consequences of two aspects:

• the polynomial dependence (and weak polynomial dependence) of
certain graph invariants, like ∇r, ∇̃r, χp, colp, wcolp, etc.
• the characterization of uniformly quasi-wide classes.
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These three characterization theorems perhaps present a fitting conclu-
sion for this survey.

7.2.1. Classes of Nowhere Dense Graphs.

Theorem 7.1 ([91] and [87]). Let C be an unbounded size infinite class of
graphs. Then the following conditions are equivalent:

(1) C is a class of nowhere dense graphs,
(2) for every integer r, C O r is not the class of all finite graphs,
(3) for every integer r, C Õ r is not the class of all finite graphs,
(4) C is a uniformly quasi-wide class,
(5) H(C) is a quasi-wide class,

(6) lim
r→∞

lim sup
G∈C O r

log ‖G‖
log|G|

= 1,

(7) lim
r→∞

lim sup
G∈C eO r

log ‖G‖
log|G|

= 1,

(8) lim
r→∞

lim sup
G∈C

log∇r(G)
log|G|

= 0,

(9) lim
r→∞

lim sup
G∈C

log ∇̃r(G)
log|G|

= 0,

(10) lim
p→∞

lim sup
G∈C

log χp(G)
log|G|

= 0,

(11) lim
p→∞

lim sup
G∈C

log colp(G)
log|G|

= 0,

(12) lim
p→∞

lim sup
G∈C

log wcolp(G)
log|G|

= 0,

(13) for every integer c, the class C •Kc = {G •Kc : G ∈ C} is a class
of nowhere dense graphs,

(14) for every integer p, every graph G ∈ C has a p-centered colorings
using at most |G|o(1) colors,

(15) for every polynomial P , the class C′ of the 1-transitive fraternal
augmentations of directed graphs ~G with ∆−(~G) ≤ P (∇0(G)) and
G ∈ C form a class of nowhere dense graphs,

7.2.2. Bounded Expansion Classes.

Theorem 7.2 ([88] and [120]). Let C be a class of graphs. Then the fol-
lowing conditions are equivalent:

(1) C has bounded expansion,
(2) for every integer r, supG∈C ∇r(G) <∞,
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(3) for every integer r, supG∈C ∇̃r(G) <∞,
(4) for every integer p, supG∈C χp(G) <∞,
(5) for every integer p, supG∈C colp(G) <∞,
(6) for every integer p, supG∈C wcolp(G) <∞,
(7) for every integer c, the class C •Kc = {G•Kc : G ∈ C} has bounded

expansion,
(8) C has low tree-width colorings,
(9) C has low tree-depth colorings,

(10) for every integer p, there exists an integer X(p) such that every
graph G ∈ C has a p-centered colorings using at most X(p) colors,

(11) for every integer k, the class C′ of the 1-transitive fraternal aug-
mentations of directed graphs ~G with ∆−(~G) ≤ k and G ∈ C form
a class with bounded expansion,

(12) the class C is a degenerate class of graphs (that is: ∇0(G) is bounded
on C) and there exists a function F such that every orientation ~G

of a graph G ∈ C has a transitive fraternal augmentation ~G = ~G1 ⊆
~G2 ⊆ · · · ⊆ ~Gi ⊆ · · · where ∆−(~Gi) ≤ Q(∆−(~G), i),

(13) there exists a function f such that every graph G ∈ C has a transitive
fraternal augmentation ~G = ~G1 ⊆ ~G2 ⊆ · · · ⊆ ~Gi ⊆ · · · where
∆−(~Gi) ≤ f(i).

7.2.3. Bounded Tree-depth Classes.

Theorem 7.3. Let C be a class of graphs. The following conditions are
equivalent:

(1) C has bounded tree-depth,
(2) there exists an integer l(C) such that no graph G ∈ C includes a path

of length greater than l(C),
(3) C is degenerate (i.e. ∇0(C) < ∞) and there exists an integer L(C)

such that no graph G ∈ C includes an induced path of length greater
than L(C),

(4) lim
p→∞

χp(C) <∞,

(5) lim
p→∞

colp(C) <∞,

(6) lim
p→∞

wcolp(C) <∞.
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J. Matoušek, R. Thomas, and P. Valtr, eds.), Algorithms and Combinatorics,
vol. 26, Springer Verlag, 2006, (dedicated to Jarik Nešetřil on the Occasion of
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