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Introduction

In 1956 Eugene Wigner wrote an influential article [148] The unreasonable
effectiveness of mathematics in the natural science. The paper became not
only influential but also kind of paradigm for other papers about “unrea-
sonable” or “surprising” effects, [17, 82, 32, 108] (thus this beeing also an
evidence how important is to select the right title). I also chosen to para-
phrase this title. But by doing so I should stress immediately that I am not
analysing the phenomenon in the title per se (as Wigner did) but merely
describing the situation which became (a little bit surprisingly) apparent
when treating the main topic of this paper - the joint work of P. Hell and
myself from the contemporary perspective. This may sound overdone. It is
not. This paper is mostly about rigid graphs.

Figure 1: Hedrĺın Pultr graph [63]

2



I.
This is neither a survey of Pavol’s work, nor a history of our collaboration.
But it begins with a little history. We entered the Faculty of Mathematics
and Physics of the Charles University (abbreviated in Czech as MFF UK) in
Prague in 1964. As was customary in those days the actual begin of classes
was proceeded by an agriculture brigade. In September that year we were
harvesting hops and for two weeks we had a great time and some of lasting
friendships started there. Immediately after classes began we realized that
one of our teachers was very different in his style and approach to us. It
was the first year when Zdeněk Hedrĺın was teaching Matematická analýza
(i.e. Calculus) for freshman and he did it with an enthusiasm and a great
ambition. So when he together with Aleš Pultr started a (no credit) seminar
where we would “do problems” we all went along - some 30 students in the
freshman class, winter term! Well, in the first year you mostly do what you
are told to do.

Hedrĺın and Pultr were then in their prime as scientists [62, 63, 64, 59,
140] and they had a vision to do graph theory with us. They presented us
with the following problem:

Problem 1 (Rigid graph)
Find a graph G such that the identity is the only homomorphism G → G.

This was right simple: What is an undirected graph G = (V, E) we
understood quickly (although we never heard about anything like it before)
and what is a homomorphism G → G was also easy as this was very much
same as in algebra (just to be on the safe side: a homomorphism G → G′

is a mapping f : V (G) → V (G′) which preserves the adjacency of vertices:
xy ∈ E(G) ⇒ f(x)f(y) ∈ E(G′)). So this seemed to be all too simple
task (particularly, if we would accept the trivial solution). But later, as we
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got deeper into various interesting aspects of the problem, we were thrilled
that here is something so simple and yet it could be perhaps new and the
beginning of our doing mathematics.

It is my life’s conviction that if you want to teach well you have to give
the best without reserves. Original problems, fresh ideas, confidence and
dreams. All what you know, what you would like to know or you dream it
could be true.

And of course in retrospect, it appears that our teachers did not tell
us (intentionally) the whole story. They knew the solution [62], see Fig. 1.
But they believed that we have to discover things ourselves and that there is
enough substance in the problem (being also encouraged by a conversation
with P. Erdős who informed them about his probabilistic solution [60]).

We were working on the problem and as the work became more involved
(and as of course we had more and more school duties) the group became
smaller (but always included V. Chvátal, P. Hell, L. Kučera and the author).
There were various examples of rigid graphs found. One of the nicer ones
was Pavol’s example of a rigid graph, see Fig. 2.
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Figure 2: Pavol’s rigid graph

This example involved the notion of chromatic number and critical graph.
It clearly separated asymmetry from rigidity. And it was not just a singular
example, it was a method. This example (and its variants) continues to be
useful [128, 53, 39, 21, 111].

Later we were suggested other problems which led to our first publica-
tions of Chvátal [18] and myself [99] and the seminar was transformed to a
more traditional structure. Pavol was the most active in the original direc-
tion of rigid graphs and he wrote his first paper [35] (where he showed that
the minimal number of edges of a non-trivial rigid graph is 14, see Fig. 3).
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(a) (b)

Figure 3: Mystical examples

The figure from [35] reproduced above contains a series of mystical ex-
amples. The first of these is an example of a rigid graph with 8 vertices
and 14 edges the smallest rigid graph. This graph is by now known to be
unique - the smallest rigid graph. The fact that it is unique is first stated
in our conference article [47], see Fig. 4. This example is dear to us and we
humbly call it Our Graph.
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Figure 4: Our Graph

Our Graph has been reproduced many times, see Fig. 5.

(a) (b) (c)

Figure 5: Reproducing Our Graph

The last nice drawing is due to Jǐŕı Fiala and Jan Kratochv́ıl for the
2006 Prague meeting.
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II.
We did not complete our studies at Charles University. This is not the
place for a more detailed description of mathematical environment of the
Charles University. Let me just say that as undergraduates we had access
to excellent teachers of international prominence (as we of course learned
only later). Let me just say that lectures by Jaroslav Kurzweil, Jan Mař́ık,
Jindřich Nečas, Ladislav Procházka, Alois Švec, Věra Trnková and Petr
Vopěnka, lectures and seminars by Miroslav Katětov, they all proved to be
most inspiring intellectually.

Both Pavol and I treasure a memory when, in December 1967, we tool
an early exam from Analytic Functions and were allowed by our teacher
Vojtěch Jarńık to study for the last two lectures from his handwritten notes,
as his illness prevented him from delivering the lectures; indeed we were
invited to write the exam at his home. These were the last regular classes
of Jarńık. Our speciality was Mathematical analysis and it consisted from
just 11 students †. This was regarded at the time as mathematically most
theoretically oriented study group.

