KAM Series:

DISCRETE MATHEMATICS AND COMBINATORICS
OPERATIONS RESEARCH
MATHEMATICAL LINGUISTICS

No.
90 - 189

Cunnectéd admissible hierarchical

clustering

M. Kifivének

Department of December 1990
Applied Mathematics

Faculty of
Mathematics and Physics

Charles University

{KAM MFF UK)
Malostranské nam. 25
118 00 Praha 1
Czechoslovakia

210/

CONNECTED ADMISSIBLE HIERARCHICAL CLUSTERING*
Mirko KRIVANEK

Department of Computer Science
Charles University
Malostranské nam. 25
118 00 Praha 1, Czechoslovakia

Summary.

Using the concept of connected admissibility we investigate the algorithmical and geometrical
aspects of generalized single linkage hierarchical clustering procedures. The main emphasis is
concentrated on efficient algorithms in the plane within the framework of both agglomerative and
divisive schemes of hierarchical clustering paradigm.

I. Introduction and background

Much research effort during the two past decades has been directed towards the develop-
ment of hierarchical clustering procedures [2,9,10]. Significant steps were made in systemati-
"zation and comparisons of numerous existing methods. In this paper we discuss hierarchical
clustering algorithms from the point of view of their so-called connected admissibility [7] and
time efficiency.
Let us review and formalize the goal of hierarchical clustering. Through out this paper let
X be a set of n points in some metric space which are to be clustered. Further, let their
mutual dissimilarity be given by a corresponding metric o. The aim of hierarchical clustering
is to produce a hierarchy H € P(P(X)) of subsets of X , called clusters, such that

(i) X € H and (Vze€ X){z}€H,

(ii) (Yh,h' € H) kN K" € {0, R, h'},

(i) @ ¢ H.
The hierarchy is called binary if it contains exactly 2n — 1 clusters. Let us remark that with
little loss of generality we may assume that the hierarchies in question are supposed to be
binary. Of course, various optimality criteria can be placed on an output hierarchy H in
accordance with vague demand of closeness and separability which is usually read as follows :

“Vh,h' € H, h N h' =0, the distances in clusters & and k’ are smaller than distances
between clusters h and A'.”

Very often closeness and separability is measured by means of some function W assigning
weights to clusters. An example is as follows :

W (h) = max{o(z,y) ; z,y € h}.

The operator ‘max’ can be formally replaced by e.g*+’, ‘min’, ‘median’, ‘k-quantile’ or any
other “order statistics”.

Moreover, we expect W to be monotone, i.e

(Vh,h' € HY R C B => W(h) <W(R').

A hierarchy H is said to be feasible for a given weight function W defined on its clusters if

W 1s monotone.

*The paper was presented at DIANA IIT conference, Bechyné (Czechoslovakia), June 1990.

Since we want to construct hierarchies of maximal closeness and separability we define the

computational problem HIC of hierarchical clustering by the aid of feasibility :
INSTANCE : A set X such that card(X) = n;
QUTPUT : A binary hierarchy H on X such that it is feasible for a given weight function
W and Y {W(h),h € H} is minimal.

Speaking about computational complexity of the problem HIC we must distinguish be-
tween the sizes of the input data. The input instance is viewed as a complete graph K(X) on
X with edge weights given by . Thus the size of the input is O(n?). However, an alternative
approach considers the input instance to be of size O(n). This is in the case when the distance
between two objects (points) can be computed from its coordinates in constant time. The
latter case is discussed in Section IV. for Euclidean distance in the plane. Now, let us return
to the weight function W. Mostly we shall use the midrange form of W :

“for every h € H such that 3 &', R", h = hUR" put

W(h) = min{o(z,y) ; € A’ and y € h"'} + max{o(z,y); r€h andy € R}

We have

THEOREM 1. The problem HIC of hierarchical clustering is N P-hard under the midrange
form of the weight function W.

