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Abstract

A vertex coloring of a plane graph is `-facial if every two distinct
vertices joined by a facial walk of length at most ` receive distinct
colors. It has been conjectured that every plane graph has an `-facial
coloring with at most 3` + 1 colors. We improve the currently best
known bound and show that every plane graph has an `-facial col-
oring with at most b7`/2c + 6 colors. Our proof uses the standard
discharging technique, however, in the reduction part we have success-
fully applied Hall’s Theorem, which seems to be quite an innovative
approach in this area.

1 Introduction

The Cyclic Coloring Conjecture of Ore and Plummer [17] is a well-studied
problem in graph theory which also appears as Problem 2.5 in the mono-
graph of Jensen and Toft [14]. The conjecture asserts that every plane
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graph has a cyclic coloring with
⌊

3
2∆∗⌋ colors such that no face is incident

with two vertices with the same color, where ∆∗ is the maximum number
of distinct vertices incident with a single face.

A generalization of the Cyclic Coloring Conjecture is provided through
the notion of facial colorings. Two vertices of a plane graph G are `-facially
adjacent if they are joined by a walk with at most ` edges that is a subwalk
of a facial walk of G. A coloring of a plane graph is `-facial if no two distinct
`-facially adjacent vertices receive the same color. Observe that cyclic and
`-facial colorings coincide if ∆∗ ≤ 2` + 1.

The Facial Coloring Conjecture [15] asserts that every plane graph has
an `-facial coloring with at most 3` + 1 colors. If true, the Facial Coloring
Conjecture implies the Cyclic Coloring Conjecture for odd ∆∗ and yields
the conjectured bound increased by 1 for even ∆∗. Observe that the bound
offered by this conjecture is tight: for every ` ≥ 1, there exists a plane graph
that is not `-facially 3`-colorable. Indeed, consider a plane embedding of the
complete graph on 4 vertices and subdivide each of the three edges incident
with one of the vertices ` − 1 times. In the obtained plane graph, any two
vertices are `-facially adjacent and hence any `-facial coloring must use a
dedicated color for each of the 3` + 1 vertices.

It has been proven that every plane graph has an `-facial coloring with at
most b18`/5c+2 colors [15, 16]. In the case of 3-facial colorings, it is known
that every plane graph has a 3-facial coloring with at most 11 colors [11].
In the present paper, we improve the general bound by showing that every
plane graph has an `-facial coloring with at most b7`/2c + 6 colors. Our
proof uses the standard discharging technique, which implies proving the
reducibility of some configurations. We do so by applying Hall’s Theorem.

We now briefly survey known upper bounds on cyclic colorings of plane
graphs. The first upper bound of 2∆∗ was proven by Ore and Plummer [17].
Borodin [5] slightly improved the bound to 2∆∗ − 3 for ∆∗ ≥ 8. Progress
has been made at the end of the nineties: Borodin, Sanders and Zhao [7]
proved the bound of

⌊
9
5∆∗⌋, and the currently best known general bound⌈

5
3∆∗⌉ is due to Sanders and Zhao [20]. Recently, Amini, Esperet and van

den Heuvel [1] proved that for every ε > 0, there exists ∆ε such that every
plane graph of maximum face size ∆∗ ≥ ∆ε admits a cyclic coloring with
at most

(
3
2 + ε

)
∆∗ colors. They cleverly used a result by Havet, van den

Heuvel, McDiarmid and Reed [9, 10] that the chromatic number of the
square of a planar graph of maximum degree ∆ is at most 3

2∆ (1 + o(1)).
There are also numerous results on plane graphs with small maximum

face sizes ∆∗. The case of cyclic colorings of plane triangulations, i.e.,
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∆∗ = 3, is equivalent to the famous Four Color Theorem [2, 3, 19]. The case
of ∆∗ = 4 is Ringel’s problem that was solved by Borodin [4, 6]. The
conjecture is open for ∆∗ ≥ 5. A related conjecture by Plummer and Toft
[18] on cyclic colorings of 3-connected plane graphs is proven for graphs
with large maximum face sizes [8, 12, 13].

2 Notations

A plane graph G is said to be `-minimal if G has no `-facial coloring with at
most b7`/2c+6 colors and every plane graph with less edges than G has an
`-facial coloring with at most b7`/2c+6 colors. Note that since every plane
graph has an `-facial coloring with at most b18`/5c+ 2 colors, there are no
`-minimal graphs for ` ≤ 40. However, we will not use this assumption in
Sections 3, 4 and 5, as the lemmas will be stated in full generality.

Given a graph and one of its edges e = uw, the contraction of e consists
of replacing u and w by a new vertex adjacent to all the former neighbors
of u and v. In doing so, we keep parallel edges if they arise. Suppressing a
vertex means contracting one of its incident edges. The skeleton G+ of a
plane graph G is the graph obtained by recursively suppressing each vertex
of degree two. There is a natural one-to-one correspondence between the
faces of G and G+, therefore we understand the faces of G and G+ to be
the same. An edge of G+ which is also an edge of G is called real.

A vertex v of degree d is referred to as a d-vertex. A face f of G is said
to be a d-face if it is incident with d edges in G+ (since we show that every
`-minimal graph is 2-connected in Section 3 and we will use this notion only
for `-minimal graphs, we can afford being imprecise on whether bridges
incident with f are counted once or twice). A vertex of degree at most d
is referred to as a (≤d)-vertex. We use a (≥d)-vertex, a (≤d)-face and a
(≥d)-face in analogous meanings.

Now, we state the well-known Hall Theorem.

Theorem 1 (Hall, 1935). A bipartite graph with parts A and B admits
a matching that covers every vertex of A if and only if for every set S ⊆ A
the number of vertices of B with a neighbor in S is at least |S|.

We apply it in two different situations, which we briefly describe now.
In the first one, we consider two graphs G1 and G2 that we want to glue,
say, on a vertex v to form a new graph G. We have an `-facial coloring of
each of them, and we may assume that they agree on v. We aim at finding
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a permutation of the colors for the coloring of, say G2, such that the `-facial
coloring of G given by the coloring of G1 and the new coloring of G2 is `-
facial. We define an auxiliary bipartite graph H as follows. The vertex-set
of H is composed of two sets A and B, each being a copy of the set of all
colors, but the one of v. Next, for any pair of nodes (a, b) ∈ A × B, we
add an edge between a and b unless there is a vertex of G1 colored a which
is `-facially adjacent in G to a vertex of G2 colored b. Thus, the sought
permutation is precisely a perfect matching of H.

The second application is the following. We consider a set of vertices,
each of them having a list of prescribed colors. We want to color each
vertex with a color from its list, so that no two vertices are assigned the
same color. We construct a bipartite graph H with parts A and B. The
part A is composed of a copy of each vertex, and the part B of a copy of each
available color. There is an edge between a node a ∈ A and a node b ∈ B if
the color corresponding to b belongs to the list of the vertex corresponding
to a. Thus, the desired coloring is precisely a matching of H that covers A.

3 Connectivity

In this section, we establish that every `-minimal graph G is 2-connected
and its skeleton is 3-connected. We start with 2-connectivity.

Lemma 2. Every `-minimal graph G is 2-connected.

Proof. Suppose the opposite. Let v be a cut-vertex of G such that one of
the components of G− v is as small as possible. Let C be this component.
Let G1 be the subgraph of G induced by the vertex v and the set of vertices
V (C) of C. Let G2 be the graph G − V (C). Note that we can assume
that the subgraphs G1 and G2 of G share the outer face of G. Also observe
that G1 is either an edge or its outer face is bounded by a cycle as G1 is
2-connected by the choice of v and C. Since G is an `-minimal graph, there
exist an `-facial coloring c1 of G1 and an `-facial coloring c2 of G2 using
at most b7`/2c + 6 colors. We can assume without loss of generality that
c1(v) = c2(v).

Let C be the set of all b7`/2c + 5 colors different from c1(v). Our next
aim is to find a permutation σ of C such that the coloring c defined on G by
c(w) = σ(c1(w)) if the vertex w belongs to C and c(w) = c2(w) otherwise is
an `-facial coloring of G. Note that there are at most 2` vertices of G2 − v
that are `-facially adjacent with a vertex of C in G. Let C2 be the set of
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colors assigned by c2 to such vertices. If the size of the outerface of G1 is at
most ` + 1, then let C1 be the set of at most ` colors assigned by c1 to the
vertices of the outerface of G1 distinct from v. We choose a permutation of
C such that no color of C1 is mapped to a color of C2. This is possible since
|C| ≥ 3`.