I have always highly valued the mathematical and educational excellence
of MFF UK and I am very proud to be the part of this organization for many
years now.

In the winter term 1968 we were both in Vienna where we were accepted
as students by the faculty responsible for foreign students which was rep-
resented by Edmund Hlavka and F. Schweiger. As a curiosity (certainly
from the today point of view) we were admitted and received reasonable
scholarship solely on the basis of our two publications [99], [35]. In Vienna

†K. Neubauerová-Bendová, J. Blaťák, V. Chvátal, M. Frǐs, P. Hell, V. Kubát, L.
Kučera, M. Kučera, J. Nešetřil S. Verner, J. Zemánek
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Figure 6: Prater

we stayed together and we had a lot of free time and it is there where we
started to write papers. Shortly before Christmas 1968 we went to Canada
as graduate students of Gert Sabidussi who was then at McMaster Univer-
sity. (This was made possible by two facts: Sabidussi’s Vienna roots (and
H. Izbicki’s recommendation), and also by the fact that Aleš Pultr was a
visiting professor at McMaster in 1968). We had much less time now, mas-
tering the language and taking classes. Vašek and Jarmila Chvátal were
at University of Waterloo and we have much enjoyed our student life in
Canada (which was very different from the situation back home).

In the summer 1969 we all took part in the legendary conference in
Calgary (which became a template for large combinatorial conferences for
many years to come). We gave two lectures and presented two papers to
proceedings [47, 111] (one of them with Our Graph mention above). We
travelled across Canada by train and continued until Victoria. Vancouver
was very different back then (and so we were).

We were still working on rigid graphs [46] and completed the paper [21]
with Vašek Chvátal and Luděk Kučera (which is the only souvenir of the
entire group from our student days). This paper contains the following.
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Figure 7: Vancouver

Theorem 1 ([21])
For every finite graph G there exists a graph H with the following properties:

1. H contains G as an induced subgraph;

2. H is rigid.

The proof given in [21] is constructive and uses rigid graphs from [111],
which are themselves relatives of Pavol’s graph from figure 2. (Today an
alternative proof follows easily from properties of random graphs: Take large
graph H at random with the probability 1− ε this graph is rigid and also it
contains G as an induced subgraph. But this has been shown only later [70].)
The construction proved to be useful in the other context [52, 39, 53].

In retrospect out work in 1969 led to the important notion of the core
of a graph which we state generally for finite structures:

Definition 1
A structure S is a core if every homomorphism S → S is an automorphism.
A substructure S′ of S is called core of S if S ′ is a core and there is a
homomorphism S → S′.

The nice thing is that core of S (for a general finite structure) is uniquely
determined (up to isomorphism) and thus we can speak about the core of
S. The core of a structure is useful invariant which captures (and reduces)
the complexity of coloring problems see e.g. [51, 38] and recently [81]. It
also allows to study finite structures by means of a partial order. Write
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S ≤ S′ if there is a homomorphism S → S ′. ≤ is a quasiorder (as it many
happen S ≤ S′ ≤ S without S and S′ beeing isomorphic). But when we
restrict ≤ to non-isomorphic core structures we get a partial order called
the homomorphism order [53].

The term core seems to be now generally accepted yet it started as
a naive student joke: Our supervisor in Canada was Sabidussi, to whom
we endearingly reffered as “dussi”, or rather “duši”, which is close to the
Czech word “duše”, meaning the soul, or core. Although we isolated and
made use of this concept in 1969 we wrote the paper [52] that became the
standard reference much later (for Sabidussi’s 60th birthday meeting; there
were proved the NP -completeness of the core-decision problem).

Some results which were treated in (the Calgary conference) papers [47,
111] are continuing to be interesting. Let us list two of them: The paper [47]
determines (thus extending [35]) the minimal (and maximal) number of
edges of a rigid (undirected) graph with n vertices (these numbers appears
to be n + 2 and

(

n

2

)

− n + 1 for n ≥ 20). The situation is very different for
relations (= oriented graphs):

Problem 2 (Minimal rigid relation)
Given a set V of n vertices determine the minimal number RGD(n) of arcs
of a rigid relation on V .

Clearly RGD(n) < n and the true value is of the order n(1 − 1
log n

).
However the exact value seems to be a hard problem - homomorphisms are
hard to enumerate.

The existence of a rigid relation leads to an important result:

Theorem 2 ([145])
On every set there exists a rigid relation.

This has been proved in a landmark note [145]. Other constructions
(which are however related to the original proof) are given in [61] and per-
haps the simplest recently in [107].

This paper is about (algebraic aspects) of finite combinatorics but at
this point we make a little excursion to infinite graphs. While on every set
there exists a rigid relation, it is not clear whether these relations can be
made mutually rigid (i.e. with no homomorphism between them). In fact
Petr Vopěnka conjectured that this cannot be done without help of further
set theoretical axioms:
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Vopěnka’s Axiom (VA) There is no proper class Gα, α ordinal number,
of rigid graphs such that there is no homomorphism between any Gα and
Gβ for α 6= β.