Proof. We prove the theorem for a metric o such that Range(o) = {0,1,2}. The NP-
hardness follows by the polynomial transformaticn from the problem A (8] :
INSTANCE : A graph G on 3k vertices without induced complete subgraphs on 4 vertices;
QUESTION : Is there a vertex partition of G into k classes such that each class induces
a triangle in G 7
Now, given an instance of A we consider the instance of HIC defined by

1, if {z,y}isanedgeof G
a(z,y) = : :
2, if {z,y} is not an edge of G.
It is easily verified that there exists a hierarchy H on vertex set of G such that 3 W(h) =
4k + 3(k — 1) if and only if there exists a vertex partition of G into triangles.

Let us conclude the section by two remarks. First, note that in entirely similar manner
we can show the intractability for the other before-mentioned formal operators of the weight
function W. However, the only exceptional case is ‘min’ operator where the optimal hierarchy
is produced by single linkage strategy in polynomial time, cf. next section.

At the second place, since the hierarchy on X is in one-to-one correspondence with some
ultrametric on X the computational problem of hierarchical clustering is mostly formalized
as the problem of the best fit approximation of given dissimilarity measure on X by an
ultrametric on X. The underlying computational problems are, however, also intractable
[11].

II. Agglomerative and divisive approximation paradigm

Since the general optimization computational problem of hierarchical clustering is NP-
hard there is no hope for an exact polynomial algorithm. However, the bicriterion goal of
closeness and separability suggests two natural approximation schemes. If we prefer the
closeness criterion, we start in the construction of a hierarchy with one-element clusters and
at each step of the algorithm the closest pair of clusters is agglomerated. This strategy
is called agglomerative. On the other hand, the process of the construction can be done
in the opposite way by means of separability. Starting with the whole set X at each step
one cluster is divided into two parts. This strategy is called divisive. Especially hierarchical

agglomerative clustering algorithms are well understood [3,9]. Two most popular and in some
sense extremal cases of agglomerative algorithms are called single and complete linkages. In
' general, precisely the notion of the ‘closest pair’ makes the difference between agglomerative
algorithms. In single linkage two clusters with the minimum distance are agglomerated while
in complete linkage two clusters with the minimum maximum distance are agglomerated.
Note that single and complete linkages can be viewed as approximation procedures to the
problem HIC specified by the ‘min’ and ‘max’ operator in the formal definition of the cluster
weight function W. In algorithmic respect, the recursion formula of Lance and Williams [14]
is useful. Day and Edelsbrunner [3] developed O(n? logn) implementation making use of the
data structure called heap [1]. Since generally the size of input instance is of order O(n?) there
is still a gap of factor logn between lower and upper time complexities bounds. However,
the lower bound is achievable from the point of view of amortized complexity [15,19]. The
amortized complexity measure ‘averages the running times of operations in a sequence over
the sequence.” More formally, a sequence of operations {op} is said to have amortized time
bounds {b} if St < b, where ¢ is the actual time needed by op. Intuitively, if op uses less
time than its allotated b units, then the leftover time may be held in reserve to be used by
latter operations.

THEOREM 2. The hierarchical agglomerative clustering scheme can be implemented in O(n?)
amortized time.

Proof. We use the data structure known as (a,b)-tree [16}]. This is a kind of balanced
search trees where each father has at least a and at most b sons, recommedable values are
a = 2,b = 4. It is known that the sequence of m insertions and deletions (in arbitrary
order) takes O(m) amortized time [16]. Let us consider the following implementation of the
agglomerative paradigm:

1. {Setting-up the (a,b)-tree}
Perform O(n?) insertions of all distances (dissimilarities) between n given objects.
2. do n — 1 times

2.1 identify ‘closest pair’ C,C' of clusters { a query for the minimal element in the (a, b)-
tree now consumes O(logn) time, c.f. [16]}

2.2 replace C and C' by CUC’ and update dissimilarities between this new cluster and the
remaining clusters { it requires one deletion of the minimal element, O(n) deletions
of distances from € and C' and O(n) insertions of new distances from C U C' to the
other clusters}.