We next assume that the size of the outerface of G1 is greater than `.
The existence of a permutation σ will then be obtained by applying Hall’s
Theorem. To this end, an auxiliary bipartite graph H is constructed. Its
vertex-set is composed of two copies C1 and C2 of the set of all b7`/2c + 5
colors contained in C. We call those vertices nodes to avoid confusion with
the vertices of the graph G. We add an edge between two nodes x ∈ C1

and y ∈ C2 if there is no pair of two `-facially adjacent vertices in G such
that one of the vertices is a vertex of G1 with the color x and the other is
a vertex of G2 with the color y. Observe that any perfect matching of H
corresponds to a suitable permutation σ.

We now analyze the degrees of the nodes in H. Let v−`, . . . , v0, . . . , v`

be a part of the facial walk of the outer face of G1 such that v0 = v. Note
that if the size of the outer face of G1 is smaller than 2` + 1, some of these
vertices coincide. The number of times a color is assigned is counted with
multiplicity—i.e., a color assigned to a vertex appearing t times is considered
to be assigned to t vertices of the walk. Each node of C1 has degree at least
b5`/2c+ 5: indeed, if a color of C is assigned to at most one of the vertices
v−`, . . . , v−1, v1, . . . , v`, then the corresponding node of C1 is not adjacent
in H to at most ` nodes of C2. If a color of C is assigned to two vertices, say
vi and vj with i < 0 < j, then j − i ≥ ` + 1: otherwise, the vertices vi and
vj must coincide (two `-facially adjacent vertices that are distinct cannot
have the same color), and hence j − i ≤ ` would imply that the size of the
outer face of G1 is at most ` (as G1 is 2-connected), which is the case that
was already dealt with. Consequently, a node of C1 corresponding to such
a color is not adjacent to at most 2`− (j − i) < ` nodes of C2 in H.

On the other hand, each node y of C2 has degree at least b3`/2c+5 in H
since y can be non-adjacent only to the nodes corresponding to the colors
assigned to the vertices v−`, . . . , v−1, v1, . . . , v`.

It remains to verify Hall’s condition for H. Let X ⊆ C1. If |X| ≤
b5`/2c+ 5, then the set of neighbors of X in H has size at least b5`/2c+ 5
since the minimum degree of a node of C1 is at least b5`/2c + 5. On the
other hand, if |X| > b5`/2c + 5, then each node y of C2 is adjacent to at
least one node of X as the degree of y is at least b3`/2c + 5 > |C1| − |X|.
Hence, the neighbors of the nodes of X are all the nodes of C2. By Hall’s
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G1
u0 = v0 = x

v1 v2 v3 v4 v5 v6

u6 = v7 = y

fu

fv

x′ y′

Figure 1: Notation used in the proof of Lemma 3.

Theorem, we conclude that H has a perfect matching, which completes the
proof of the lemma.

In the next lemma, we address the structure of 2-cuts in `-minimal
graphs.

Lemma 3. Let G be an `-minimal graph. If x and y are two (≥3)-vertices
forming a 2-cut of G, then G− {x, y} contains two components and one of
the components is a path of 2-vertices between x and y.

Proof. By Lemma 2, the graph G is 2-connected and we will use this fact
without explicit reference in the proof. Let {x, y} be a 2-cut of G composed
of (≥3)-vertices such that G − {x, y} has either three components, or two
components neither being a path of 2-vertices. Unless G is formed by three
paths of 2-vertices with the same end-vertices (in which case G has an `-
facial coloring with 3` + 1 colors and thus it cannot be `-minimal), the
components of G − {x, y} can be grouped to form subgraphs G1 and G2

whose intersection is precisely {x, y}, and such that G1 is 2-connected and
G2 is not a path.

Let fu and fv be the two faces of G that contain both x and y, are not
in G1 but are adjacent to faces of G1. Let u0 . . . uku−1 and v0 . . . vkv−1 be
the facial walks bounding the faces fu and fv such that x = u0 = v0 and
u1 and v1 belongs to G1. Set uku

= u0 = vkv
= v0 = x. Finally, set du to

be the index such that udu
= y and dv such that vdv

= y; see Figure 1. For
i ∈ {1, 2}, construct the graph G′

i from Gi by adding the edge xy. Since G
is `-minimal, all the graphs G1, G′

1, G2 and G′
2 have `-facial colorings with

at most b7`/2c+ 6 colors.
We use an approach similar to that of Lemma 2. We fix a coloring of

G1 or G′
1, and of G2 or G′

2, according to three different cases considered
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below. Let us say, for instance, that we have colorings c1 and c2 of G′
1 and

G′
2, respectively. Note that x and y have different colors in those colorings,

and we may assume that c1(x) = c2(x) and c1(y) = c2(y). We aim to find a
permutation σ of the remaining b7`/2c + 4 colors such that the coloring of
vertices of G′

1 with their original colors and recoloring vertices of G′
2 with

the colors assigned by the permutation σ is an `-facial coloring of G. To
this end, we construct an auxiliary bipartite graph H with each part of size
b7`/2c + 4. More precisely, let C1 and C2 be the two parts of H, where
Ci corresponds to the colors of the vertices of G′

i. Two nodes α ∈ C1 and
β ∈ C2 are joined by an edge in H if and only if no vertex of G′

1 with the
color α is `-facially adjacent in G to a vertex of G′

2 colored β. A perfect
matching of H then defines a suitable permutation σ of the colors as in the
proof of Lemma 2.

In the rest of the proof, we consider several cases based on the values of
du and dv. These cases will also determine whether an `-facial coloring of
Gi or G′

i for i ∈ {1, 2} should be used in the construction of the coloring
of the whole graph G. In all the considered cases, we establish that the
minimum degree of H is at least ` + 5, and we later proceed jointly for all
the cases.

• The sum of du and dv is at most 2` + 1. Note that du or dv is
at most ` and thus the vertices x and y are `-facially adjacent in G1.
Hence, we can consider the `-facial colorings of G1 and G′

2. Let us
estimate the minimum degree of H. A node α of C1 is not adjacent
to at most 2` nodes of C2 since there is a unique vertex of G1 with
the color α incident with fu or fv. The uniqueness follows from the
assumption that du + dv ≤ 2` + 1. On the other hand, a node of C2

is not adjacent to at most 2` − 1 nodes of C1 since it can be non-
adjacent only to the nodes corresponding to the colors of (at most)
2` − 1 vertices of G1 incident with fu or fv. We conclude that the
minimum degree of H is at least b3`/2c+ 4.

• The sum of du and dv is bigger than 2` + 1 and du or dv is at
most b`/2c. By symmetry, let us suppose that du ≤ b`/2c, and thus
dv > `. We again consider the `-facial colorings of G1 and G′

2. The
colors of x and y are distinct in both the considered colorings. Let us
proceed with estimating the minimum degree of H. If a color α ∈ C1

is not assigned to a vertex ui with 0 < i < du, then there are at most
2` edges from α missing in H. Similarly, there are at most 2` missing
edges if α is assigned to no vertex vi with 0 < i < dv. Hence, assume
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that there are vertices ui with 0 < i < du and vj with 0 < j < dv that
are colored with α, and we choose the smallest i and j among all such
vertices. Since the considered coloring is an `-facial coloring of G1, it
must hold that i + j > `.

The vertex ui is `-facially adjacent in G to at most ` − i vertices of
G2 − x through a facial walk including the vertex x = u0 and the
vertex vj is `-facially adjacent in G to at most `− j vertices of G2 − y
through a facial walk including the vertex x = v0. Thus, there are at
most 2` − i − j ≤ ` − 2 vertices of G2 that are `-facially adjacent in
G through a facial walk including x to a vertex of G1 colored with α.
Similarly, there are at most `−2 such vertices of G2 that are `-facially
adjacent in G to vertices of G1 with the color α through a facial walk
including y. We conclude that there are at most 2`− 4 edges missing
at α in H and thus the degree of α is at least b3`/2c+ 8.

A vertex of G2 can only be `-facially adjacent to at most 2` vertices
of {v1, . . . , vdv−1}. Since there are only b`/2c − 1 vertices ui with
i ∈ {1, 2, . . . , du − 1}, there are at most b5`/2c − 1 edges missing at
every node β of C2 and thus its degree is at least ` + 5.

• The sum of du and dv is bigger than 2`+1, both du and dv are
bigger than b`/2c. Since du + dv > 2` + 1, we can also assume by
symmetry that dv > `. Let us next realize that we can assume that
ku−du > b`/2c and kv−dv > b`/2c. Indeed, if ku−du ≤ b`/2c, we can
choose a 2-cut {x′, y′} among the vertices udu , . . . , uku such that the
2-cut has the properties stated at the beginning of the proof and the
role of G1 will now be played by a subgraph of G2 (see Figure 1). This
will bring us to the first or second case (that was already analyzed)
since ku−du < b`/2c. Similarly, we can assume that ku−du or kv−dv

is bigger than `.