VA is known to be consistent with ZFC [72] and it has been studied in
various context, see e.g. [2]. From the combinatorial point of view it can be
equivalently formulated as follows:

Proper class WQO axiom (PCWQO) Any proper class collection of
algebraic or relational objects Sα, α ordinal, contains two objects Sα, Sβ,
α < β such that Sα is an induced substructure of Sβ .

(Algebraic or relational object means that we bound the arities of rela-
tions and operations; without this PCWQO does not hold: consider object
of form (α, {α}), α is ordinal number viewed as set {0, 1, . . .}.)

PCWQO can be seen to be equivalent to VA (via Theorem 2 which hold
in ZFC) and it presents a deep and general property of infinite graphs (in
the spirit of WQO theory for finite objects).

Our of work on VA (unsuccessful work; we wanted to prove it) resulted in
the paper [48]. (Note that the essence of VA and PCWQO is the proper class
condition. If we instead want to find arbitrary many mutually rigid graphs
then this can be done more easily. See [39] for many classes with special
properties where this can be done.) This result was later strengthened
by Babai and Pultr [7] who showed that k-regular graphs do not represent
every finite monoid. This is with contrast with the recent results of Hubička
and myself [67] where it is shown that planar graphs with all its degree
bounded by 3 (i.e. subcubic graphs) represent every countable poset. The
question of representability (and embedding of categories) were at the centre
of attention of our teachers at that time (“the Prague school”). We are
only touching the subject here and instead refer to a book of Pultr and
Trnková [140] or, more recently, our book [53].

Another direction which resulted from [111] was the extension of graph
concepts to hypergraphs (which we called then “societies” - a term coined
by Hedrĺın). The extension was possible by reducing the problem to graphs
in today terms using sections or shadows or Gaifman graphs. Even more
generally one can consider finite structures S which contain relational and
function symbols of prescribed arities from a certain signature set σ. Some-
what more explicitly a relational structure S of type ∆ = (δi; i ∈ I) is a pair
(X, (Ri; i ∈ I)) where Ri ⊆ Xδi , i ∈ I . Homomorphisms are again defined as
mappings preserving all relations of all arities. It was a legacy of our study
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at MFF UK that conceptually the study of homomorphisms is insensitive
to structures and that one can aim for the “grand picture” (in today jar-
gon). The structural (or model theoretic) context of homomorphisms gained
recently a prominence in the context of Constrained Satisfaction Problem
(CSP). The approach goes back to [12, 137] and also to Ivo Rosenberg who
initiated in 1972 [141] study of strongly rigid graphs (and relational struc-
tures). These are rigid graphs (structures) G in which is satisfied that the
only homomorphism Gk = G×. . .×G → G is a projection. Objects with the
later property are now called projective objects. Resenberg asked whether
almost all relational systems are strongly rigid. This has been verified only
recently [86]. This is a very active contemporary context and we shall return
to it later.

In the winter 1969 we both wrote our MSc thesis at McMaster University.
Neither was about rigid graphs (where we have at the time felt we were
the experts). It is interesting (with respect to the later development) to
note that Pavol wrote his thesis about Ramsey numbers [36] and parts
were published in [37], while my thesis was about asymmetric graphs [100]
(i.e. the graphs with the only identical homomorphism). I proved various
properties mostly in the relation to Ulam’s reconstruction conjecture (which
was a very popular subject then); this part appeared in [102]. The second
part of my thesis was devoted to the extremal question of asymmetry. To
my horror I discovered shortly before the thesis submission that most of
the material in this second part was considered by Erdős and Renyi in their
classical paper on the subject [26] - the paper which I did not know (in
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those pre-Google times). Sabidussi’s reaction was very nice: this is very
good, take it as an encouragement and a proof that you did good things.
Nevertheless, I omitted some parts from the thesis and published them
separately, see [101]. I was then surprised to receive one (handwritten)
reaction to my thesis which was dealing with similar problems. Much later
I realized that this was one of the first papers by Saharoni Shelah [144].
After 35 years we collaborated [127] and again in a homomorphism context.

The hastily organized MSc defense marked forever the end of our joint
studies (in Prague, Canada and elsewhere).
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III.
In 1970, Pavol began his doctoral studies at the Université de Montréal
(again with Sabidussi), and I became an Assistant Professor at MFF UK in
Prague. Our lives (and worlds) separated, but we never lost contact, and
never stopped collaborating. Even through the darkest years we continued
writing joint papers [48, 49, 50].

Interestingly enough, we have never had a priority dispute - which is
rare, as everybody knows. We wrote doctoral theses on different topics
again. Pavol’s thesis was on graph homomorphisms and it is rightly seen
as the foundation of the theory of graph retracts. The techniques proved
useful later on, and the resulting theory is described in Chapter 2 of [53].
In particular, the notion of dismantlability lead to some very nice work
of Pavol and various of his coauthors (Hans-Jurgen Bandelt, Ivan Rival,
Martin Farber and others [8, 56], and very recently to work of Benoit Larose,
Claude Tardif, and Pavol’s student Cynthia Loten [81]). But as our lives
separated, so did to a large degree our research. While Pavol made (and
continues to make) numerous contributions to generalizations of matchings
(for instance [43, 44]), various interconnection networks (including [9, 10]),
and algorithms for nicely structured graphs (such as interval graphs [42],
chordal graphs [45], circular arc graphs [11]), to name a few areas, my
interests were, and remain, more on the combinatorial and algebraic side.
To keep on the theme of this paper, allow me to focus on the subject as
seen from the Prague perspective.

