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Abstract

Achim Jung and Drew Moshier developed a Stone-type duality theory for bitopo-
logical spaces, amongst others, as a practical tool for solving a particular problem
in the theory of stably compact spaces. By doing so they discovered that the dual-
ity of bitopological spaces and their algebraic counterparts, called d-frames, covers
several of the known dualities.

In this thesis we aim to take Jung’s and Moshier’s work as a starting point and
fill in some of the missing aspects of the theory. In particular, we investigate ba-
sic categorical properties of d-frames, we give a Vietoris construction for d-frames
which generalises the corresponding known Vietoris constructions for other cate-
gories, and we investigate the connection between bispaces and a paraconsistent
logic and then develop a suitable (geometric) logic for d-frames.





1 Introduction

Point-free topology studies topological spaces in terms of an algebraic description
of their lattice of open sets. The main objects of study are frames, that is, complete
lattices L = (L,

∨
,∧, 0, 1) which satisfy

(
∨

A) ∧ b =
∨
{a ∧ b | a ∈ A}

for all A ⊆ L and b ∈ L. Any topological space (X, τ) gives rise to a frame Ω(X, τ) =

(τ,
⋃

,∩, ∅, X). Having such generalisation of the notion of space has turned out to
be fruitful for a number of reasons. Apart from the fact that working in point-free
setting often allows for cleaner and more descriptive proofs, also, many point-free
proofs of are constructive (i.e. the Axiom of Choice or the Law of Excluded Middle
are not required) as opposed to their point-set analogues.

An important feature of the point-free topology is the ability to relate frames to
topological spaces and vice versa, that is, there is an adjunction between the cate-
gory of topological spaces Top and the category of frames Frm, respectively:

Top Frm
Ω

Σ

⊥

However, the main concern of the thesis is a study of bitopological spaces, also
called bispaces, and their algebraic duals, called d-frames. Moving from spaces and
frames to bispaces and d-frames is not just a mere generalisation. To see why, we
first show that the latter appear naturally in a number of contexts and then we high-
light some of the contributions of the thesis.

2 Motivations for studying bispaces and d-frames

2.1 Applications to program semantics

One motivation for studying bispaces comes from the fact that many known mathe-
matical structures are naturally bitopological; although this often might not be men-
tioned explicitly. Basic examples include partially ordered spaces such as real line,
unit interval or Priestley spaces. When working with those spaces, it is often prac-
tical to split the underlying topology into two simpler topologies: the topology of
upper and lower opens. In general, we have:

2.1 Definition. (X, τ+, τ−) is a bitopological space if (X, τ+) and (X, τ−) are topo-
logical spaces.

In the examples above we took the two topologies as two coarser topologies of an
ambient topology. This, although very common, is not the only way bispaces arise.
Another class of examples comes from the study of program semantics. Given a
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program fragment P, its denotational semantics JPK can be interpreted in a seman-
tics space (X, τ), which is determined by the program’s type. The semantics spaces
one usually considers are stably compact spaces.

An important construction in the theory of stably compact spaces is taking the
de Groot dual (X, τd) of a space, where τd is the dual topology of τ. We see that ev-
ery stably compact space (X, τ) gives rise to a bitopological space (X, τ, τd). More-
over, stably compact spaces can be identified with a class a bispaces which arise this
way. Those bispaces can be topologically characterised precisely as those which are
d-compact, d-regular (and T0)1.

2.2 Definition. A bispace (X, τ+, τ−) is d-regular if

1. Whenever x /∈ F+ for some τ+-closed F+, then there
is a pair of disjoint open sets U+ ∈ τ+ and U− ∈ τ+
such that x ∈ U+ and F+ ⊆ U−.

2. and symmetrically for y /∈ F− where F− is a
τ−-closed set.

x

U+
U−

F+

2.3 Definition. A bispace (X, τ+, τ−) is d-compact if whenever⋃
i∈I

Ui
+ ∪

⋃
j∈J

U j
− = X,

for some {Ui
+}i∈I ⊆ τ+ and {U j

−}j∈J ⊆ τ−, then there exist finite F⊆fin I and

G⊆fin J such that
⋃

i∈F Ui
+ ∪

⋃
j∈G U j

− = X.