Examining steps 1 and 2 we derive the overall O(n?) amortized time complexity from O(n?)
deletions and insertions and O(n) identifications of minimal element of (a, b)-tree.q

Let us turn to the hierarchical divisive clustering paradigm. To our knowledge, there is no
unified way, similar to the agglomerative counterpart, for the desription of divisive clustering
procedures. The main reason is that the division of clusters for maximum separability is
tightly connected to ‘max cut’ problems in graphs that are intractable [8]. The only known
eficient dual part to the agglomerative algorithm is the divisive single linkage algorithm. This
observation stems in the fact that single linkage is closely related to the construction of the
minimum spanning tree of K(X), c.f. the well-known greedy algorithm for the construction of
minimum spanning trees [15,19] which is in fact an agglomerative procedure. Let us denote
mst(A) a minimum spanning tree of the complete graph defined on the set of vertices A,
A C X. In fact the divisive single linkage algorithm is based on the following property.

LEMMA 1. Let e be an edge of mst(X) and A, B two sets of vertices of connectivity compo-
nents of mst(X)-{e} . Then mst(A)C mst(X)2 mst(B).

THEOREM 3. The divisive single linkage algorithm can be implemented in O(n?) time.

Proof. At first we construct mst(X) in O(n?) time [16]. Further, we continue as follows:

1. Find maximum edge e (with maximum dissimilarity) of mst(X)
{O(n) time suffices }

2. Create two new clusters by deleting e in mst(X)
{ traverse the tree and report two sets of vertices of two connectivity components of
mst(X) — {e}, it takes O(n)time}

3. Repeat recursively Steps 1. and 2. for each cluster A having at least two vertices
(using A instead of X).

The Steps 1. and 2. are repeated n — 1 times and the proof is concluded.

Single linkage clustering algorithms seem to have a dominant position in hierarchical clus-
tering [21]. Fisher and van Ness [7] have introduced the notion of connected admissibility by
means of single linkage. We shall further use a slightly modified definition of connected ad-
missibility. We shall say that two minimum spanning trees intersect if there is an intersection
of their edges not necessarily at endpoints. Note that this definition considers the topology
of such trees in a given metric space and is especially vivid in the plane.

A hierarchy H is said to be connected admissible if

(Vh,k' € H hN k' = 0) mst(h) N mst(h') = 0.

Indeed, it is desirable to produce separable hierarchies. In Euclidean spaces the natural
separability is measured by the disjointness of convex hulls. However, it seems that the latter
criterion is sometimes too strong and it imposes an artificial clustering structure on input
data.and does not reflect the reality. Thus a weakened version of separability by means of
connected admissibility will be discussed.

Obviously it holds:

THEOREM 4. The single linkage clustering algorithm is connected admissible.

On the other hand, it was shown by a counter example [7] that complete linkage is not
connected admissible. Qur further aim is to develop efficient connected admissible hierarchical
clustering algorithms which generalize single linkage, output feasible hierarchies and which
lie somewhere in between single and complete linkages.

ITI. Midrange, median, mean and k-single linkages

In this section we introduce a family of generalized single linkage algorithms for hierarchical
clustering. They are based on the construction of the minimum spanning tree of K(X), but
its edges are being reweighted in some special way. The implementation can be done in both
agglomerative and divisive manner. The main idea is justified by the following result.

LEMMA 2. Let €1, ...,en—1 be weights of edges of mst(X). Let us define
f; = max{e; e = {z,y}, « and y belong to different components of mst(X) — {e;}}.
Then the sequence (e;, fi),1 = 1,...,n — 1, is invariant under any choice of minimum span-

ning tree on X.
Proof. It is a well-known fact that the sequence ey,...,e,_; is invariant under the choice of

mst(X). It follows from the fact that any edge e of the minimum spanning tree mst(X) can be
exchanged by an edge e’ with the same weight sharing the same cycle with e in mst(X)U {e'}.

Now, the preceding observation is easily extendable to the sequence (ei, fi)yt =1,...,n—1,
since the maximum edges f of ‘cuts’ corresponding to edges e and €' are the same. [

It should be noted that, for the same reason, the assertion of Lemma 2 is true for another
cut order statistics along the edges of minimum spanning tree. It enables us to speak about
special single linkage algorithms. The midrange linkage is given by the midrange (i.e. minimal
+ maximal edge) of cuts, the median linkage by the median edge of cuts, the mean linkage
by the arithmetic mean of cuts and the k-single linkage by the k-th minimal (or maximal)
edge of corresponding cuts. In all cases, cuts are related to the minimum spanning tree and
due to Lemma 2 they are independent on the choice of this tree.