Consider now `-facial colorings of G′
1 and G′

2. If a color α ∈ C1 is
assigned to a single vertex ui with 0 < i < du, then at most 2` −
b`/2c − 1 ≤ b3`/2c vertices of G2 − {x, y} are `-facially adjacent in G
to ui. If there are more such vertices ui, let i and i′ be the smallest
and the largest index of such vertices. The vertex ui is `-facially
adjacent in G to at most ` − i vertices of G2 − {x, y} and ui′ to at
most ` − (du − i′) vertices. Since the vertices ui and ui′ are not `-
facially adjacent in G′

1, it holds that i + (du − i′) ≥ ` + 1. Hence, the
vertices ui and ui′ are `-facially adjacent in G to at most `−1 vertices
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of G2 − {x, y}. Consequently, each of the vertices u1, . . . , udu−1 is
`-facially adjacent in G to at most b3`/2c vertices of G2 − {x, y}.
We can argue analogously for the vertices v1, . . . , vdv−1. If there is a
single vertex vi with the color α, then it is `-facially adjacent in G
to at most ` − 1 vertices of G2 since dv > `. If there are more such
vertices vi, then they all are `-facially adjacent in G to at most ` − 1
vertices of G2. We conclude that at most b5`/2c edges are missing at
α and the degree of α in H is at least ` + 6.

A completely symmetric argument applies for colors β ∈ C2 as both
ku − du and kv − dv are bigger than b`/2c and one of them is bigger
than `.

We now proceed jointly for all the three cases above. Let us count the
number of edges between C1 and C2 that are missing in H. We consider
first the vertices ui with 0 < i < du. If i ≤ ` − 1 then ui can be `-facially
adjacent to at most `−i vertices of G2 because of a facial walk going through
u0. Similarly, if du − ` < i < du, the vertex ui is `-facially adjacent to at
most `− (du − i) vertices of G2 because of a facial walk going through udu

.
Therefore, the number of edges missing in H between C1 and C2 due to the
colors of the vertices ui for i ∈ {1, 2, . . . , du − 1} is at most

`−1∑
i=1

`− i +
du−1∑

i=du−`+1

`− (du − i) = 2 ·
`−1∑
i=1

`− i.

The same holds for the vertices vj with j ∈ {1, 2, . . . , dv − 1}. Hence, the
total number of edges missing in H between C1 and C2 is at most

m = 4
`−1∑
i=1

(`− i) = 2`2 − 2`.

We are now ready to verify the condition of Hall’s Theorem for H. Let
X ⊆ C1. If |X| ≤ ` + 5, then the condition holds since each node of X has
at least ` + 5 neighbors in C2. Similarly, if |X| ≥ b5`/2c then each node of
C2 is adjacent to a node of X and the condition of Hall’s Theorem is also
fulfilled. Suppose that `+6 ≤ |X| ≤ b5`/2c− 1. If the nodes of X have less
than |X| neighbors in C2, then the number of edges missing in H between
C1 and C2 is at least

|X|
(⌊

7`

2

⌋
+ 4− |X|

)
≥
(⌊

5`

2

⌋
− 1
)

(` + 5) > m,
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a contradiction.

Lemma 3 immediately implies the following.

Lemma 4. The skeleton G+ of an `-minimal graph G is 3-connected with
no parallel edges.

4 Small Faces

In this section, we analyze the structure of small faces of the skeleton of
an `-minimal graph. We start with showing that the edges of the skeleton
cannot correspond to long paths.

Lemma 5. Let G+ be the skeleton of an `-minimal graph G and e an edge
of G+. Let v0 · · · vk+1 be the path of G corresponding to e, i.e., the vertices
v1, . . . , vk are 2-vertices. Then k ≤ max{0, b`/2c − 6}.

Proof. Suppose on the contrary that k > b`/2c − 6 and k ≥ 1. Let G′

be the graph obtained from G by suppressing the 2-vertex v1. Since G
is `-minimal, G′ has an `-facial coloring with at most b7`/2c + 6 colors.
Based on this coloring, we construct an `-facial coloring of G. The vertices
distinct from v1 preserve their colors. Each of the two faces incident with v1

forbids assigning at most 2` colors to v1 but k+1 of these colors are counted
twice (the colors assigned to v0, v2, v3, . . . , vk+1). Hence, there are at most
4`− k− 1 ≤ b7`/2c+ 5 colors that cannot be assigned to v1. Consequently,
there is a color that can be assigned to v1 since there are b7`/2c + 6 colors
in total.

A straightforward consequence of Lemma 5 is that edges incident with
(≤4)-faces are real.

Lemma 6. Let G+ be the skeleton of an `-minimal graph G. Every edge
incident with a (≤4)-face in G+ is real.

Proof. If `/2− 6 < 1, there is nothing to prove since Lemma 5 implies that
every edge is real. In the rest, we assume that `/2 − 6 ≥ 1 and establish
that all edges incident with a d-face f of G+ are real for d ≤ 4.

Let α1, . . . , αd be the number of 2-vertices on the paths in G which are
contracted to the d edges incident with f . Assume on the contrary that
α1 > 0 and let v be one of the 2-vertices on the corresponding path.
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The graph G′ obtained from G by suppressing the vertex v has an `-
facial coloring with at most b7`/2c + 6 colors since G is `-minimal. We
aim to extend the coloring to v: there are at most 2` colors that cannot be
assigned to v because of the vertices of the face incident with v distinct from
f . There are also at most σ =

∑d
i=2 αi +2 additional colors that cannot be

assigned to v since they appear on the vertices of f . By Lemma 5, we know
that σ ≤ b3`/2c − 16. Thus, there are at most 2` + σ ≤ b7`/2c − 16 colors
that cannot be assigned to v. So there exists a color that can be assigned
to v, which contradicts our assumption that G is `-minimal.

Since the edges incident with (≤4)-faces in the skeleton of an `-minimal
graphs are real, no two such faces can be adjacent, as stated in the next
lemma.

Lemma 7. The skeleton G+ of an `-minimal graph G contains no two
adjacent (≤4)-faces if ` ≥ 3.

Proof. By Lemma 6, all the edges incident with the two adjacent (≤4)-faces
in G+ are real. Let G′ be the graph obtained from G by removing the edge
shared by the two faces. Observe that every two vertices that are `-facially
adjacent in G are also `-facially adjacent in G′. Since G is `-minimal, G′

has an `-facial coloring with at most b7`/2c + 6 colors. Consequently, G
has an `-facial coloring with at most b7`/2c+6 colors which contradicts our
assumption that G is `-minimal.

We use the following definitions in the sequel (see Figure 2 for examples).
A face f ′ of G+ is strongly adjacent to a face f if f ′ is adjacent to f and f ′ is
not a (≤4)-face sharing a 3-vertex with f . Two adjacent faces f1 and f2 of
G+ touch if the faces f1 and f2 share in G a 2-vertex or a 3-vertex incident
with a (≤4)-face distinct from f1 and f2. Such 2-vertices and 3-vertices are
strongly shared by the faces f1 and f2.

We classify the faces f of the skeleton G+ of an `-minimal graph G as
follows. Let k be the number of faces strongly adjacent to f . If k ≤ 2 then
f is a circular face. If k = 3 then f is a triangular face, and if k = 4 then f
is a quadrangular face. If k = 5, the face f is pentagonal, if k = 6, the face
f is hexagonal, and otherwise f is polygonal.

In the next lemma, we establish that G+ has no circular faces, and
moreover its triangular and quadrangular faces are precisely the 3-faces and
4-faces of G, respectively.
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f f ′ f f ′ f f ′ f f ′

Figure 2: Examples of pairs of faces f and f ′ that are strongly adjacent;
the vertices strongly shared by f and f ′ are represented by empty circles.
The faces f and f ′ also touch in the first, third and fourth example.

Lemma 8. Let G+ be the skeleton of an `-minimal graph G. A face of G+

is triangular if and only if it is a 3-face of G+, and it is quadrangular if and
only if it is a 4-face of G+. Moreover, G+ has no circular face.

Proof. Let k be the number of faces strongly adjacent to f . If f is a (≤4)-
face, then it is strongly adjacent to each of its adjacent faces by Lemma 7.
In particular k ≥ 3 since G+ is a simple graph by Lemma 4.

For the converse, we suppose on the contrary that k ∈ {2, 3, 4} and
yet f is a (≥5)-face of G+. Let d be the number of faces adjacent to f
in G+, let f1, . . . , fd be these faces in the cyclic order around f , and for
i ∈ {1, 2, . . . , d}, let ei be the edge shared by f and fi in G+. Further, let
i1, . . . , ik be the indices of the faces strongly adjacent to f .

For j ∈ {1, 2, . . . , k}, we define αj to be the number of vertices strongly
shared by f and fij

. By Lemma 5, it holds that αj ≤ b`/2c − 4.
We assert that the face f is incident with at most k +α1 +α2 + . . .+αk

vertices in G. To see this, first note that f is incident to d + x vertices in
G, where x is the number of 2-vertices incident with f . Each face that is
adjacent but not strongly adjacent to f is not incident to a 2-vertex of G.
By Lemmas 6 and 7, each such face is incident with exactly one 3-vertex
that is strongly shared by f and one of the faces fij

. As there are d − k
such faces, we infer that

α1 + α2 + α3 + α4 ≥ d− k + x.