Back home my life changed profoundly in many respects but mathemati-
cally the main difference was that I started to work intensively with students
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(which at the beginning were just a few years my juniors). I founded Kombi-
natorický seminář (Combinatorial seminar) which I chaired then for many
years and which brought me much joy. The Combinatorial seminar was
(and I believe is) one of the most active Prague group, which was broadly
mathematically based and attracted some of the best talents from the whole
country (Czechoslovakia and then Czech Republic). I am not going to re-
port this activity but let me just say that at the beginning I was fortunate to
have Vladimı́r Müller, Jan Pelant and Vojtěch Rödl. This quickly resulted
in solutions of open problems [138, 91, 92, 97, 98, 95] and our group started
to be well known both abroad and then at home. Paul Erdős was our great
teacher and supporter.

In Prague, the principal figure for us at this time was Zdeněk Froĺık.
Interestingly, I did not know Froĺık as a teacher in sixties (he was mostly
abroad). But in seventies he was our great supporter and sheltered us from
many things. His Winter Schools in Abstract Analysis were for us absolute
highlights of each year. Unfortunately Froĺık died at an early age, see the
volume which we dedicated to him [110]. I believe Froĺık would be happy
from the development of our “combinatorial group” which is now involved
in most of mathematics.

Mathematically (and otherwise) the most important thing I did in sev-
enties and eighties was Ramsey Theory and my collaboration with Vojtěch
Rödl. Vojta will be of course forever my most frequent coauthor and the
work we did together profoundly influenced my whole career as mathemati-
cian and teacher [124]. But this paper is on a different topic. (I will be
only happy to return to our collaboration at another occasion, i.e. soon, for
example when Vojta will be 60!).

The research activity related to rigid objects and homomorphisms con-
tinued. With Vladimir Müller and Jan Pelant we published several pa-
pers [95, 96] on tournament algebras (and simple tournaments investigated
independently at the same time by Paul Erdős and Eric Milner [27]). With
Lászlo Babai [5, 6] we extended Theorem 1 to infinite graphs and with Mike
Adams and Jǐŕı Sichler [1] we investigated images of rigid graphs (where
the situation is not completely clarified yet). I also investigated influence
of orientations on automorphisms and homomorphisms [103, 49] (earlier
Chvátal and Sichler [22] investigated a similar problem for colored graphs).
But perhaps in this context most importantly I decided around 1975 to
write a Czech book on graph theory which was otherwise badly needed and
which will be “homomorphism based” or better say “influenced”. In doing
so I rethought many things we did earlier and some new pattern emerged.
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I want to single out three particular notions which appear in [105] and which
the book certainly helped to crystalize.

Definition 2
A graph is said to be productive if the following holds: G×G′

9 H providing
G 9 H and G′

9 H where G × G′ is a direct product of graphs G and G′.

The famous product conjecture (Hedetniemi conjecture [53]) asserts in
this language that every complete graph is productive. In [62] we justified
this definition by this connection and established some basic properties, in-
cluding the productivity of directed cycles of prime length; we conjectured
that all directed cycles of prime power length were also productive. Inter-
estingly, Pavol came independently to ask similar questions about 10 years
later, unaware at first of our paper [61]. By the time their paper [34] was
published, Pavol and his authors (Roland Häggkvist, Donald Miller, and
Victor Neumann Lara) knew about our paper and realized that they have
proved our conjecture on directed cycles of prime power length. (Their
proof uses a topological lemma; a beautiful direct combinatorial proof due
to Xuding Zhu [150] is reproduced in [53].) They have used the term multi-
plicative graphs, which has now become standard [53]. Claude Tardif [146]
recently proved that there are multiplicative graphs with circular chromatic
number arbitrary close to 4. K4 is the smallest graph which is not known to
be multiplicative. Tardif’s proof uses categorical machinery (adjoints) the
study of which (for relational structures) was originated by Pultr [139].

Another concept which was in fact the leitmotiv of the whole book [105]
was the concept of homomorphism duality. Here the genesis is more com-
plicated. Some of the seminal papers of modern computational complexity
theory are the work of Jack Edmonds [24, 25]. He anticipated the com-
plexity classes P and NP and coined the term good characterization of a
decision problem. The class of problems with a good characterization (on
the abstract level) coincides with later introduced class NP ∩ coNP . The
good characterizations became very popular in the beginning of 70ies by
work of Chvátal, Lovász and others as a paradigm for solving combinatorial
problems. I very much liked Vašek Chvátal’s paper [20] where he popular-
ized good characterizations by a nice story. I reproduced a similar story
in [105] and was thinking hard about the right approach to good character-
ization for coloring problems (in today’s terminology CSP). This led to the
notion of homomorphism duality which in its simplest form can be stated
as follows:
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Definition 3
Let F , D be structures. Denote by F 9 the class of all structures S for
which there is no homomorphism F → S. Similarly denote by → D the
class of all structures S for which there is a homomorphism S → D. A
(singleton) duality is the equation of classes

F 9=→ D

In this case (F, D) is called dual pair, D is dual of F .

