Summary of the recitation on 11. 12. 2007

- We saw an example illustrating the proof of a lemma from the lecture: $\forall s \in$ $\mathbb{N} \forall d_{0}>0 \forall \Delta \in \mathbb{N} \exists \varepsilon_{0}>0 \exists n_{0}$ such that if a graph G has an ε_{0}-regular partition into blocks of size at least n_{0}, and the partition's regularity graph of threshold density d_{0} contains a subgraph H with maximum degree Δ, then G contains $H^{(s)}$.
- We solved the exercise stated at the end of last week's recitation: Let $d \in[0,1]$ be a constant, let $\varepsilon>0$ be sufficiently small with respect to d. Let (X, Y) be two parts of an ε-regular bipartite graph with density d. Show that the number of pairs $\left(x, x^{\prime}\right), x, x^{\prime} \in X$, such that x and x^{\prime} have less than $(d-\varepsilon)^{2}|Y|$ common neighbours in Y is at most $2 \varepsilon|X|^{2}$.