Identifying stably compact spaces with d-compact d-regular bispaces has tech-
nical advantages. The name “stably compact”, although seemingly shorter, hides
a much longer list of axioms when compared to only two bitopological ones. As
a consequence, rewriting original results about stably compact spaces bitopologi-
cally leads to much shorter proofs (which is demonstrated in Chapter 5).

Furthermore, just like in the study of topological spaces one can consider many
different topological notions or separation axioms apart from compactness and reg-
ularity. These are, however, not so important for the purpose of this short note.

2.2 Embedding of dualities

Just as frames are algebraic duals of topological spaces, bispaces also have their
algebraic duals. It is no surprise that, because bispaces consist of two topologies, we
will have two frames L+ and L− as the core of the structure of the algebraic duals of
bispaces, called d-frames [JM06]. Before we give a full definition of d-frames, let us

1A bispace (X, τ+, τ−) is T0 if, whenever x 6= y, then there is a U ∈ τ+ ∪ τ− such that x ∈ U 63 y
or x /∈ U 3 y. We will often assume this axiom without mentioning.
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take a look at some consequences of this. It is a general fact that the product of two
lattices (or frames, in our case) L+×L− introduces two orders which are somehow
orthogonal to each other. Namely, for any α = (α+, α−), β = (β+, β−) ∈ L+×L−
define

• Information order: α v β if α+ ≤ β+ and α− ≤ β−,
and

• Logical order: α 6· β if α+ ≤ β+ and α− ≥ β−.
L− L+

(1, 1)

(0, 0)

(0, 1) (1, 0)

logical order 6·

in
fo

rm
at

io
n

or
de

r
v

In fact, those two orders introduce two bounded distributive lattices:

(L+×L−,∧· ,∨· , tt, ff ) and (L+×L−,u,t,>,⊥).

To specify the interplay between L+ and L− we consider two relations on the
product L+×L−. The consistency relation con ⊆ L+×L− expresses the fact that two
open sets are disjoint and the totality relation tot ⊆ L+×L− expresses the fact that two
open sets cover the whole space. Having this in mind we present the main definition:

2.4 Definition. A d-frame is a quadruple L = (L+, L−, con, tot) where L+, L−
are frames, con ⊆ L+×L− and tot ⊆ L+×L− are such that

• (in the information order:)

(tot-↑) α v β and α ∈ tot =⇒ β ∈ tot,
(con-↓) α v β and β ∈ con =⇒ α ∈ con,

(con-
⊔↑) v-directed A⊆↑ con =⇒ ⊔↑ A ∈ con

• (in the logical order:)

(tot-∨· ,∧· ) α, β ∈ tot =⇒ α ∨· β, α ∧· β ∈ tot,
tt, ff ∈ tot,

(con-∨· ,∧· ) α, β ∈ con =⇒ α ∨· β, α ∧· β ∈ con,
tt, ff ∈ con,

• (interplay between con and tot:)

(con-tot) α ∈ con and β ∈ tot such that
(α+ = β+ or α− = β−) =⇒ α v β

ttff

⊥

>

con

tot

L− L+

Every bitopological space (X, τ+, τ−) gives rise to a d-frame. Indeed, define Ωd(X)

to be the d-frame (τ+, τ−, conX, totX) where

(U+, U−) ∈ conX if and only if U+ ∩U− = ∅, and

(U+, U−) ∈ totX if and only if U+ ∪U− = X.