Now, we describe two strategies. We distinguish between global and local strategies. The
global strategy assumes reweighting of edges of the minimum spanning tree of the whole set
X at once and then performing the ordinary single linkage. Local divisive and agglomerative
strategies at each step consider common cuts in ‘smaller’ clusters which may vary after each
division or agglomeration. It is worthwile noting that the implementation of a local strategy
in agglomerative or divisive way may lead to different output hierarchies. Recall that we deal
only with approximations to computationally intractable problems.

THEOREM 5. The local aglomerative midrange, median, mean and k-single linkage algorithms
can be implemented in O(n?) amortized time.

Proof. First we construct the minimum spaning tree mst(X). It takes O(n?) time [16].
The agglomeration process is controlled by the structure of mst(X) and in fact it is a slight
modification of the general agglomeration paradigm from Section II. In this case the underly-
ing data structures are even simpler. We maintain a dissimilarity (distance) matrix of K(X)
which enables the direct access to the edges of mst(X). Indeed, in each repetition of the main
loop we search for minimum reweigted edge of mst(X) and then we perform an agglomeration
and update of the new between-cluster dissimilarities. In this way a new distance matrx is
created. This takes O(n) time for all linkages mentioned in the assumptions of the theorem.
Note that the reweighting process is done at the same time and that the step of updating of
all new between cluster dissimilarities is not superfluous . New dissimilarities will be used
later for the correct computation of new weights of appropriate edges of mst(X). Thus, we
get O(n?) time complexity.

Now, we turn our attention to divisive generalized single linkages. Clearly, we proceed as
follows :

1. Construct mst (X), reweight edges by suitable cut statistics and find the maximum
reweighted edge e of mst(X)

2. Divide the corresponding cluster according to e

3. Repeat recursively Steps 1 and 2 in all clusters.

This algorithmic scheme is in fact a global divisive strategy. On the other hand, in a local
divisive strategy we must perform reweighting of remaining edges of mst(X) in Step 2. after
each division. ,)

The most important part of the divisive single linkage algorithms is the computation of
an appropriate characteristic of cuts belonging to edges of mst(X). The straightforward
implementation is in O(n*) time since a cut may contain O(n?) edges and we maintain O(n?)
cuts during the division process. Using a sophisticated data structure for dynamic trees [20]
we can do it even better.

THEOREM 6. Given mst(X), we can compute cuts belonging to edges of mst(X) in O(n*logn)
time and in O(n?) amortized time.

Proof Assume that we are given mst(X) rooted at some inner vertex. We traverse the tree
mst(X) simultaneously from leaves. The cuts belonging to its edges are representated by the
search tree data structure , see [20] for technical details. Let us describe the common step of
traversing. Let p be a parental node and we are to maintain the cut along the edge joining p
to its father f. At this point we have at our disposal k trees representing cuts for edges (s, p)
where s is a son of p. In order to create new tree for the edge (p, f) we perform deletions of
edges joining vertices of filial trees of p and k — 1 joins of updated filial trees. The joins and
deletions take O(logn) worst case time and O(1) amortized time. Since the sum of degrees of
all nodes of mst(X) is O(n) we perform O(n) joins. Further, each edge of K(X) is processed
at most twice and thus in summary O(n?) deletions are applied. Clearly, the initialization
consumes at most O(n?) time. An O(n?logn) worst case time complexity bound follows.
The amortized complexity bound relies on the (a, b)-tree representation,c.f.{16] and Theorem

2. O

Note that we cannot associate all » — 1 cuts with corresponding tree data structures in
preprocessing step since maintainance of all ‘cut-trees’ may require cubic space and time.
However, in the case of midrange and k-single linkages we can design asymptotically optimal
algorithms. Note that the latter linkages seem to have practical importance in approximations
of the HIC problem [12]. In the rest of the paper, they will be discussed in greater detail.