Consequently, the face f is incident with at most

d + x = k + (d− k) + x ≤ k + α1 + α2 + . . . + αk

12



vertices in G, as asserted.
If α1+α2+. . .+αk = 0 then d ≤ k ≤ 4, a contradiction. (Again, k cannot

be 2 in this case since d ≥ 5.) Let us assume that α1 + α2 + . . . + αk > 0.
By symmetry, we can assume α1 > 0 and there is a vertex v strongly shared
by f and fi1 . Contract an edge incident with v and the face f in G. Since
G is `-minimal, the obtained graph has an `-facial coloring with at most
b7`/2c+6 colors. The vertices of G distinct from v keep their colors and we
aim to extend the coloring to the vertex v. The vertex v cannot be assigned
at most 2` colors of `-facially adjacent vertices on fi1 , at most additional
k + α2 + . . . + αk colors of vertices on f , and at most one additional color
of the vertex of a possible quadrangular face incident with v. Hence, there
are at most

2` + k + α2 + . . . + αk + 1 ≤ 2` + k + 3 ·
(⌊

`

2

⌋
− 4
)

+ 1 ≤
⌊

7`

2

⌋
− 7

colors that cannot be assigned to v. Hence, the coloring can be extended to
v.

The next lemma bounds the size of a non-polygonal face in terms of `.

Lemma 9. Let G+ be the skeleton of an `-minimal graph G with ` ≥ 6.
Every face of G+ that is not polygonal has size at most 2` + 1 in G.

Proof. Let f be a non-polygonal face of G+, and let k be the number of
faces strongly adjacent to f . If k ∈ {3, 4}, then by Lemmas 6 and 8 the
face f is a k-face of G. So we assume that k ∈ {5, 6}. Let d be the size
of f in G, and d+ the size of f in G+. Set δ = bd/2c. Assume for the
sake of contradiction that d ≥ 2` + 2, and so δ ≥ ` + 1. Note also that
d ≥ 14 since ` ≥ 6. Let v1, . . . , vd be the vertices incident with f in the
cyclic order around f in G, let f1, . . . , fd+ be the faces incident with f in
the cyclic order around it in G+, and ei the edge shared in G+ by f and
fi for i ∈ {1, . . . , d}. Further, let i1, . . . , ik be the indices of the strongly
adjacent faces. Recall that k ∈ {5, 6}.

For j ∈ {1, 2, . . . , k}, let Aj be the set of vertices strongly shared by
f and fij

, and set αj = |Aj |. By Lemma 5, it holds that αj ≤ b`/2c − 4
for j ∈ {1, . . . , k}. Since f is pentagonal or hexagonal, there are at most
6 vertices not included in ∪k

j=1Aj . Therefore, the size d of the face f is at
most 3`− 18.

Let P0 be the set of δ pairs formed by the vertices vi and vi+δ for
i ∈ {1, . . . , δ}. Since δ ≥ ` + 1, the pairs of vertices in P0 are not `-facially
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adjacent: they are at facial distance δ ≥ ` + 1 in f and they cannot be `-
facially adjacent through a different face by Lemma 4. Remove from P0 the
pairs such that at least one of the two vertices in the pair is not contained
in ∪k

j=1Aj . Let P be the resulting set of pairs and W the vertices contained
in pairs in P . Since we have removed at most six pairs of vertices from P0

and at most one vertex (in case that d is odd) is not included in a pair in
P0, it holds that d− |W | ≤ 13.

Recall that d > 13 and choose an arbitrary vertex v ∈ W . Observe that
v is either a 2-vertex or a 3-vertex incident to a (≤4)-face. The graph G′

obtained from G by suppressing the vertex v has an `-facial coloring with
at most b7`/2c+6 colors since G is `-minimal. Uncolor now all the vertices
of W ; the other vertices of G keep their colors.

Let L(v) for v ∈ W be the list of all colors that can be assigned to the
vertex v. If v ∈ Aj , there are at most 2` − (αj − 1) colors that cannot be
assigned to v because of the face fij

, at most one additional color because
of a possibly quadrangular face containing v, and at most d − |W | colors
because of the vertices incident with f that are not contained in W . Hence,
L(v) contains all but at most 2` − αj + 2 + d − |W | colors if v ∈ Aj . We
conclude that

|L(v)| ≥
⌊

3`

2

⌋
+ αj + 4 + |W | − d ≥

⌊
3`

2

⌋
+ 4 + |W | − d .

If the vertices v and v′ form a pair contained in P0 and L(v)∩L(v′) 6= ∅,
then color the vertices v and v′ with a color c ∈ L(v) ∩ L(v′) and remove
c from the lists of all uncolored vertices. (Recall that v and v′ are not `-
facially adjacent, so they may be assigned the same color.) Let ρ be the
number of pairs of vertices colored in this way. Let W0 be the subset of W
of vertices not colored during this phase. Note that 2ρ = |W | − |W0|. If
v ∈ W0, then the size of the list of colors still available for v is at least

|L(v)| ≥
⌊

3`

2

⌋
+ 4 + |W | − d− ρ.

We now show that the remaining vertices can be colored using Hall’s The-
orem. We consider an arbitrary subset W ′ ⊆ W0 and aim to establish that∣∣∣∣∣ ⋃

v∈W ′

L(v)

∣∣∣∣∣ ≥ |W ′| .
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If W ′ does not include two vertices contained in the same pair in P ,
then |W ′| ≤ |W0|/2. Moreover, for an arbitrary vertex v ∈ W ′ (recall that
d ≤ 3`− 18),

|L(v)| ≥
⌊

3`

2

⌋
+ 4 + |W | − d− ρ

≥
⌊

3`

2

⌋
+ 4− d

2
+

|W | − d

2
+

|W | − 2ρ

2

≥
⌊

3`

2

⌋
+ 4− d

2
− 13

2
+

|W0|
2

≥ |W0|
2

≥ |W ′| .

Thus, the condition of Hall’s Theorem is satisfied for W ′.
If W ′ contains two vertices v and v′ in the same pair in P , the lists L(v)

and L(v′) are disjoint. Thus,

|L(v) ∪ L(v′)| ≥ 3` + 7 + 2|W | − 2d− 2ρ

≥ 3` + 7 + 2|W | − 2d− (|W | − |W0|)
≥ 3` + 7− (d− |W |)− d + |W0|
≥ 3`− 6− d + |W0|
≥ |W0| ≥ |W ′| .

Hence, the condition of Hall’s Theorem is satisfied for all W ′ ⊆ W0 and
the coloring can be extended to all the vertices W . This contradicts our
assumption that G is `-minimal.

We finish this section with an auxiliary lemma on pentagonal faces.

Lemma 10. Let G+ be the skeleton of an `-minimal graph G, f a pentag-
onal face of G+, and f ′ a face adjacent to f . Suppose that ` ≥ 5. If f ′ is
a triangular or quadrangular face that shares no 3-vertex with f , or f ′ is a
pentagonal face, then the edge shared by f and f ′ in G+ is not real.

Proof. We proceed similarly to the proof of Lemma 8. Let d be the number
of faces adjacent to f in G+, let f1, . . . , fd be these faces in the cyclic order
around f , and let ei be the edge shared by f and fi for i ∈ {1, . . . , d}.
Further, let i1, . . . , i5 be the indices of the faces strongly adjacent to f . As
in the proof of Lemma 8, we define αj to be the number of vertices strongly
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shared by f and fij . By symmetry, we can assume that fi5 = f ′ and thus
α5 = 0. As in the proof of Lemma 8, we can argue that the face f is incident
with at most 5 + α1 + α2 + α3 + α4 + α5 = 5 + α1 + α2 + α3 + α4 vertices
and that αj ≤ b`/2c − 4 for j ∈ {1, 2, 3, 4}.