3



As was the case for spaces and frames, also bispaces and d-frames are inter-
linked by a dual adjunction. This justifies our intuition that d-frames are, in fact, the
algebraic duals of bispaces2.

biTop d-Frm

Ωd

Σd

⊥

Just like in frames, the dual adjunction between bispaces and d-frames restricts
to the dual equivalence between the categories of d-compact d-regular bispaces and
d-compact d-regular d-frames. Moreover, many of the previously known duali-
ties embed into this duality. The following commutative diagram of categories ex-
presses the fact that Stone duality, Priestley duality and the duality of compact reg-
ular spaces and frames, embed into the duality of d-compact d-regular bispaces and
d-frames.

biKReg

KRegSp

Pries

Stone

d-KReg

KRegFrm

DLat

Bool

∼=

∼=

∼=

∼=

2.3 Logic of bispaces

The duality between Stone spaces and Boolean algebras has a logical reading. Since
propositional logic is sound and complete with respect to Boolean algebras, a conse-
quence of the duality is that Stone spaces are also adequate models of propositional
logic. In other words, Stone duality provides a bridge between propositional logic
and its topological semantics:

Stone spaces ←→ Boolean algebras ←→ propositional logic

A similar story can be retold also for the other two older dualities that appeared
in the cube above. For example, Priestley duality provides a bridge for positive
propositional logic and Priestley spaces.

2Also Banaschewski came up with structures, which he called biframes, to play the role of algebraic
duals of bispaces [BBH83]. An advantage of d-frames over biframes is that one does not have to
construct an ambient frame L0 which contains both L+ and L− and is generated by them. Also,
d-frames allow for an interesting logical reading, as we will see in the next section.

4



With this in mind, one can ask whether there is also a suitable logic for bispaces
and d-frames. In particular, if there is a logic for which bispaces provide an adequate
topological semantics via the dual adjunction between bispaces and d-frames.

To start with, we recall the work of Abramsky [Abr87], Scott [Sco70; Sco76] and
their followers [Vic89; Smy83; Smy92; Esc04]. As was the case in the cases above, a
property or predicate is interpreted as the set of models or states which satisfy it. How-
ever, in theoretical computer science we are rather interested in observable properties,
which are those properties for which we can determine their validity in a state by in-
specting only a finite amount of information about the state. In the terminology from
computability theory, observable properties are exactly the semidecidable or recur-
sively enumerable sets. Moreover, observable properties are closed under unions
and finite intersections. In other words, the set of states (or models) equipped with
the set of all observable properties forms a topological space.

When we interpret the structure of a bitopological space (X, τ+, τ−) in these
terms, we obtain that each of the topologies corresponds to a logical theory of ob-
servable properties. As suggested by the notation, τ+ represents the frame of all
positive observations and τ− all negative observations. Then, performing an observation
ϕ results in a pair of open sets JϕK = (U+, U−) ∈ τ+×τ− where U+ determines the
states where the examined property observably holds and U− determines the states
where the predicate observably fails.

For a state or model x ∈ X and an observation JϕK = (U+, U−) ∈ τ+×τ−, we
distinguish four different options:

1. x ∈ U+ \U− =⇒ ϕ observably holds and does not fail in x, i.e. is true

2. x ∈ U− \U+ =⇒ ϕ observably fails and does not hold in x, i.e. is false

3. x ∈ U+ ∩U− =⇒ ϕ is observably true and false in x, i.e. is inconsistent

4. x /∈ U+ ∪U− =⇒ ϕ is observably neither true nor false in x, i.e. no-information

tt ff>

⊥
U+ U−

Figure 1: Four possible interpretation of the predicate (U+, U−)

This interpretation leads us to consider Belnap’s paraconsistent logic for com-
puter reasoning [Bel76; Bel77]. Belnap argued that it is in the very nature of com-
puters to make decisions even in the presence of contradictions and, for that reason,
a classical two-valued logic does not suffice.
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3 Main contributions

In the previous section we have seen that the theory of bispaces and d-frames bor-
ders a wide range of other disciplines, ranging from program semantics and logic
to various duality theories. Consequently, developing new tools and techniques for
d-frames gives us tools for all those different fields at the same time.

In this section we introduce some of the theoretical results developed in the the-
sis and later we take a look at some applications to the disciplines mentioned in the
previous section.

