Summary of the recitation on 11. 12. 2007

- We saw an example illustrating the proof of a lemma from the lecture: $\forall s \in \mathbb{N} \ \forall d_0 > 0 \ \forall \Delta \in \mathbb{N} \ \exists \varepsilon_0 > 0 \ \exists n_0 \ \text{such that if a graph } G \ \text{has an } \varepsilon_0\text{-regular partition into blocks of size at least } n_0, \ \text{and the partition's regularity graph of threshold density } d_0 \ \text{contains a subgraph } H \ \text{with maximum degree } \Delta, \ \text{then } G \ \text{contains } H^{(s)}.$
- We solved the exercise stated at the end of last week's recitation: Let $d \in [0, 1]$ be a constant, let $\varepsilon > 0$ be sufficiently small with respect to d. Let (X, Y) be two parts of an ε -regular bipartite graph with density d. Show that the number of pairs $(x, x'), x, x' \in X$, such that x and x' have less than $(d - \varepsilon)^2 |Y|$ common neighbours in Y is at most $2\varepsilon |X|^2$.