Summary of the recitation on 18. 12. 2007

We finished the proof of the infinite Ramsey theorem. We then looked at the following exercises:

- Let $K_{\mathbb{N}}$ be the complete graph on the vertex set \mathbb{N}. Assume that the edges of $K_{\mathbb{N}}$ are colored with two colors (red and green), such that for every n there is a complete subgraph on n vertices whose edges are all red. Can we conclude that there is an infinite complete subgraph with all edges red?
- Let $K_{X, Y}$ be a complete bipartite subgraph with countable infinite parts X and Y. Is it true that for every two-coloring of the edges of $K_{X, Y}$ and for every n, the graph $K_{X, Y}$ has a monochromatic subgraph isomorphic to $K_{n, n}$? What about a monochromatic subgraph with one part of size n and the other part infinite? What about a monochromatic subgraph with both parts infinite? (This exercise was not fully solved at this week's recitation.)