THEOREM 7. Given mst(X), we can reweight its edges by the midrange or the k-th smallest
(greatest) edge of the corresponding cuts in @(n?) amortized time.

Proof. Let us choose a root of mst(X). Each vertex is associated with a data structure
(e.g.(a, b)-tree) storing all distances to other vertices. We traverse the tree from leaves to the
root. After visiting the parental node simultaneously from all descendants the contraction
of this node is performed. Thus we obtain a new leaf and we have to update the associated
data structure. Now, the ‘contracting’ distance to the remaining vertices is measured by
the maximum or the k-th smallest (greatest) distance from all old descendants (in fact the
previously recognized sons). The same argument as in the case of Theorem 2 finishes the
amortized complexity estimate. The recursive implementation of this idea is suggested.

Although the minimum spanning tree need not be computed again after each division of
clusters the correponding cut may vary drastically. This way in the case of the local divisive
linkage strategy we perform n—1 times new reweighting in the global divisive linkage fashion.
Thus we have.

THEOREM 8. The local divisive midrange and k-single linkages can be implemented in
O(n?)time. o

Finally, we shall outline how the cubic upper bound can be beaten in the case of the
local midrange linkage. The idea consist in refining the proof of Theorem 7. Inspecting that
proof we observe that computational bottleneck is the initialization which takes @(n?) time.
Suppose we are given the rooted minimum spanning tree mst(X) such that each vertex v
is associated with a heap storing distances to the other vertices, i.e. the root contains the
information about the farthest neighbor of v. Further, we associate each vertex v of mst(X)
with the set of leaves of the subtree rooted at v. Let all heap roots be decreasingly sorted in a
queue Q. This preprocessing takes O(n?) time. Now, we show that the reweighting of mst(X)
by maximum cut edge can be done in linear time. We are successively taking maximal items
(z, f(z)), where f(z) is farthest neighbor of «, from @ and reweight all edges of the path
zf(z) in mst(X) by the distance ¢(z, f(z)). During the traversal of this path we perform
contraction of all vertices of this path in mst(X). Repeating this actions by taking further

elements from (@ we reweight contracting trees and thereby mst(X) appropriately. Now, the
midrange linkage is performed recursively as follows. Having reweighted minimum spanning
tree we select maximal edge with respect to the sum of ‘old’ and ‘new’ weights, remove it and
consider vertices of remaining two parts as new clusters C; and Cs. Let ny and ny, ny < ng,
denote the corresponding cardinalities of C; and Cy. In time O(n}) we reweight the mst(X)
restricted to 1, c.f. the preprocessing step. Then we modify the structure associated with
mst(X) restricted to Cy as follows. In each heap associted with vertices from C; we delete
n, items related to distances to C;, and prepare sorted queue @ of heaps roots for further
recursive step. It takes O(nynzlogn,) time. Then we reweight mst(X) restricted to C in
O(ns) time. Let us estimate the overall time complexity. Sorting is called n — 1 times and
takes O(ny logn) time. Similarly reweighting consumes in total O(nz) time. It remains to
deal with the recursion over C; and C,. Since ny < ng and n; +n. < n, the most unfavorable
case is when n; = ny. Hence the time is upperbounded by O(E?__,_ll Zn?logn) = O(n?logn).
We complete the discussion by the following.

THEOREM 9. The midrange linkage consumes O(n? logn) time.
We conclude this section by a simple assertion.

THEOREM 10. The global and local divisive single linkages are connected admissible and
output feasible hierarchies.

IV. Midrange and k-single linkages in the plane

This section is devoted to the discussion of an efficient implementation of the midrange
and k-single linkages in the plane. Now, the set X is supposed to be embedded in the plane
and the mutual dissimilarities are given by the Euclidean distance. Recall that the size of
input instance is just n. The single linkage algorithm at first agglomerates the nearest pair
of objects. Since the NEAREST PAIR problem requires {3(nlogn) time [18] we have the
same lower bound for the computational problem of the implementation of the single linkage
algorithm. On the other hand the minimum spanning tree in the plane is computable in
O(nlogn) time [18] and therefore we have.

THEOREM 11. The agglomerative and divisive single linkage algorithms can run in optimal
O(nlogn) time.