If α1 +α2 +α3 +α4 > 0, we consider a vertex v strongly shared by f and
another face. If any, we choose v to be a 2-vertex, otherwise v is a 3-vertex
incident to a (≤4)-face. Contract an edge incident with v and the face f in
G. Since G is `-minimal, the obtained graph has an `-facial coloring with at
most b7`/2c + 6 colors. The vertices of G distinct from v keep their colors
and we count the number of colors that cannot be assigned to v: there are
at most 2` colors of `-facially adjacent vertices on the face distinct from f ,
at most additional 5+3 ·αi colors of vertices on f , and if v is a 3-vertex, at
most one additional color of the vertex of a possible 4-face incident with v.
Recall that αi ≤ b`/2c − 4. Hence, if v is a 2-vertex then there are at most

2` + 5 + 3 ·
(⌊

`

2

⌋
− 4
)

=
⌊

7`

2

⌋
− 7

colors that cannot be assigned to v and the coloring can be extended to v.
If v is a 3-vertex, then f is not incident to a 2-vertex. Consequently, each
αi is at most 2. Therefore, the number of colors that cannot be assigned to
v is at most

2` + 5 + 3 · 2 + 1 ≤ b7`/2c+ 5,

since ` ≥ 5, so the coloring can be extended to v. We conclude that all αi

are equal to 0.
Since αi = 0 for every i ∈ {1, . . . , 5}, the face f is a 5-face in G. Note

that if f ′ is a pentagonal face, we can symmetrically argue that f ′ is a 5-face
in G+. Let G′ be the graph obtained from G by removing the edge shared
by f and f ′. As both f and f ′ are (≤5)-faces in G, the new face of G′ is
a (≤8)-face. It follows from the `-minimality of G that G′ has an `-facial
coloring of G with at most b7`/2c + 6 colors. Since the new face of G′ is a
(≤8)-face and ` ≥ 4, the `-facial coloring of G′ is also an `-facial coloring of
G, a contradiction.

5 Adjacent Faces

In this section, we finish our analysis of configurations in the skeleton of
`-minimal graphs. We start with showing that no two pentagonal faces can
share an edge.
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Lemma 11. The skeleton G+ of an `-minimal graph G contains no two
adjacent pentagonal faces. In particular, no two pentagonal faces of G+

touch.

Proof. Assume for the sake of contradiction that G contains two pentagonal
faces fa and f b that share an edge eab in G+. By Lemma 10, the edge eab

is not real, i.e., the faces fa and f b touch. Let fa
1 , . . . , fa

4 be the other faces
strongly adjacent to fa. For j ∈ {1, 2, 3, 4}, we let Aj be the set of vertices
strongly shared by fa and fa

j , and αj = |Aj |. Let C be the vertices strongly
shared by fa and f b and let γ = |C|. Observe that the size of fa in G is
ka + α1 + · · ·+ α4 + γ where ka is the number of vertices incident with fa

that are not strongly shared with another face, so ka ≤ 5. Analogously, we
use kb, f b

1 , . . . , f b
4 , B1, . . . , B4 and β1, . . . , β4.

Let G′ be the graph obtained from G by suppressing a 2-vertex lying on
the path corresponding to the edge eab. Since G is `-minimal, G′ has an
`-facial coloring with at most b7`/2c+ 6 colors. The vertices not contained
in A1, . . . , A4, B1, . . . , B4 and C keep their colors and we extend the coloring
to the vertices contained in A1, . . . , A4, B1, . . . , B4 and C. Observe that the
set L(v) of colors that can be assigned to a vertex v ∈ Aj contains at least

b7`/2c+ 6− (2`− αj + 1)− 1− ka = b3`/2c+ αj + 4− ka

colors since there are at most ka colored vertices incident with fa and at
most 2`− αj + 1 vertices of fa

ij
that are `-facially adjacent to v. The “−1”

in the formula is needed in case v is incident with a 4-face.
The face fa

1 can coincide with at most one of the faces f b
1 , . . . , f b

4 since
G+ is 3-connected by Lemma 4. An analogous statement is true for fa

2 , fa
3

and fa
4 . Hence, we can form four disjoint pairs each containing one of the

faces fa
1 , fa

2 , fa
3 and fa

4 , and one of the faces f b
1 , f b

2 , f b
3 and f b

4 such that
each pair is formed by distinct faces. Among these pairs of faces, choose
the pair fa

j and f b
j′ such that αj + βj′ is maximum. For each v ∈ Aj ,

let La(v) be the list L(v) enhanced by the ka colors of the vertices not
contained in A1 ∪ · · · ∪ A4, and for each v′ ∈ Bj′ , let Lb(v′) be the list
L(v′) enhanced by the kb colors not contained in B1 ∪B2 ∪B3 ∪B4. Color
as many pairs of vertices v ∈ Aj and v′ ∈ Bj′ with the same color from
La(v) and Lb(v′) as possible, assigning distinct pairs distinct colors. Since
|La(v)| ≥ b3`/2c + αj + 4 for every v ∈ Aj , |Lb(v′)| ≥ b3`/2c + βj′ + 4 for
every v′ ∈ Bj′ , and there are b7`/2c + 6 available colors, at least (and we
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may assume, exactly)

∆ =
⌊

3`

2

⌋
+ αj + 4 +

⌊
3`

2

⌋
+ βj′ + 4−

⌊
7`

2

⌋
− 6 = αj + βj′ −

⌈
`

2

⌉
+ 2

pairs of vertices are colored during this step. Note that ∆ ≤ min{αj , βj′}
since αj ≤ b`/2c − 4 and βj′ ≤ b`/2c − 4. Uncolor now the vertices v ∈ Aj

with the color conflicting with one of the ka colors and v′ ∈ Bj′ with the
color conflicting with one of the kb colors. Observe that there are still at
least ∆ pairs of vertices incident with fa and f b with the same color and
there are no `-facially adjacent vertices with the same color. By the choice
of fa

j and f b
j′ , it holds that

∆ ≥ αj + βj′ −
⌈

`

2

⌉
+ 2 ≥ 1

4

(
4∑

i=1

αi +
4∑

i=1

βi

)
−
⌈

`

2

⌉
+ 2 .

Next, we color the non-colored vertices of A1, . . . , A4 and B1, . . . , B4

greedily by colors that can be assigned to such vertices. Let us verify that
there is always at least one color available for every vertex v ∈ A1∪· · ·∪A4;
the analysis is analogous for an arbitrary vertex of B1 ∪ · · · ∪ B4. When a
vertex v ∈ Aj is supposed to be colored, there are at most α1 + · · ·+ α4 − 1
vertices of A1 ∪ · · · ∪A4 colored. Hence, the number of colors remaining in
the list L(v) is at least

b3`/2c+ αj + 4− ka −
4∑

i=1

αi + 1 ≥ b3`/2c − 3 · (b`/2c − 4) ≥ 12,

and thus there is at least one color that can be assigned to v.
It remains to color the vertices of C. Since there are at least ∆ colors

assigned to both a vertex incident with fa and a vertex incident with f b,
the number of colors that cannot be assigned to a vertex v ∈ C is at most

4∑
i=1

αi +
4∑

i=1

βi + ka + kb + 1−∆

≤ 3
4

(
4∑

i=1

αi +
4∑

i=1

βi

)
+
⌈

`

2

⌉
− 1 + ka + kb

≤ 3
4

(
4∑

i=1

αi +
4∑

i=1

βi

)
+
⌊

`

2

⌋
+ ka + kb ,
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where the additional “+1” in the first line corresponds to a possible addi-
tional vertex of a 4-face in case v has degree 3. Since there are b7`/2c + 6
available colors in total, the number of colors that can be assigned to a
vertex v ∈ C is at least

3` + 6− ka − kb − 3
4

(
4∑

i=1

αi +
4∑

i=1

βi

)
. (1)

The size of the face fa is ka +
∑4

i=1 αi + γ, and the size of f b is kb +∑4
i=1 βi + γ. By Lemma 9, each of these sizes is at most 2` + 1. Thus,

3
4

(
4∑

i=1

αi +
4∑

i=1

βi

)
≤ 3

4
(
4` + 2− 2γ − ka − kb

)
.

Plugging this inequality into (1), the number of colors yet available for a
vertex v ∈ C is at least

3` + 6−
(
ka + kb

)
− 3`− 3

2
+

3
2
· γ +

3
4
(
ka + kb

)
≥ 3

2
· γ +

9
2
− 1

4
(
ka + kb

)
≥ 3

2
· γ + 2

≥ γ = |C| .

Hence, the vertices of C can be assigned mutually distinct colors and the
coloring can be completed to an `-facial coloring of G with at most b7`/2c+6
colors.

The last structural result we need asserts that the skeleton of an `-
minimal graph does not contain two adjacent hexagonal faces adjacent to
the same pentagonal face.

Lemma 12. Let G+ be the skeleton of an `-minimal graph G. If ` ≥ 6,
then G+ does not contain hexagonal faces fa and f b and a pentagonal face
fc such that the following three conditions hold simultaneously:

1. the faces fa, f b and fc share a 3-vertex, or each of the faces fa, f b

and fc share an edge with a triangular face f ′ incident with 3-vertices
only;

19



fa f b

fcvac vbc

fac f bc

fa f b

fc
fac f bc

fa f b

fc
fac f bc

Figure 3: Some of the configurations that cannot appear in the skeleton of
an `-minimal graph by Lemma 12.

2. the faces fa and fc share a 3-vertex vac that is not on a face adjacent
with f b, and if the third face incident with vac is triangular, then all
its vertices have degree 3; and

3. the faces f b and fc share a 3-vertex vbc that is not on a face adjacent
with fa, and if the third face incident with vbc is triangular, then all
its vertices have degree 3.