3.1 Categorical and algebraic constructions

Free construction is one of the key constructions in universal algebra. In general, it
works as follows. Given a set of generators G and equations E, we (freely) construct
an object in the category A〈G | E〉 such that the embedding G ↪→ A〈G | E〉 preserves
all equations in E. Moreover, we require A〈G | E〉 to be universal such, i.e. whenever
a map f : G → A into another object in the category preserves all the equations in E,
then there is a unique morphism f̃ : A〈G | E〉 → A such that the following diagram
commutes:

G A〈G | E〉

A

f
f̃

Even though frames are infinitary structures, free constructions of frames from
the set of generators and equations is possible (written as Fr〈G | E〉). The challenge
of defining a free construction for d-frames comes from the fact that d-frames are
of a mixed nature. Namely, they consist of two algebraic components (i.e. the two
frames) and two relational components (i.e. the two relations).

A d-frame presentation E = (E+, E−, Econ, Etot) over two sets of generators G+

and G− consists of equations for

1. the positive frame component E+ ⊆ Fr〈G+〉×Fr〈G+〉,

2. the negative frame component E− ⊆ Fr〈G−〉×Fr〈G−〉,

3. the consistency relation Econ ⊆ Fr〈G+〉×Fr〈G−〉, and

4. the totality relation Etot ⊆ Fr〈G+〉×Fr〈G−〉.

Then, the freely generated d-frame dFr〈G+, G− | E+, E−, Econ, Etot〉 (or simply
just dFr〈G± | E〉) is constructed as follows. First, define the following operator on
d-frame presentations:

r(E) = (E+ ∪ (Econ ; E−1
tot ), E− ∪ (E−1

con ; Etot), clsc(Econ), clst(Etot))

6



where R ; S denotes the relation composition {(x, z) | ∃y. xRySz} and clsc(R) and
clst(R) denote the closure of the relation R under the logical and information axioms
for the consistency and totality relation, respectively (see Definition 2.4).3

To obtain dFr〈G± | E〉 starting from its presentation E = (E+, E−, Econ, Etot), we
iteratively (transfinitely many times) apply r(−) until we reach a fixpoint E∞ =

(E∞
+ , E∞

− , E∞
con, E∞

tot). Then, we assign

dFr〈G± | E〉 = (Fr〈G+ | E∞
+〉 , Fr〈G− | E∞

−〉 , q[E∞
con], q[E∞

tot])

where q is the pair of quotient maps Fr〈G+〉×Fr〈G−〉 → Fr〈G+ | E∞
+〉×Fr〈G− | E∞

−〉.

3.1 Theorem.
The procedure described above is a free construction, that is, the freely constructed
object dFr〈G± | E〉 is a d-frame which has the required universal property.

3.1.1 Applications

Properties of the category d-Frm. As is the case for universal algebra, with free
constructions we obtain many other constructions for the category of d-frames for
free. For example, a quotient of a d-frame L = (L+, L−, con, tot) by a pair of relations
R+ ⊆ L+×L+ and R− ⊆ L−×L− is obtained as

dFr〈L+, L− | E+ ∪ R+, E− ∪ R−, con, tot〉

where E+ and E− are all equations that hold in the frame L+ and L−, respectively. 4

Similarly, we can prove that the coproducts of d-frames exist and, moreover, we
obtain:

3.2 Theorem.
The category of d-frames is complete, cocomplete, and admits a factorization system.

Specific free constructions. d-Frame presentations can be alternatively given single-
sorted. This allows us to make use of the two orders: the information and logical or-
der. For example, the embedding DLat ↪→ d-Frm, which we mentioned on page 4,
can be described as follows. We assign to a distributive lattice D the freely generated

3Note that, to simplify matters, we combined two definitions from the thesis into one; we treat
quotient structures and d-frame presentation as the same notion here.

4In fact, in the thesis, we define free constructions in terms of quotients and not vice versa as we
do here. Those two definitions are equivalent to each other.
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d-frame specified as

dFr
〈
〈d〉 : d ∈ D

∣∣∣ 〈d〉 ∨· 〈e〉 = 〈d ∨ e〉 , 〈0〉 = ff ,

〈d〉 ∧· 〈e〉 = 〈d ∧ e〉 , 〈1〉 = tt,

(∀d ∈ D) 〈d〉 ∈ con, 〈d〉 ∈ tot
〉

.