In today notation one would write Forb(F ) for the class F 9 and
CSP (D) for the class → D. It is also clear how to extend this to finite
families F and D. We then speak about finite dualities [29, 109, 130].

I strongly believed that by choosing appropriate morphisms and struc-
tures one can capture all good characterizations. (This belief materialized:
Linear programming duality (Farkas lemma) may be rephrased as duality
of oriented matroids, see my papers with Winfried Hochstätter [65, 66] and
all CSP problems fit to dualities in the context of recent papers with Gábor
Kun [78, 79].). In the book [105] I rephrased most of the main min-max
theorems in terms of dualities. With Aleš Pultr we wrote shortly after the
paper [118] with a self explanatory title On classes of relations and graphs
determined by subobjects and factorobjects. There we derived some general
properties and showed that there are no nontrivial dualities for undirected
graphs:

Theorem 3
Up to the homomorphism equivalence there is only one trivial dual pair
(K2, K1).

However already for directed graphs (not to speak about other struc-
tures) we have not found a characterization. For the case of directed graphs
this was completed later by my student Pavel Komárek [74, 75]. The full
generality of relational structures was considered and solved together with
Claude Tardif [130]:

Theorem 4 ([130])
For a finite relational structure F the following two statements are equiva-
lent:

1. F is a tree structure;

2. F has a dual D.
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There is a much recent activity surrounding this theorem, see e.g. [3,
81, 29]. But here we are jumping too much in time. Some of the last
development is reviewed at the end of this article.

Let us just mention, that another homomorphism concept which origi-
nated around the same time in [105] (in the Ramsey theory context (!) [122])
was the notion of the dimension of an undirected graph [119, 85, 123].

Out of my work with Babai [5, 6] originated two interesting problems:

Problem 3 (Linear representation of monoids)
Does there exists c > 0 such that every monoid M with n points can be
represented by the monoid of endomorphism of a graph with at most cn

vertices?

Recall that Babai earlier proved that every group with n points can be
represented by a graph with 2n vertices (with few exceptional cases).

Problem 4 (Chromatically optimal rigid graphs)
Let G be a graph. Does there exists a rigid graph H containing G as an
induced subgraph if and only if χ(G) > ω(G)?

(The condition is clearly necessary; that goes back to 1964.) With a little
experience one sees easily that both problems are related to rigid graphs led
to the following two results by Václav Koubek, Vojtěch Rödl and author:

Theorem 5 ((Mutually rigid graphs) [76])

1. Asymptotically almost all graphs are rigid. Thus the number of non
isomorphic rigid graphs with n vertices is

2(n

2
)

n!
(1 − o(1))

2. The number of mutually rigid non-isomorphic graphs with n vertices
is asymptomatically equal to

1

n!

(

(

n
2

)

b
(n

2
)

2
c

)

(1 − o(1))

This allowed the authors of [76] to give a negative answer to the Prob-
lem 3: there are monoids M for which every graph G with End(G) ∼= M
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needs at least |M | log |M | vertices (End(G) is the endomorphism monoid of
the graph G).

The stability of rigid structures (reflected in Theorems 5 and 10) may
provide an answer to the permanence of rigid graph motivation. Rigid
structures are everywhere. Like stones they are all around us. But to find a
nice stone (which would fit to your own garden) is another, often non-trivial,
thing.

The Problem 4 on chromatically optimal rigid graphs has positive so-
lution. The key ingredient in this is the following result which was first
isolated by Rödl and myself in [122]. The result holds for general finite
structures. We formulate it just for graphs.

Theorem 6 (Sparse incomprarability lemma SIL [122])
Let k,` be positive integers. Then for every graph G there exists a graph
G′ with the following properties:

1. G′ contains no cycles of length ≤ `

(i.e. the girth of G′ is > `)

2. G′ → G

3. For every graph H with at most k vertices G′ → H iff G → H .

Putting intuitively, despite of the fact that G′ is much sparse than G,
it cannot be distinguished from G by the existence of homomorphism into
small graphs. (Note that we do not consider counting analogs of this result.
This leads to different theory [13] which goes back to Lovász pioneering
paper [83]. This in turn inspired both Lovász [84] and Müller [91] work on
Ulam’s conjecture.).

Sparse incomparability lemma holds (with the analogous proof) for rela-
tional structures and has many applications (see recent [23]). For example
it yields an easy proof of

Theorem 7 (Graph density)
Let G1,G2 be graphs satisfying G1 → G2 and G2 9 G1 (i.e. G1 < G2 in the
homomorphism order). Let G2 be non-bipartite. (Thus we are, up to the
homomorphism equivalence, excluding the single case: G1 = K1, G2 = K2.)
Then there exists a graph G such that

G1 → G → G2,

G2 9 G 9 G1
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This means that in the homomorphism order of undirected graphs there
are no gaps G1 < G2 (except of K1 < K2). Density theorem was proved
in [147] by Emo Welzl. Later a much shorter proof was found independently
by Micha Perles and the author (see [106, 53] and also [31]). Here is another
short proof using Sparse incomparability lemma.