See Figure 3 for possible configurations in G+ excluded by Lemma 12.

Proof. Let fac be the face incident with vac different from fa and fc, if it
is not triangular. Otherwise, let fac be the face different from fa and fc

and incident with the triangular face containing vac. By Lemma 4, fac is
different from f b, not triangular, and strongly adjacent to both fa and fc.
The face f bc is defined analogously. In particular, f bc is a non-triangular
face different from fa and strongly adjacent to both f b and fc.

Let fa
1 , . . . , fa

4 be the faces strongly adjacent to fa distinct from f b and
fc, let f b

1 , . . . , f b
4 be the faces strongly adjacent to f b distinct from fa and fc,

and let fc
1 , f c

2 , f c
3 be the faces strongly adjacent to fc distinct from fa and

f b. By symmetry, we can assume that fa
1 = fc

1 = fac and f b
1 = fc

3 = f bc.
For j ∈ {1, 2, 3, 4}, let Aj be the set of vertices strongly shared by fa

j and
fa. The sets Bj for j ∈ {1, . . . , 4}, and Cj for j ∈ {1, 2, 3}, are defined
analogously. Further, for two distinct elements x and y of {a, b, c}, let Dxy

be the set of the vertices strongly shared by the faces fx and fy. Let X
be the union of all the sets Aj , Bj , Cj , Dab, Dac and Dbc, and let ka, kb

and kc be the number of vertices of fa, f b and fc not contained in X,
respectively. Since fa and f b are hexagonal and fc is pentagonal, ka ≤ 6,
kb ≤ 6 and kc ≤ 5. Finally, let αj = |Aj |, βj = |Bj |, γj = |Cj | and
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δxy = |Dxy|. Without loss of generality, we can assume that α2 ≥ α3 ≥ α4

and β2 ≥ β3 ≥ β4.
If X = ∅, then the faces fa and f b are 6-faces of G and the face fc is

a 5-face of G. Removing an edge shared by the faces fa and fc yields a
graph with an `-facial coloring with at most b7`/2c + 6 colors. As ` ≥ 4,
this coloring is also an `-facial coloring of G, which cannot exist since G is
an `-minimal graph. Hence, X 6= ∅.

Let G′ be the graph obtained by suppressing a vertex of X with an
edge contained in fa, f b or fc. Since G is `-minimal, G′ has an `-facial
coloring with at most b7`/2c + 6 colors. The vertices not contained in the
set X preserve their colors and we extend the obtained coloring to an `-facial
coloring of G. Let L(v) be the set of colors available for a vertex v ∈ X. As in
the proof of Lemma 11, we can argue that |L(v)| ≥ b3`/2c+4+αj−ka for v ∈
Aj , |L(v)| ≥ b3`/2c+4+βj −kb for v ∈ Bj and |L(v)| ≥ b3`/2c+4+γj −kc

for v ∈ Cj .
Since fac = fa

1 = fc
1 and G+ is 3-connected (by Lemma 4), it follows

that fa
1 and fc

2 are distinct, and so are fc
1 and fa

2 . Similarly as in the
proof of Lemma 11, for each v ∈ A1 we let La(v) be the list L(v) enhanced
by the ka colors of the vertices not in A1 ∪ · · · ∪ A4. (Note that this ka

colors are pairwise distinct by Lemma 9.) For v ∈ C2, the list Lc(v) is
defined analogously. So |La(v)| ≥ b3`/2c + 4 + α1 if v ∈ A1 and |Lc(v)| ≥
b3`/2c + 4 + γ2 if v ∈ C2. We color as many pairs of vertices from the sets
A1 and C2 with the same color as possible, using the colors in the lists La

and Lc. As there are b7`/2c+ 6 colors in total, we deduce that at least

α1 + γ2 + 2−
⌈

`

2

⌉
pairs of vertices are colored. Note that this number is smaller than α1 and
smaller than γ2 by Lemma 5. We uncolor the vertices of A1 that have
been assigned one of the ka colors already appearing on the vertices of fa.
Similarly, we uncolor those vertices of C2 that received one of the kc colors
of Lc(v) \ L(v). Observe that, at the end of this phase, there are at least
α1 +γ2 +2−d`/2e vertices of fa that have the same color as a vertex of fc.

We now color as many pairs of vertices from the sets A2 and C1 with
the same color as possible. The list L(v) of colors that can be assigned to a
vertex v ∈ C1 has size at least b3`/2c+ 4 + γ1 − kc. Note that the fact that
we colored some vertices of A1 does not decrease this bound, since when
computing it we implicitly assumed that all the vertices of fac were already
colored. The list L(u) of colors that can be assigned to a vertex u ∈ A2 has
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size at least b3`/2c+ 4 + α2 − ka − |C| where C is the set of colors assigned
to the vertices of A1 in the previous step. As we just noted, no color of C
is in L(v). So, the size of L(v) ∩ L(u) for v ∈ C1 and u ∈ A2 is at least

α2 + γ1 − ka − kc + 2−
⌈

`

2

⌉
,

and hence we can color at least that number of pairs of vertices during this
phase. By our previous arguments, the following estimate on the number
∆ac vertices with the same color incident with fa and fc holds.

∆ac ≥ α1 + α2 + γ1 + γ2 − ka − kc + 4− 2 ·
⌈

`

2

⌉
≥ α1 +

α2 + α3 + α4

3
+ γ1 + γ2 − ka − kc + 3− ` .

The face fa
3 can coincide with at most one of the faces f b

3 and f b
4 since

G+ is 3-connected by Lemma 3. Similarly, the face fa
4 coincides with at

most one of these faces. Hence, we can form two pairs of distinct faces
out of the faces fa

3 , fa
4 , f b

3 and f b
4 and choose the pair (fa

j , f b
j′) such that

αj + βj′ is the biggest possible. Without loss of generality, we may assume
that j = 3 and j′ = 4, i.e., α3 + β4 ≥ α4 + β3. We color as many pairs of
vertices of A3 and B4 with the same color as possible. In doing so, we use
the original list of available colors for the vertices of A3, enhanced by the
ka colors initially assigned to the vertices of fa. So some vertices of A3 may
get a color already assigned to a vertex of fa. We uncolor each such vertex
of A3 at the end of this procedure. Similarly, we use for the vertices of B4

their original list, enhanced by the kb colors already assigned to vertices of
f b. Any vertex that is assigned one of the already used colors is uncolored
at the end of the procedure. Consequently, the number of pairs of vertices
(u, v) with the same color, and such that u is incident to fa and v is incident
to f b is at least

∆ab ≥ α3 + β4 + 2−
⌈

`

2

⌉
≥ α3 + α4 + β3 + β4

2
+ 2−

⌈
`

2

⌉
.

Finally, we do a similar coloring with pairs of vertices of B2 and C3,
i.e., we do not remove the colors of the vertices of B3 ∪ B4 from the lists
of available colors for the vertices of B2, and we add the kb colors initially
assigned to vertices of f b; we do not remove the colors of the vertices of
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C1 ∪ C2 from the lists of available colors for the vertices C3, but enhance
them with the kc colors initially assigned to vertices of fc. Using those lists,
we color as many pairs as possible with the same color. Then, we eventually
uncolor those vertices whose color conflicts with a color we previously as-
signed to a vertex incident with the same face. Similarly, as in the previous
two cases, there are at least

∆bc ≥ β2 + γ3 + 2−
⌈

`

2

⌉
≥ β2 + β3 + β4

3
+ γ3 + 2−

⌈
`

2

⌉
pairs of vertices with the same color incident with f b and fc.

We now greedily color all the vertices of A1 ∪ · · · ∪ A4, afterwards of
B1 ∪ · · · ∪ B4 and finally of C1 ∪ · · · ∪ C3. Let us verify that this is indeed
possible by examining one case in more detail (the others being similar).
Assume that the last vertex of A1 ∪ · · · ∪ A4 that is colored is a vertex
v ∈ A4. The number of colors still available for this vertex is at least(⌊

3`

2

⌋
+ α4 + 4− ka

)
− α1 − α2 − α3 − (α4 − 1)

≥
⌊

3`

2

⌋
− 3 ·

(⌊
`

2

⌋
− 4
)
− 1

≥ 11 .

Next, we color greedily the vertices of Dab. The number of colors that can
be assigned to any vertex of Dab before we start coloring the vertices of
Dab is at least (recall that α1 + · · · + α4 + δab + δac + ka ≤ 2` + 1 and
β1 + · · ·+ β4 + δab + δbc + kb ≤ 2` + 1)⌊

7`

2

⌋
+ 6−

4∑
i=1

(αi + βi)− ka − kb + ∆ab

≥ 3` + 7−
∑4

i=1(αi + βi) + ka + kb

2
− ka + kb

2
− α1 + α2 + β1 + β2

2

≥ δab + ` + 6− ka + kb

2
− (`− 8)

≥ δab + 14− 12
2

≥ δab .

