Summary of the recitation on 4. 12. 2007

- Consider the following version of the Szemerédi regularity lemma: $\forall \varepsilon > 0$ $\forall m \in \mathbb{N} \exists M \in \mathbb{N} \exists n_0 \in \mathbb{N}$ such that every graph G with at least n_0 vertices has an ε -regular partition with at least m but not more than M parts. Show that this version is equivalent to the version given at the lecture.
- Consider the following alternative definition of ε -regular partition. For a graph G = (V, E), we say that V_1, \ldots, V_k form an ε -regular^{*} partition of G if the following conditions are satisfied:
 - The sets V_i form a disjoint partition of the vertex set V.
 - For each $i, j \le k$, $||V_i| |V_j|| \le 1$.
 - For all pairs $i, j, i \neq j$, with at most εk^2 exceptions, the bipartite subgraph of G formed by all the edges between V_i and V_j is ε -regular.

From the regularity lemma given at the lecture, deduce the following version of the regularity lemma: $\forall \varepsilon > 0 \ \forall m \in \mathbb{N} \ \exists M \in \mathbb{N} \ \exists n_0 \in \mathbb{N}$ such that every graph G with at least n_0 vertices has an ε -regular^{*} partition with at least m but not more than M parts.

You may first prove the following lemma: $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \exists \delta > 0$ such that if $(X \cup Y, E)$ is an ε -regular graph with $|X| = |Y| = n \ge n_0$, then any bipartite graph containing $(X \cup Y, E)$ as induced subgraph and having at most δn additional vertices is 2ε -regular.

• (Stated but not solved) Let $d \in [0, 1]$ be a constant, let $\varepsilon > 0$ be sufficiently small with respect to d. Let (X, Y) be two parts of an ε -regular bipartite graph with density d. Show that the number of pairs (x, x'), $x, x' \in X$, such that x and x' have less than $(d - \varepsilon)^2 |Y|$ common neighbours in Y is at most $2\varepsilon |X|^2$.