Proof. Let G1,G2 be as above applying SIL find G′
2 such that G′

2 → G2,
G′

2 has girth > |V (G2)| (we do not optimize here) and G′
2 → H iff G2 → H

whenever |H | ≤ |V (G1)|. Particularly G′
2 9 G1 and thus we can put

G = G1 + G′
2. (It is G2 9 G as G2 contains an odd cycle.).

Sparse incomparability lemma was studied intensively and it was also
generalized and strengthened [90, 135, 77]. P. Erdős asked often for a con-
struction of combinatorial objects whose existence is guaranteed by proba-
bilistic method. One such question was whether one can construct uniquely
k-colorable graphs without short cycles. The problem was solved by Vláďa
Müller [92, 93] (see also [71]), in a more general form where he proved a
remarkable theorem about graphs extending a given set of colorings (on
a fixed subset of vertices). We call this result Müller’s extension theorem
(MET).

In the course of generalizations of SIL we recently found with Xuding
Zhu a characterization when MET holds:

Theorem 8 ([135])
For a core graph H , the following statements are equivalent:

I. For any choice of a finite set A and distinct mappings f1, f2, · · · , ft :
A → V (H) there exists a graph G = (V, E) such that the following holds:

i. A is a subset of V ;
ii. For every i = 1, 2, · · · , t there exists unique homomorphism gi : G →

H such that gi restricted to the set A coincides with the mapping fi;
iii. For every homomorphism f : G → H there exists i, 1 ≤ i ≤ t and a

homomorphism h : H → H such that h ◦ fi = f ;
iv. G has girth > l.
II. The graph H is projective;

But there we are jumping again. Going back to 80ies I believe these were
some of the most intense years for myself. Mathematics was very nice, I had
wonderful group of students and collaborators with whom we shared life in
general. We even had a time for our mathematical theatre as we recently
reported with V. Müller in [94]. The Combinatorics seminar was wonderful,
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Figure 8:

perhaps reaching its peak in 80ies also with S. Poljak, J. Kratochv́ıl, J.
Matoušek, R. Thomas, I. Kř́ıž, P. Komárek, M. Loebl, J. Witzany, O. Zýka.
It is hard to say, this statement is perhaps not even true as the seminar was
all the time high quality and a pure joy (and my pride in otherwise tense
situation), I considered it the most important thing I did. And we tried to
do all mathematics. But this is another story and far from the “surprising
rigid permanence” I am covering here.
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IV.
In 1986 I visited Pavol at SFU for the first time. Although we maintained
contacts and we of course knew about our work and activities, it was a very
new and inspiring moment to meet again. We started to work instantly, as
if we had never been separeted, only with more maturity and experience.
Soon after we met we were fortunate to complete together what we started
to contemplate independently: Recall that H-coloring of a graph G is just
a homomorphism G → H (H is called template). H-coloring problem is the
following decision problem:

Input: graph G

Question: does there exist G → H?

In 1986 − 1987 we proved the following:

Theorem 9 ((H-coloring) [51])
H-coloring problem is NP -complete iff H is a non-bipartite graph.

This result is one of the inspirations for the celebrated Dichotomy Con-
jecture of [28].

Dichotomy Conjecture [28] The H-coloring problem (even when gen-
eralized to relational structures) is always either polynomially solvable or
NP -complete.

H-coloring covers a broad class of problems. Every constraint satisfac-
tion problem (CSP ) may be interpreted as an H-coloring problem ([28])
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for relational structures. The other general cases when the dichotomy con-
jecture is know to hold are the cases when the template has 2 [143] or 3
vertices [14] (in the case of relational structures). Theorem 9 is even more
striking as the general Dichotomy Conjecture can be reduced to the H col-
oring problem for oriented graphs. The proof of Theorem 9 is interesting
(and presently non-trivial). (This is true also about the second proof pub-
lished recently by Bulatov [15].) The proof does not follow by a subgraph
argument (and this cannot be expected as the NP -completeness fails to be
a monotone property in general). But it is possible to say that the proof
uses again experience gained in rigid graph constructions (particularly the
replacement, or indicator construction, see [53]. The paper [51] proved to be
much more important then we originally thought and it became our most
quoted paper.

Pavol introduced me to his then postdoc and most active collabora-
tor Xuding Zhu (fresh PhD from Calgary, Norbert Sauer supervisor), with
whom he investigated various homomorphism problems [58, 57] including
the “path dualities”. We quickly started to work together and produced [54]
where we defined Bounded Tree Width Dualities (BTWD) which can be de-
fined as follows:

Definition 4 (BTWD)
We say that H-coloring problem of graphs has bounded tree width duality
if there exists a positive integer k such that the following statements are
equivalent for any graph G in K:

1. G → H

2. For any graph T with treewidth(T )≤ k holds: If T → G then T is
H-colorable.

(Note that the duality (F, D) can be also expressed in these terms: F 9

D and G → D iff F → G implies F → D.)
We proved that BTWD implies that the problem is polynomially tract-

able [54]. We were not aware of an independent work done by Tomás Feder
and Moshe Vardi [28]. But this was a very inspiring connection which led
to a great enrichment of our research and to the important collaboration of
Feder and Hell. Many of the methods and problems which we were consid-
ering found a proper setting of the complexity of CSP in terms of universal
algebra and structures of a more general type. Pavol understood correctly
that here is a very rich field and analyzed the complexity of H-coloring prob-
lem thoroughly with many coauthors: oriented cycles, semicomplete graphs,
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list homomorphisms and lately M -partitions. This activity is reflected well
by [16, 38, 41] and outlined in [53].