However, on the other hand no o(n?) implementation of the complete linkage strategy is
known [5]. Recent results from the computational geometry [18] are ready to use for design
of O(nlogn) algorithms in the framework of a generalized single linkage paradigm. This is
indicated in the next section. The main result of this section is the following theorem.

THEOREM 12. The global divisive midrange and k-single linkages consume O(nlogn) time.

Proof. We shall use structures known in computational geometry as Vorono: diagram
V(X), farthest point Voronoi diagram FV(X) and order-k Voronoi diagram Vi(X) on X
[18]. Voronoi diagram V(X)) is a partition of the plane into n convex polygonal regions such
that each region contains exactly one point p from X. Moreover it also contains all plane
points that are closer to p than to other remaining points from X. On the other hand the
regions of FV(X) associated with points from X contain exactly those points from the plane
that have common farthest neighbor. Since V(X) = Vi(X) and FV(X) = V,_1(X) we can
define Voronoi regions V Ri(S) for § C X, |S| = k, more formally as follows:

VRi(S)={y; (Vz € X)(Vz € X — §) o(z,y) < o(z,y)}.

It is known that order-k Voronoi diagrams can be constructed in optimal O(nlogn) time

each fixed & [18].

We shall discuss 2-single linkage first. Let us given mst(X). We again traverse the tree
simultaneously from leaves and determine corresponding cuts along edges of mst(X). It is
a well-known fact that mst(X) contains exactly those edges whose endpoints lie in Voronoi
regions that share common edge. It should be noted that the smallest proximities are realized
by ‘neighboring’ points in the context of neighboring Voronoi regions. Consequently cuts can
be reduced to cuts containing only edges given by labels of edges of Voronoi regions. The
reduction is essential since each cut now contains at most O(n) edges. This observation
justifies the following algorithm. Let us process an edge (p, f) of mst(X), where f is the
father of p. The corresponding cut will be represented by a search tree of [20]. Having at
our disposal filial trees of edges (s, p), s being a son of p, we join these trees and delete all
items with duplicity. Note that each duplicity item corresponds to some common edge of
neighboring Voronoi regions of descendants of p and it has to be deleted. Then we insert
labels (z, f) of edges of Voronoi region containing f such that z lies in the subtree rooted in
f. Each operation consumes O{logn) time. This is repeated at most n — 1 times and the
O(nlogn) time complexity bound follows.

Let us remark that the k-single linkage, k& > 2, can be treated similarly using labels of
edges of Voronoi regions of Vj(X).

Now, let us turn our attention to the midrange linkage. By the aid of FV(X) we can
determine in O(n logn) time for each point p € X its farthest neighbor f(p) and the set
f~Y(p) of points from X for which p is their farthest neighbor. Note that f*(p) is nonempty
if and only if p is lying on convex hull CH(X) of X. Now, we observe that the maximum edge
(= distance) of any cut along edges of mst(X) is given by a pair (z, f(z)), f(z) € CH(X).
Therefore the algorithm of midrange linkage again traverses the mst(X) simultaneously from
leaves. and successively updates ‘parental’ edges (p, f), f is a father of p. For this sake the
maximum filial distance (z, f(z))} or (y,z), where z,y are vertices of current subtree T’ of
mst(X) rooted at p, f(z),z € mst(X)—T andy € f~!(z), is taken into account. Using
e.g. search trees as a data structure for maintaining necessary information we get at most
O(logn) time per update and we conclude the proof.

Since the local strategy in fact consists in n — 1 times applications of reweighting in global
sense we have the following corollary.

