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Nowhere-zero 30~flow on bidirected graphs

Ondfej Zyka
KAM MFF
Charlee University

This article concerns Bouchet's conjecture
about flows on bidirected graphs. We prove that
every graph without signed graphic isthmus can
be provided with a nowhere-zero integral flow
with sbsolute values less then 30. This appro-
aches Bouchet’s 6-=flow conjecture and improves
his 216=flow theorem.

I, Introduction

Graphs will be finit and undirected, loops and multiple
edges sre possible. For convenience we will consider that
each edge 'is constituted of two distinct half-edges each having
a single endpoint, so the endpoints of the edge consist of
the endpoints of them.The set of all hsli*edges. edges and
vertices of a graph G will be denoted H(G), E(G) end V{G),
respectiveiy. For v from V(G), H(v) /will be the set of all
half—edges incident to v. For a half-edge h we will denote

,, the edge containing it. :

A bidirected greph is a graph together with a sigmature
of its edges, ¢ uE(G)-—?{*-l,--iﬂ o A flow on a bidirected graph
G=(V,E,s) is s mapping ¢:E—2Z such that:

i) 4J(h) = Q for sll veV,
heH(v

ii) ¢n) = ~ole, ). Pn?) for all distinet h,h?
: such that e, = e, 4 ¢
h h
We define qb(eh) = N’(hl. A nowhere-zero flow or a k-flow
is a flow satisfying ¢Xe) # O or ¢(e)¢k for all eeE(G)},
respectively. The support of a flow é on G is the set

S(P) = {ecE(@)| Ple) # 0o

We can define following operétions on bidirected grephs:
Switching G at a vertex v (Gxv) means changing signs of edges
incident to v. |



-2 -

Contraction of a positive edge e (G.e) is deleting e and
identifying its endpoints. '

Division of an edge e (Gwe) with endpoints u,v is deleting e
and adding a new wertex w and two new edges e' snd e’?,
e? incident to v and w and e’? incident to w and u, with
signs o(e’) = o(e), ofe??) = +l.

1.1 Note: It is easy to see that for a flow ¢ on G:

i} The mapping 4)' defined by d)'(h) = —¢(h) for hed(v) =nd
¢(h) = ¢(h) in the other cases is a flcw on Gav.

ii) Restriction of ¢ to E(G)={e} is a flow on G.e .

iii) There exists a valuation of half-edges of e’,e’’ such
that ¢e’) = ¢le’?) = ¢ple) and this valustion together with
restriction of 4) to E(G)={e) is a flow on G+e .

Moreover, equality &fe) = ¢(e) for all edges amssistant at
no operation hold end so if ¢ is a nowhere-zerc k-flow
Lhan 4; from case i), ii) or iii) is & ncwhere-zero

k=-flow, tco.

A cycle is Z-regulsar connectedjsubgraph, a path is " -
connected subgraph with exactly two vertices of degree one
and the others of degree two. A cyéle and a path will be
often identified with their edge-sets. The sign of a cycle
or a peth is the product of its edge-signs. A cycle is
balenced or umbalanced if its sign is positive or negative,
respectively. A bidirected graph is balanced if all its
cycles are balanced, otherwise it is unbslanced. G is almost
belanced if it has not two edge-disjoint unbalenced cycles,
G is 3-unbalanced if for every connected and-balanced subgraph
G?, the set of half-edges not in H(G’) and incident to
a vertex of V{(G?), has at least 3 elements., Several exsamples
of unbalenced almeost balanced graphs ere given on fig.l.

An elementary support is either balanced cycle or two
vertex~disjoint unbalanced cycles together with a simple
connecting path P meeting the cycles at its endpoints.

The path P can be empty if the cycles have only one common

vertex.



Bouchet [1] proved follouing useful lemmes:

1.2 Lemma: \Proposition 3.2, 3.3] Every flow ¢ on G is
a sum of principal flows. These are flows which supports
are elementary supports with valuation 1 on all cycles and

2 on the connecting path.

A signed graphic isthmus is such an edge which is
in no elementary supporte

1.3 Lemma: [Proposition 3.]3 There exists a nowhere-zero

flow on G iff G has no signed graphic isthmus.
1.4 Lemma: [Proposition 4.2 by a little discusior]
Let k>2, if G is an unbalenced or almost balanced umbalanced
graph without signed graphic isthmus with minimum number
of edges which cen not be provided‘ with & nowhere-zeroc
k-flow, then G is 3-umbalanced.
1.5 icmme: |Proposition-3.51  Let ¢ is a flow on G, k> 1.
Then exists & flow ¢ on .G satisfyiﬁg:

i)  ¢() = ¢h) mod k ! for all heH(G),

i1) )l < 2.k i for all heH(G).