Hence, all the vertices except for those of Dac ∪Dbc are now colored.
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For x ∈ {a, b}, we define Nxc to be the number of colors available for
each vertex of Dxc. It is straightforward to check that Nxc ≥ δxc. Let us
verify this statement for a vertex v ∈ Dbc, the other case being similar.

Nbc ≥
⌊

7`

2

⌋
+ 6−

4∑
i=1

βi − δab − kb − kc −
3∑

i=1

γi

≥
⌊

3`

2

⌋
+ 5 + δbc − kc − 3 · (b`/2c − 4)

≥ δbc + 12 .

Let us further estimate the number Nac.

Nac ≥
⌊

7`

2

⌋
+ 6−

4∑
i=1

αi − δab −
3∑

i=1

γi − ka − kc + ∆ac

≥
⌊

5`

2

⌋
+ 9− 2

3

4∑
i=2

αi − δab − γ3 − 2ka − 2kc .

Similarly, we have

Nbc ≥
⌊

7`

2

⌋
+ 6−

4∑
i=1

βi − δab −
3∑

i=1

γi − kb − kc + ∆bc

≥ 3` + 7− 2
3

4∑
i=1

βi −
β1

3
− δab − γ1 − γ2 − kb − kc .

Next, we show that Nac + Nbc ≥ 2(δac + δbc). Hence, at least one of the
numbers Nac and Nbc is δac + δbc or more. Therefore the vertices of Dac

and Dbc can be colored greedily. Indeed, if Nxc ≥ Nyc then we first color
the vertices of Dyc, which is possible since Nxc ≥ δxc as we noted earlier,
and then those of Dxc. This yields the desired conclusion.
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It only remains to verify that σ = Nac + Nbc ≥ 2(δac + δbc).

σ ≥
⌊

11`

2

⌋
+ 16− 2

3

(
4∑

i=1

αi + βi

)
− 2δab −

β1

3
−

3∑
i=1

γi − 2ka − kb − 3kc

≥ `

3
+
⌊

`

2

⌋
+ 13 +

2
3

+
5
3
(δac + δbc)−

2
3
δab −

β1

3
− 4ka

3
− kb

3
− 2kc

≥ `

3
+
⌊

`

2

⌋
− 7 +

2
3

+
5
3
(δac + δbc)−

β1

3
− 2δab

3

≥ 1
3

+ 2(δac + δbc) ≥ 2(δac + δbc) .

The proof of the lemma is now finished.

6 The Discharging Phase

We will be discharging in the skeleton of an `-minimal graph G. Each d-
vertex of G+ receives a charge of 2d − 6 units and each d-face receives a
charge of d − 6 units. Euler’s formula implies that the sum of the initial
amounts of charge assigned to all vertices and faces of G+ is negative. We
then apply the following rules to redistribute charge between vertices and
faces of G+:

Rule V1 Each (≥4)-vertex v incident with a 3-face f = vv′v′′ sends 1 unit
of charge to the face f unless one of the other faces incident with the
edges vv′ and vv′′ is pentagonal.

Rule V2 Each (≥4)-vertex v incident with a 4-face f = vv′v′′v′′′ sends 1/2
unit of charge to the face f unless one of the other faces incident with
the edges vv′ and vv′′′ is pentagonal.

Rule V3 Each (≥4)-vertex v sends 1 unit of charge to each incident pen-
tagonal face.

Rule F1 Each face f that shares an edge vv′ with a 3-face f ′ = vv′v′′

sends 1 unit of charge to f ′ if the degree of v or v′ is three unless both
v and v′ are 3-vertices and Rule V1 applies to v′′ with respect to f ′.

Rule F2 Each face f that shares an edge vv′ with a 4-face f ′ sends 1/2
unit of charge to f ′ if the degree of v or v′ is three.
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Rule F2+ Each pentagonal face f that shares an edge vv′ with a 4-face
f ′ sends 1/2 unit of charge to f ′ in addition to the charge sent by
Rule F2 if one of the vertices v, v′ is a 3-vertex and the other one is a
(≥4)-vertex.

Rule F3 Each polygonal face f adjacent to a pentagonal face f ′ sends 1/3
unit of charge to f ′ with the following two exceptions:

1. f ′ is incident with a (≥4)-vertex; or

2. there is a 3-face v1v2v3 such that v1v2 is an edge of f , v1v3 is an
edge of f ′, both v1 and v3 are 3-vertices and v2 is a (≥4)-vertex.

In a series of lemmas, we show that the final charge of every vertex and
every face in G+ is non-negative. We start with analyzing the amount of
the final charge of G+.

Lemma 13. The final charge of every vertex v of the skeleton G+ of an
`-minimal graph is non-negative.

Proof. If the degree d of v is three, the vertex v neither receives nor sends
out any charge, and so its final charge is equal to zero. Hence, we can assume
that v is a (≥4)-vertex. Let f1, . . . , fd be the faces incident with v in the
cyclic order around v. We show that v sends to any pair of consecutive faces
fi and fi+1 at most 1 unit of charge in total, for i ∈ {1, 2, . . . , d}. Fix i and
let v′ be the neighbor of v shared by the faces fi and fi+1.

By Lemma 7, at most one of the face fi and fi+1 is a 3- or 4-face. If
neither fi nor fi+1 is a 3- or 4-face, then v can send charge to both fi

and fi+1 only if both fi and fi+1 are pentagonal faces. This is excluded by
Lemma 11. Consequently, at most one of the faces fi and fi+1 is pentagonal
and Rule V3 applies to at most one of the faces.

It remains to analyze the case where fi or fi+1 is a 3- or 4-face. By
symmetry, we can assume fi to be such a face. Unless fi+1 is a pentagonal
face, v sends at most 1 unit of charge to fi (by Rule V1 or V2) and no
charge to fi+1. If fi+1 is a pentagonal face, v sends no charge to fi and
sends 1 unit of charge to fi+1 (by Rule V3).

We have shown that v sends to any two faces fi and fi+1 at most 1 unit
of charge. An averaging argument readily yields that v sends out at most
d/2 units of charge. Since d ≥ 4 and the initial charge of v is 2d − 6, the
statement of the lemma follows.
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We now continue with analyzing the final charge of faces, starting with
3-faces. Recall that G has no circular face.

Lemma 14. The final charge of every 3-face f = v1v2v3 of the skeleton G+

of an `-minimal graph is non-negative.

Proof. Let fij be the other face incident with the edge vivj . Since neither
of the faces fij can be a 3- or 4-face by Lemma 7, f does not send out
any charge by Rules F1 or F2. We next distinguish four cases based on the
number of (≥4)-vertices incident with f .

First, suppose that f is incident with 3-vertices only. Hence, Rule V1
applies to none of these vertices and each face sharing an edge with f sends
1 unit of charge to f by Rule F1. Since the initial charge of f is −3, the
final charge of f is equal to zero.

Suppose now that f is incident with a single (≥4)-vertex. By symmetry,
let v1 be a (≥4)-vertex, and let v2 and v3 be 3-vertices. If Rule V1 does not
apply to v1 with respect to f , the face f receives 1 unit of charge from each
of the faces f12, f13 and f23 by Rule F1. If Rule V1 applies, then f receives
1 unit of charge from v1 and 1 unit of charge from each of f12 and f13. In
both cases, the face f receives 3 units of charge in total, so its final charge
equals zero.

If f is incident with exactly two (≥4)-vertices, say v1 and v2, then f
receives 1 unit of charge from each of the faces f13 and f23 by Rule F1.
Since the edge v1v2 is real by Lemma 6, the face f12 cannot be pentagonal
by Lemma 10. By Lemma 11, at most one of the faces f13 and f23 is
pentagonal. Hence, Rule V1 applies to v1 or v2 with respect to f . In
particular, the face f receives at least 1 unit of charge from v1 or v2. Since
the face f receives at least 3 units of charge in total, its final charge is
non-negative.

If all the vertices v1, v2 and v3 are (≥4)-vertices, then none of the faces
f12, f13 and f23 is pentagonal by Lemmas 6 and 10. Hence, Rule V1 applies
to all the three incident vertices with respect to f , and so f receives 3 units
of charge in total, as desired.

Let us now analyze the final charge of 4-faces.

Lemma 15. The final charge of every 4-face f = v1v2v3v4 of the skeleton
G+ of an `-minimal graph is non-negative.

Proof. Let fi i+1 be the other face incident with the edge vivi+1 (indices
modulo four). Since none of the faces fi i+1 can be a 3- or 4-face by Lemma 7,
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f does not send out any charge by Rules F1 or F2. We next distinguish
several cases based on the number of (≥4)-vertices incident with f .