THEOREM 13. The local divisive midrange and k-single linkages consume O(n?logn) time.
0 ‘

V. Concluding remarks

There exist several other ways how to generalize single linkage clustering in order to obtain
other feasible and connected admissible hierarchies. At first we need not use necessarily the
minimum spanning tree of the instance graph K(X). For this sake any other spanning tree
framework can be used and, of course, the notion of adjusted connected admissibility. Also
other optimization criteria can be put on particular spanning trees. However, in many cases
we replace the polynomial solvability of the minimum spanning tree construction by N P-
hardness, cf. [17]. In the plane, the structure of so-called Delaunay triangulation [18] seems
to be very useful. It serves as a very succint and ‘faithful’ representation of K(X), cf.[4].
In the context of O(nlogn) complexity requirement we recommend to assign the following
measure of ‘neighborhood influence’ to edges of Delaunay triangulation of X :

(1) perimeter of Delaunay triangle containing the given edge
(i) number of points inside of Gabriel circle {15]
(iii) number of points inside of the relative neighborhood lune of X [19] with respect to a
given edge

(iv)

perimeter of the smallest triangle containing the given edge (the area of the smallest
ellipse with foci at endpoints of a given edge such that it contains no third point of

X) [13).

Eventually, as it is typical, we perform single linkage.

Finally, we should mention the paper [6] where efficient algorithms are designed for the
dynamic maintenance of minimum spanning trees of planar graphs. Using this approach we
can, for example, do experiments by changing weights of some edges of Delaunay triangulation
(or other structures) and/or deleting some outlying vertices in O(logn) time per operation.

]
[2]
[3]
4
5
6
7
8
9]

[10]

[11]

[1]

13]

[14]

[15]

[16]
[17]

[18]
[19]

[20]
[21]

References

AHO A V. HOPCROFT J.E.,,ULLMAN J.D.:Data structures and algorithms. Addison Wesley, 1982.
ANDERBERG M.R.:Cluster analysis for applications. Academic Press, 1873.

DAY W.H.E,EDELSBRUNNER H.:Efficient algorithms for agglomerative hierarchical clustering
methods. Journal of Classification 1{1984), 7-24,

DOBKIN D.D. ,FRIEDMAN S.J..SUPOWIT K.J.:Delaunay graphs are almost as good as complete
graphs. Proc. IEEE FOCS(1987), 20-26. '
EDELSBRUNNER H.,GUIBAS L.J.,SHARIR M.:The upper envelope of piecewise linear functions.
Discrete Comp.Geom. 4(1989), 285-309.

EPPSTEIN D., ITALIANO G.F., TAMASSIA R., TARJAN R.E., WESTBROOK J., YOUNG M.:
Maintenance of minimum spanning forest in a dynamic planar graph. Proc. ACM-SIAM Symp. on
Discrete Algorithms, 1990, 1-11.

FISHER. L.,van NESS J.W.:Admissible clustering procedures. Biometrika 58(1971), 91-104.
GAREY M.R., JOHNSON D.S.:Computers and intractability : a guide to theory of N P-completeness.
Freeman,1979.

HARTIGAN J.:Clustering algorithms. Wiley, 1975.

JAMBU M.:Classification automatique pour ’analyse des données. Dunod, 1978,

KRIVANEK M.: On the computational complexity of clustering. Proc. Data analysis and applica-
tions IV, Versailles,North Holland, 1986, 89-96.

KRIVANEK M.:The complexity of ultrametric partitions on graphs. Information proc.letters 27(1988),
265-270.

KRIVANEK M.:The use of graphs of elliptic influence in visual hierarchical clustering. Proc. MFC5’90,
Springer LNCS 452, 1990, 392-398.

LANCE G.N.,WILLIAMS W.T.:A general theory of classificatory sorting strategies. Comput.J.
9(1967), 373-380.

MATULA D.W.,SOKAL R.R.:Properties of Gabriel graphs relevant to geographic variation research
and the clustering of points in the plane. Geograph.analysis 3(1980), 205-222.

MEHLHORN K.:Data structures and algorithms. Springer, 1984,

PAPADIMITRIOU C.H., YANNAKAKIS M.:The complexity of restricted spanning tree problems.
JACM 29(1982), 285-309.

PREPARATA F.SHAMOS M.L:Computational geometry - an introduction. Springer, 1985,
SUPOWIT K.J.:The relative neighborhood graph, with an application to minimum spanning trees.
JACM 30(1983), 428-448.

TARJAN R.E.:Data structures and network algorithms. SIAM, Philadelphia, 1983.

ZAHN C.T..Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans.on
Computers, C-20(1971), 68-86.