Moreover, if G is slmost balenced,!then |¢$(h)|<k for all
h&H(G).

II. Closure operator

The idea of using a closure ope_rator to prove the
existence of a flow is due to Seymour [3l.
For en integer k»l, we define kclcsure of Xs E(G), <X,
as follows: (X)k is the smallest set Y= E satisfying:
i) XsX
ii) for ever»%lementary support S either S=Y orlS-Yh>k.
It is easy to see that if both Y; and ¥, satisfy i) and
ii), then so does ¥;nY,, and so the definition of <X, is
correct. Also for all X,YsE(G) , the relations X=X},
((X)k)k = (X)k and  XsY=d (X}k‘-"-(Y)k hold.
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2.1 Lemma: Let G=(V,E,s) be a bidirected graph and k»2 be
en odd integer. Let X=E .and ‘X)k-l = E., Then there is
a 2.k-flow ¢ on G with S($)2E-X. If G is almost balanced then

there exists such a k-flow.

Proof: We will prove, by induction on |E~Xl, the existence

of a flow ¥ on G such that
%)  Y(e)¥ O mod k for all eecE~X,
then lemma 2.1 will follow, using lemms 1l.5.
If E-X =¢ then the zero flow satisfies #). If E # X

then there is an elementary support S with |S-Xl4k-1l.
Because (XwS) _, = (X 4 = E, by'induciion, there is a flow
¢ satisfying Ye)# O mod k for all ea E-(X S). Teke
a principal flow f with support S. For an edge e« 5-X
consisting of half-edges h,h’ we prove that there exists
at most one integer p, O% p* k-1, such that ¥

“~%)  ¥(n) ¢ p.fR)=¢ mod k. |

1f p end p’ satisfy »v), then (pjb’).f(h) = k.{(m~m?) for
suitable integers m and m®. Thus [pép’[.lf(h)l/k is
an integer. Because |f(h)i€{1,2} and k is odd, lp-p’l/ k
is an integer, too. It follcws thaﬁ if O¢psp?s k=1
then p = p?. -

Because |S=Xl<k, there exists Pys 0% p,* k-1, satisfying

%%) for no edges of S-X. Then the flow Y =y'+ p_.f
satisfies *),

fig.l



I1I. Special subgraphs of bidirected graphs

3.1 Lemma: Let G=(V,E,6) be an unbalanced almost balanced
bidirected graph without signed graphic isthmus. Then there
are three unbzlanced cycles 01,02,03 such that clncznc3 =¢
and every two of them have only a path in common. Moreover,
Clu02\JC3
Proof: Every elementary support in G is a balanced cycle.
If e is in an unbelenced cycle C and C? is an elementary
support containing e, then the set CuC? contains two unbalanced
¢ycles with only a path in common. One of them does not
contzin e, so for every e there is a balanced cycle C’ and
an unbalanced cycle C satisfying eeC’ and eé4C.
Let 01,02 be two unhalanced cycles with onlv a path P

is a support of a 3-flows.

in common end P is.as -small as possible. Let = be the tirst~-
edge of P and Y = CyvC, -{x}. Y consist of a balanced .-
‘cycle and bf a path (maybe empty). Let C be an unbalanced
cycle which does not contain e. ie can consider the set
C-Y is'éomposed from paths Pi with;bnly endpoints incident
to Y. For every i we consider cycles ccintained in YuP..
Suppose for a contradiction that all this cycles ere bsalanced.
We can put together C from these cycles by symmetric difference
(CaC? = (C=C?)u(C?=C)). But symmetric difference of balanced
cycles contains even number of edge-disjoint unbalenced cycles.
This is a contradiction with the almost balencity of G.

Let PiuY contain en unbalanced c¢ycle. Because G is
almost balanced the endpoints of P. can not be incident to
C; ~ C; both at once, {1, 3} = {1,2). If both endpoints of Py
are incident to P-{x}, we obtain a contradiction with the
minimelity of P. Anslogously we obtein a contradiction if
one of enpoints is incident to P-{x} and the second is incident
to (CuC,)-P. Thus one endpoints is incident only to C;-C, and
the second only to C,~C; end so P; together with suitable parts
of C, and C, is required cycle Cs.



Congider a graph G? consist only of the cycles Cy,C,
and 030 We can obtsin from G?, by switching and contraction
of positive edges, a graph isomorfic to G’’ on fig. 2a.
On fig. 2b is a nowhere-zero 3-flow on this graph. As G?
cen be obtain from G?? by deleting and switching, by note 1.1
we can expend this flow to a 3-flow with support E(G’).