If f is incident with at most one (≥4)-vertex, it receives 1/2 unit of
charge from each adjacent face by Rule F2. Since, the initial charge of f is
−2, the final charge of f is at least zero. A similar argument applies if f is
incident with exactly two (≥4)-vertices which are not consecutive on f .

Suppose now that the face f is incident with exactly two (≥4)-vertices,
which are consecutive on f . Let v1 and v2 be these two vertices. If f23 is a
pentagonal face, then the face f receives 1 unit of charge from f23 by Rules
F2 and F2+ and 1/2 unit of charge from each of the faces f34 and f41 by
Rule F2. If f23 is not a pentagonal face, then f receives 1/2 unit of charge
from each of the faces f23, f34 and f41 by Rule F2 and 1/2 unit from the
vertex v2 by Rule V2 since the face f12 is not pentagonal by Lemma 10.

Suppose next that f is incident with three (≥4)-vertices, say v1, v2 and
v3. By Lemma 10, neither the face f12 nor the face f23 is pentagonal, and
by Lemma 11, at most one of the faces f34 and f41 is pentagonal. Hence,
Rule V2 applies to the vertex v2 and at least one of the vertices v1 and v3

with respect to f . This yields that f receives at least 1 unit of charge from
the incident (≥4)-vertices by Rule V2. Since Rule F2 applies to both f34

and f41, the face f receives in total at least 2 units of charge, as desired.
Finally, we consider the case where the face f is incident with (≥4)-

vertices only. As none of the adjacent faces can be pentagonal by Lemma 10,
the face f receives 1/2 unit of charge from each incident vertex by Rule V2,
and hence its final charge is equal to zero.

The analysis of the final charge of hexagonal faces is quite straightfor-
ward.

Lemma 16. The final charge of every hexagonal face f of the skeleton G+

of an `-minimal graph is non-negative.

Proof. Let k be the number of faces adjacent to f and k′ the number of 3-
or 4-faces sharing a 3-vertex with f . Hence, k− k′ = 6. The face f receives
no charge by any of the rules, and it can send out charge only by Rules F1
and F2. Note that the amount of charge sent out by Rules F1 and F2 is
at most k′ units. Since the initial charge of f is k − 6 = k′ units, the final
amount of charge of f is non-negative.

We next analyze the final charge of pentagonal faces.

28



Lemma 17. The final charge of a pentagonal face f of the skeleton G+ of
an `-minimal graph is non-negative.

Proof. Let k be the number of faces adjacent to f and k′ the number of 3-
or 4-faces sharing a 3-vertex with f . Then, k − k′ = 5. We distinguish two
main cases based on whether f is incident with a (≥4)-vertex.

Suppose first that f is incident with a (≥4)-vertex. The face f can send
out charge only by Rules F1, F2 and F2+. By these rules, it can send at
most 1 unit of charge to each 3- or 4-face that shares a 3-vertex with f .
Hence, the amount of charge sent out by f is at most k′ units. On the other
hand, f receives at least 1 unit of charge from the incident (≥4)-vertex by
Rule V3. Therefore, the final charge of f is at least

k − 6− k′ + 1 = 0.

In the rest of the proof, we assume that all the vertices incident with f
are 3-vertices. Let f1, . . . , fk be the faces adjacent to f in the cyclic order
around f , and let l1, . . . , l5 be the indices of the strongly adjacent faces. By
Lemma 11, each face fli is hexagonal or polygonal.

Observe that li+1 − li ∈ {1, 2} for every i ∈ {1, . . . , 5} (indices modulo
five). Indeed, if li+1 − li > 2, then fli+1 and fli+2 are 3- and 4-faces. Since
no two 3- or 4-faces can be adjacent by Lemma 7, the vertex shared by
the faces f , fli+1 and fli+2 must be a (≥4)-vertex, which contradicts our
assumption.

We next show that any 3-face f ′ adjacent to f is incident to 3-vertices
only. If it were not the case, there would exist an index i such that li+1−li =
2, the vertex w incident with fli+1 and not incident with f is a (≥4)-vertex,
and fli+1 is a 3-face. Since the faces fli and fli+1 are hexagonal or polygonal,
Rule V1 applies to w with respect to fli+1. However, Rule F1 does not
apply to f with respect to fli+1 and thus the amount of charge sent out by
f totals to at most k′ − 1 units. Consequently, the final amount of charge
of f is non-negative. We conclude that all the vertices incident with f are
3-vertices.

In the rest of the proof, we call a pair of faces fli and fli+1 a direct pair
if either li+1 − li = 1 or fli+1 is a 3-face. In the latter case, all vertices
incident with fli+1 must be 3-vertices. Lemma 12 implies that at least one
of the faces forming a direct pair is polygonal.

Let k′′ denote the number of direct pairs. Since at least one of the
faces of a direct pair is polygonal, the face f receives 1/3 from at least
dk′′/2e adjacent polygonal faces by Rule F3. Note that the exceptional case
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described in Rule F3 cannot appear since all vertices incident with 3-faces
sharing an edge with f are 3-vertices. On the other hand, if the faces fli

and fli+1 do not form a direct pair, then li+1 = li + 2 and fli+1 is a 4-face.
The face f sends to such a face fli+1 only 1/2 by Rule F2 and Rule F2+

does not apply. We conclude that the face f sends out (5− k′′) · (1/2) units
of charge to adjacent 4-faces and at most (k′ − (5− k′′)) · 1 units of charge
to adjacent 3-faces. Hence, the total charge sent out by f is at most

k′ − (5− k′′) +
5− k′′

2
= k′ − 5− k′′

2
.

Since the initial charge of f is equal to k−6 and f receives at least (dk′′/2e)·
(1/3) units of charge, the final charge of f is at least

k − 6 +
⌈

k′′

2

⌉
· 1
3
−
(

k′ − 5− k′′

2

)
= (k − k′)− 6 +

5
2

+
⌈

k′′

2

⌉
· 1
3
− k′′

2

=
3
2

+
⌈

k′′

2

⌉
· 1
3
− k′′

2
≥ 0 .

Note that we have used the fact that k − k′ = 5 as f is pentagonal. Since
k′′ ∈ {0, . . . , 5}, the estimate on the charge of f is always non-negative.
This finishes the proof of the lemma.

It remains to analyze the final charge of polygonal faces.

Lemma 18. The final charge of a polygonal face f of the skeleton G+ of
an `-minimal graph is non-negative.

Proof. Let k be the number of faces adjacent to f and k′ the number of 3-
or 4-faces sharing a 3-vertex with f . Then, k − k′ ≥ 7. Further, let k′4 be
the number of 4-faces sharing a 3-vertex with f . Finally, let f1, . . . , fk be
the faces adjacent to f in the cyclic order around f , and let l1, . . . , lk−k′ be
the indices of the strongly adjacent faces. Note that li+1 − li ∈ {1, 2, 3} for
every i ∈ {1, . . . , k − k′} (indices modulo k − k′).

The face f does not receive any charge from neighboring vertices or
faces. We now estimate the amount of charge sent out by f . By Rule F1, f
sends out at most k′ − k′4 units of charge and by Rule F2, f sends out k′4/2
units of charge. Rule F2+ cannot apply to f . Altogether, f sends out at
most k′ − k′4/2 units of charge to faces that are not strongly adjacent.

Let k′′ be the number of indices i such that f sends 1/3 unit of charge
both to fli and fli+1 by Rule F3. Let us fix one such index i. Observe that

30



both the faces fli and fli+1 are incident with 3-vertices only. By Lemma 11,
li+1− li ≥ 2. If li+1− li = 2, the face fli+1 cannot be a 3-face by Lemma 11.
Hence, fli+1 is a 4-face. Finally, if li+1 − li = 3, then both fli+1 and fli+2

are not 3-faces, for otherwise the vertex shared by f , fli+1 and fli+2 would
be a (≥4)-vertex by Lemma 7 and Rule F3 would not apply. Hence, at
least one of fli+1 and fli+2 is a 4-face. We conclude that it is possible to
associate to each index i such that f sends 1/3 unit of charge both to fli

and fli+1 by Rule F3, a 4-face adjacent to f , which is fli+1 or fli+2. Hence,
k′′ ≤ k′4.

As k′′ ≤ k′4 ≤ k − k′, we deduce that f sends out 1/3 unit of charge by
Rule F3 at most b(k − k′ + k′′)/2c times. Since the initial amount of charge
of f is k − 6 units, the final amount of charge of f is at least

(k − 6)−
(

k′ − k′4
2

)
− 1

3

⌊
k − k′ + k′′

2

⌋
=

1
3

⌈
5(k − k′)− 36− k′′

2

⌉
+

k′4
2

≥ k′4
2

+
1
3

⌈
−1− k′′

2

⌉
≥ k′4

2
− k′′

3
≥ 0 .

The lemma now follows.

Lemmas 13–18 yield the main result of this paper.

Theorem 19. Every plane graph has an `-facial coloring with at most
b7`/2c+ 6 colors.
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