Soon after we met we started to contemplate “writing a book”. Well
most people do contemplate such a thing but it took us nearly decade [53].

Despite having written many papers I do not write books easily. Sub-
conciuosly, I am perhaps too ambitions. To write a book is a duty (for
after the initial optimism it becomes a selfimposed duty). I try to use to
organize, to rethink the whole material again, better and basically from the
scratch. This is not a very efficient method: Czech Graph Theory [105] is
perhaps too original and I had never enough courage and time to transform
it in the English. Our book with Jirka Matoušek: Invitation to Discrete
Mathematics had 4(!) Czech published iterations before it was finally done
in English [89] (and since then to other languages [89]). And with the
book Graphs and Homomorphism [53] this was similar. We were not sat-
isfied with the purely algebraic (category theory) motivation and wanted
to understand better the combinatorial core of whatever we wanted to in-
clude. On the other hand we wanted to keep and stress the flexibility of the
homomorphism language and not to write a purely “graph theory” book.
I believe we (modestly) succeeded but it took a long time. We selected
(a little unusual) collection of algebraic theorems (including the often ne-
glected Freyd-Vinárek characterization of concrete categories) and blended
it with combinatorial analysis of various graph operations, complexity and
applications (to various types of graph colorings in the context of the Chan-
nel assignment problem). What came out of blue and is perhaps the chief
novelty of the book was the various aspects and properties of the homo-
morphism order. Here we get a helping hand from Claude Tardif (another
former Sabidussi student) with whom we worked on dualities. We not only
proved Theorem 4 but we also showed that dualities may be characterized
equivalently in order theoretic terms by means of gaps (i.e. intervals S < S ′

in the homomorphism order not containing any other structure) and mini-
mal cuts, i.e. maximal antichains, (of size 2). The correspondence is very
general and holds in Heyting posets [120].

Dual structures of trees are truly amazing. This is indicated also by the
fact that several constructions of duals were discovered in different context.
Currently we have the following constructions:

• using gaps (i.e. predecessors) and power graph construction [130];

• “bear construction” via neighbourly mappings [131];

24



• deletion method (a generalization of Komárek’s construction [75]);

• model theoretic construction via monadic lifts, implicit in [28] and [87];

• specialization the universal construction [69].

It is known that duals have exponential size cores, even almost all ori-
ented paths are exponential core duals [80], and that they have a small
diameter [129]. They can be recognized and even belong to NP [29, 129,
131, 132, 81].

I believe that our book [53] is not only the first book on graphs and ho-
momorphisms but it is also perhaps the first book which combines algebraic
graph theory with complexity and structural methods.
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V.
It seems that [53] was well received. It also came in the right time as
presently we are witnessing an explosion of research related to homomor-
phisms. Even to outline the main questions which are considered would
be to extensive. So in the spirit of this paper let us finish this paper by
restricting ourselves to our main topic - rigid graphs. Indeed they seems to
be a persistent flower (or weed?).

With Tomasz  Luczak [86] we recently verified Dichotomy conjecture for
almost all templates (over general signature). This is based on the following
(which is yet another manifestation of Erdős-Rényi stability of rigidity):

Theorem 10
Asymptotically almost all structures with a given signature are strongly
rigid. More precisely this means two thing:

1. Asymptotically almost all structures on large sets are strongly rigid.

2. Asymptotically almost all structures on a fixed universum (of size > 1)
with large enough arities are strongly rigid.

(The complexity result is based on the algebraic approach to complexity
reduction theorems - see e.g. [86], [16]. It follows that H-coloring problem
is NP -complete whenever H is strongly rigid.). Core structures also played
a key role in the following recent result in mathematical logic:

Benny Rossman [142] solved an old problem proving that a homomor-
phism closed class K of structures is First Order (FO) definable if and only
if it is also positively FO definable. The later means that there are finitely
many structures S = {S1, . . . , St} such that K consists from all structures S

satisfying Si → S for some i. Where do we get this finitness? The homomor-
phism order is (countably) universal even for simplest structures (a striking
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result in this direction is [68]: the homomorphism order restricted to orien-
tations of finite paths is universal; solving a problem and extending [136].).

This of course implies that the homomorphism order is on the opposite
side of the spectrum than say WQO posets (which are typically used in
a finite basis arguments). The finitness is a consequence of the following
definition [112] which goes back to [127] (and perhaps earlier):

A tree complex is any subcomplex of the chain complex corresponding
to a finite rooted tree (i.e. a branching viewed as poset). Given relational
structure S = (X, (Ri; i ∈ I)) the tree depth td(S) of S is the minimal height
of a rooted tree T such that all tuples in relations of S are contained (as
sets) in the tree complex of T . td(S) is well defined (as any S is contained in
the tree complex of any chain on X). [112] (and more recent [113]) contains
the following:

Theorem 11 (Finitness)
For all fixed positive integer k the class of all structures S with td(S) ≤ k

(with a given signature) has only finitely many cores.