&

' A 3=reguler bidirected graph is called celluler tree
- if -we can obtein it from & nonemptg}treeﬂby ~'slrowing ways
_if v hes degree k, k # 3, we substitute it fur.an unbalanged
cycle of length k such thet the result has all vertices of
degree 3. The same operation we do;ﬁith.any vertices of
degree 3. On fig.3 there is this operation for k = 1,2,3,4.

Gy G




3,2 Lemms: There is & nowhere-~zero >-flow on every
cellular tree G=(V,E,*),

Proof: We will construst a flow ¢ on G such that its
values on unbalanced even cycles will be 1 or 3, on unbalanced
0dd cycles 1 or 2 and on the other edges 2 or 4. e start from
a loop e’ consisting of h’,h’? incident to v' end we will
proceed on the tree structure of G.

1. Put ¢(h’) = §(n??) = +1, ¢(h) = -2 for h the third
half-edge of H(v?).

2. If we constructed ¢(h) end still did not construct $(h’)
and e, = e,, then put ¢(h?) = -G“(eh).é(h).

3, If v is incident to distinct half-edges h,h’,h?’ suchk that
no of them is in any unbalsnced cycle and only ¢(h) was
constructed, then for ae{+l,-1} | S
either (n) = Z.a and then put b(n?) = 2.a, @{n’?) = -4.a8
or é(h) = 4.2 and then put ¢{h?) = -Z.a, p(h??) = ~2.1,
4. Let v, be incident to distinct helf-edges hy, hi;ni and

]
"

ehI, ehI be in an unbalanced cycle;vl,vg,...,vk,vk+ln vl
and only ¢(hl) was constructed. Let the edge e; = {vi,v1+1}

. . + - . _ + =
consists if half-edges h; end h; and d(vi) = {hi, hi' hi} ’

fig-4& .

4. Let k is odd end for eef+1,-1,+2,-2] ¢(h;) = -2.a.
Put ¢(h]) = $(n]) = a and for i = 2,3,...,k put

+ — - —
$(h;) = -2, 7. -

From ®) follows ¢(h3,;) = a.]r'-ﬁTej) = a.(-”*-f(ej)).(-v(ei))=
31 jui

)

. + ) . ~
= d?(hi)o-ﬁ":_(iei) for i = 2,3,+.4,k-1 and

¥ = - = - k-l & =
elﬁ'(hk) a.;l-‘[; G'(ej) a.(-1) .(}I (ej)).ﬁ'(ek)
= 8.-6 (e ) = -0O (ek).¢(h'i). Thus for edges and vertices of

the unbalanced cycle the flow conditisinon sre satisfied.



4b. Let k be even and aﬂ.{*‘l,-l‘s .
If ¢(h1) 2.a put (fig.4b)

$(n]) = s, ¢ (hy)

$(hy) = 2.8 (e)), $n))
If ¢(h1) =4.a put (fig.4c)

$(n7) = a, $(h]) = 3.8, $(n3)

$(hy) = a. 8 (e;), $lhy) = 2.8. 6 (ey).
For i = 3,4,e.4,k put

=3 a, ¢(h§)

"403.6- (el).

FeB. ¥ (el),

]

H
il

—Soa.e'(el),

+, _ - _ T ’
) = $mp) = -a. ][ - e
$(h)) = -2.4(n]). ‘* | o
Because ¢(h7,,) = -a.—n'--ﬁ"(e-) = 2.9 (e;). Tr eles) =

. e ! ELE
= - (e;). 'f(h ) for 1= 3, 4,¢-.5%-1 and because

¢(h )= —a. || =6 (e.) = -a.€ \ek,n-(-1 &1, TI_G'(E-,) —'-a.er‘ (e, ) =
J 324

= -6 (el #(h ) the flow conditisidns hold for all euges
and vertices of the unbealanced cycle.

5. If v is incident to distinct half-edges h,h’,h’? and

€y = €1 is a loop and only 4)(1{) was constructed then put
$(n*) = $n??) = -d(n)/2.

G is connected and so this construction assign a valuation
for every half-edge.

A bidirected graph is general cellulsr tree if it can
be obtain from a cellular tree by divisions, contractions
of positive edges, switchings and by identifying some of
its vertices {(but not edges).