(While the number of cores of graphs with tree depth ≤ k is finite this
number grows very rapidly even in the simplest case: For undirected graphs
the number is bounded by the power function only.). This finitness result is
the basis of the Rossman proof [142] as well as the recent work I have been
doing with Patrice Ossona de Mendez [113, 114, 116] on Bounded Expansion
(BE) classes. We are not going to define the classes here and instead refer
to the original articles [113, 114, 116]. But it suffice to say that BE classes
contain all proper minor classes (i.e. classes defined by forbidding Kk as a
minor) and also classes of graphs with all its degrees bounded by k. The
classes of BE are related to dualities as follows:

Let K be a class of graphs (or structures). A restricted duality is the
equation of classes

Forb(F) ∩ K = CSP (D) ∩ K

Explicitly for every G ∈ K we have the following disjoint alternatives: either
F → G for some F ∈ F or G → D for some D ∈ D.

(F and D are finite sets of structures - not necessarily subsets of K). We
say that the class K has all restricted dualities if for any finite set F there
is a finite set D such that (F ,D) form restricted duality. This notion was
first considered in [112, 113]. The following has been proved in [115, 117].
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Theorem 12 (all restricted dualities for finite structures)
Every class K of structures with bounded expansion has all restricted dual-
ities.

As a corollary every class Forb(F) ∩ K is equal to the restriction of a
class CSP (D) restricted to K. Viewing the characterization of dualities
for finite structures (Theorem 4 [130]) Theorem 12 gives a surprising rich-
ness of restricted dualities and this also nicely complements the descriptive
complexity result [4]. This theorem is a culmination of the earlier results,
particularly of the result [33] by Roland Häggkvist and Pavol Hell about
graphs with bounded degrees. Note that we may restrict the set F to a
set of core structures, but we cannot use incomparable cores (only if the
structures are connected).

Despite of the generality of Theorem 12 it may seem that the classes
Forb(F) are very special. Indeed, what non-trivial can you express by
finitely many forbidden substructures? While CSP (H) is a very compli-
cated class even for a simple graph H (think of a triangle), the class Forb(F)
seems to be very simple (for a finite set F). But the situation drastically
changes if we allow extensions of our signature (which defines the structures
under consideration) and projections. This was done recently together with
Gábor Kun [78, 79] by means of lifts and shadows.

What is proved, is that, any NP language L is polynomially equivalent
to a language of the following form:

Φ(Forb(F ′))

where F ′ is a finite set of structures with signature σ ∪ σ′ and Φ is the
forgetful functor which assigns to any structure S ′ ∈ Forb(F ′) with signa-
ture σ ∪ σ′ the corresponding structure S with signature σ (by forgetting
the relations from σ′).
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VI.
Rigid and core structures came a long way. Still some beautiful and simple
formulated problems remain. Let us finish by listing three of them:

Problem 1 (Minimum asymmetric graphs)

Is it true that every asymmetric orientation
−→
G of a graph G contains a

vertex x ∈ V (G) such that
−→
G − x is again asymmetric?

This is true for acyclic orientations [149]. A similar problem for undi-
rected graphs was considered by Gert Sabidussi, Jerome Gagnon and my-
self [125] [30], see [73].

Problem 5 (Maximal antichain)
Let G1, G2 be countable graphs, G1 9 G2 9 G1. Assume that any other
countable graph is comparable by a homomorphism with either G1 or G2.
Is then one of the graphs finite?

This is formulated in [127] where it is proved that K1,K2 and Kω are the
only maximal antichains of size 1 for the homomorphism order of countable
graphs.

Problem 6 (Infinite rigid)
Does there exists positive integer k such that on every set X there exists a
rigid relation whose symmetrization does not contain a subdivision of the
graph Kk (i.e. Kk as a topological subgraph)?

This is an interesting problem. Babai asked whether there exists a locally
planar rigid graph on every set. But we could ask even less formal question:
try to find a new construction of a rigid graph on every set which would not
be based on the (ordinal number) technique of [145] (and [61, 107]).
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The homomorphisms of graphs and more generally of finite structures
gained a momentum recently. The various factors which influenced it are
too involved to be covered here, so let us just list several texts and books [73,
126, 134], and of course [53], which reflect the various aspect of this devel-
opment.

This is only a text which reflects our life long collaboration with Pavol
Hell. We both believe that our collaboration will continue, e.g. [55]. But
what is perhaps evident is a surprising persistence of old motivations. With
all modesty, I believe that this permanence is a sign of a true quality and
of a beauty of mathematics. Like an everlasting gem ...

Figure 9: Paris by Helena
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[78] G. Kun, J. Nešetřil: Forbidden lifts (NP and CSP for combinatorist).
(to appear in European J. Comb.)
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[85] L. Lovász, J. Nešetřil, A. Pultr: On product dimension of graphs. J.
Comb. Th. B 29 (1980), 47-66.
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36
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[95] V. Müller, J. Nešetřil, J. Pelant: Either tournaments or algebras? Com-
ment. Math. Univ. Carol. 13,4 (1972), 801-807.
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[105] J. Nešetřil: Graph Theory. (in czech), STNL, 1978.

37
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[127] J. Nešetřil, S. Shelah: On the order of countable graphs. European J.
Comb. 24 (2003),649-663.
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