5.3 Note: Every genersl cellular tree is a support of

a 5-flow.
This follows from note 1.1 and from the flow conditision

for vertices,



3.4 Lemma: Let G=(V,E,®’) be a connected graph with no
vertices of degree one. Then there is a 2-zdge=-connected
subgraph H such that at most one edge connects H to the
rest of H in G. ”

Proof: Consider the bipertite graph T, V(T) = I+ B,
where I is the set of isthmuses of G and B is the set of
components of G-I. Every member of 3 is a 2-sdge-connected
subgraph of G. For icI and beB {b,ieE(T) iff i is incident
to V(b). Every cycle in T induces & cycle in G which contain
- an isthmus of G. Thus T has no cycles. Every member of I has
valency at/least two in T because C has not vertices of degree
one. Thus & subgraph HeB with valency at most onedin T is
connected =t most one edge tc the rest of d in G,

5.5 Lemma: Let H-be-an unbzlunced tonnected subgraph ot
a bidirected graph G. Let P be & psth in E(G)-E(H) with
end vertices in V(H) and the other 'v‘{ertices not in V(H).
Then there -is an plementary sunport in E{H)vP conteining P.

Sketch of proof. Every peir of vertices of an unbalanced
graph are Jjoined by edge progression with earbitrary sign
(sign of edge progression T = €ysve=yey is & (T) =.:|I (e5) )
Let T be edge progression Jjoining end vertices of P such
that & (T) = 6 (P), the length of T is ss small as possible
and T has minimum number of various edges. Then edges of T
together with P are required elementary support.

> /e'u,\ | \ /e'\et\
« 30,0t

1 Va 1
hy 26678 y)
2a “HaGies) “Yo,

fig. 4bc
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IV. Mein result

4.1 Lemma: Let G=(V,E,») be a connected unbalanced
3-unbalanced graph without signed graphic isthmus, without
multiple edges with the same signs and without positive loops.
Then there are edge-disjoint subgraphs SO,S]_,...,Sk such
that ¥ = E(So)vE(Sl)u“.uE(Sk) is support of a 5-flow

(if G is almost balanced then of a 3-flow) and <Y¥, = E.

Proof: If G is elmost balanced we put S, the unbalenced
graph from lemma 3.l. Is G is not almost balanced then it
contains o general cellular tree. We put S0 to be the
general cellular tree which we can obtain from a cellular tree
with maximumn number of unbalanced cycle. In both these cases
EQE(SO) contains no unbslanced cycle snd no elementary
support S, 1552, Thus <35y, 1is connected. N

We can choose maximum nunber of edge-disjoint supports
Of 2-F1oWs 51,5,504495, “With ¥ = (ESGWE(S, b vE(S)),

‘connected. Suppose for a contradiction ¥ # E. Y is unbalanceda °

and by lemma 3.5 every path with only end vertices incident

to Y hes length at leasst 3. Thus Y;is edge-set of an induced

subgraph and so V(Y) # V. Let H be ia component of the graph

induced by V-V(Y), then H is balanced and has no vertices

of degree one. Let X be the 2-edge-connected graph from lemma 3.4.

G is 3-unbalanced and so there are at least tree edges '

joining X with the rest of G. Thus there are two edges e,e’

joining K and V(Y). Let v # v* are vertices of e and e’ in V(K),
K is 2-edge-connected and there are two edge-disjoint

path P,P’ joining v and v?, These paths have the same sign

and so PuP? is support of & 2-flow. Pule,e?l is a part of

elementary support in YePu{e,e?t and so CIhPuP’)E is connected.

It is a contradiction with the meximality of k.
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Main theorem:

For every unbalanced bidirected graph without signed graphic
jsthmus there exists a nowhere-zero 30-flow.

For every unbalanced almost balanced graph without signed
graphic isthmus there exists & nowhere-zero 9-flow.

Let us remark that Seymour {3] proved: for every
balanced graph without signed graphic isthmus there exists
a nowhere-zero 6-flowe

Proof: Let k» 2, suppose that G is an unbalanced graph
without signed graphic isthmus with minimum number of E(G)
which can not be provided with a nowhere-zero k-flow.

It is easy to see that G has no balanced loop and no-iultiple
edges with the same signs. By lemma 1.4 G is 3~unbalanced.

| By lemma 4.1 there exists H=E(G) such that {H2, = £(G)
and H is support of & 5-flow ¢l. By lerma 2.1 there is -
a 6-flow ¢, with'S(¢,)2 E(G)-H. Tha flow $= 6.9, + 9, has
values on ecges in absolute value swgller then

6.¢a(e) + ¢é(e)= 25. So ¢ is a nowﬁere-zero 30=-flow on G.

For unbalaenced slmost balanced graph we get by the
same lemmas Z-flow ¢l and 3=flow ¢2. Thus ¢ = 3.¢1 + ¢2
is a nowhere-zero $=flow on G.
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