Further, we can also present the d-frame of reals L(R) as follows

dFr
〈
〈q〉 : q ∈ Q

∣∣∣ 〈q〉 ∨· 〈q′〉 = 〈max(q, q′)
〉

, 〈q〉 ∧· 〈q′〉 = 〈min(q, q′)
〉

,

〈q〉 =
⊔

q′<q

(
〈
q′
〉
u tt) t

⊔
q<q′′

(
〈
q′′
〉
u ff ), > =

⊔
q
〈q〉 ,

(∀q, q′ ∈ Q) 〈q〉 u
〈
q′
〉
∈ con, if q 6= q′ : 〈q〉 t

〈
q′
〉
∈ tot

〉
.

where a single generator 〈q〉 syntactically represents a pair of opens ((−∞, q), (q,+∞)).

3.2 Vietoris constructions for bispaces and d-frames

A powerset-like construction for topological spaces was introduced by Leopold Vi-
etoris in [Vie22] and its dual construction for the category of frames is due to John-
stone [Joh85; Joh82]. Over the years both spacial and frame versions of the Vietoris
construction (and their variants) found many applications in logic, topology, the
theory of coalgebras and program semantics.

In Chapter 4 of the thesis we present a Vietoris constructions for bispaces and d-
frames and show that most of the basic properties of their monotopological variants
can be recovered. First, define a Vietoris construction on d-frames as follows. Let L
be a d-frame, then

Wd(L)
def≡ dFr

〈
2α, 3α : α ∈ L

∣∣∣ (2 distributes over ∧· , tt,
⊔↑),

(3 distributes over ∨· , ff ,
⊔↑),

2α ∧· 3β 6· 3(α ∧· β), 2(α ∨· β) 6· 2α ∨· 3β,

(∀α ∈ conL/totL) 2α, 3α ∈ con/tot
〉

.

The assignment L 7→Wd(L) is a functor d-Frm→ d-Frm. Moreover, it is closed
on the important subcategories of d-frames:

3.3 Theorem.
Let L be a d-frame. Then we have that,

1. Wd(L) is d-regular iff L is,

2. Wd(L) is d-zero-dimensional iff L is; and

3. Wd(L) is d-compact if L is d-regular and d-compact.

8



In the thesis we also define its topological dual W : biTop→ biTop. Then, a lot
of effort of Chapter 4 goes into showing that those two constructions are in fact dual
to each other:

3.4 Theorem.
The functors W ◦ Σd and Σd ◦Wd are naturally isomorphic, when restricted to the
subcategories of d-compact d-regular bispaces and d-frames.

The upper and lower variants of the Vietoris constructions (W3(L) and W2(L),
respectively) are also discussed as well as their relationship to Wd(L).

3.2.1 Applications

Notable applications to other disciplines, outside the theory of d-frames, are the
following:

1. Because the category of stably compact frames and d-compact d-regular d-
frames are equivalent, from our Vietoris construction for d-frames we obtain
that the standard monotopological Vietoris endofunctor

VFr : Frm→ Frm

is closed on the category of stably compact frames. This is the first time a
choice-free proof this fact has been presented.

2. It has also turned out that our Vietoris constructions W and Wd are a common
generalisation of the corresponding constructions for all the categories shown
in the cube on page 4. For example, Wd generalises both VFr and the well-
known construction M : DLat→ DLat defined as

D 7→ DL
〈
2a, 3a : a ∈ D

∣∣∣ 2(a ∧ b) = 2a ∧2b, 21 = 1,

3(a ∨ b) = 3a ∨3b, 30 = 0,

2a ∧3b ≤ 3(a ∧ b), 2(a ∨ b) ≤ 2a ∨3b
〉

.

3. Furthermore, it immediately follows that coalgebras X → W(X) on the cat-
egory of Priestley bispaces provide adequate models of positive modal logic.
One can then rephrase this combinatorially and obtain a different description
of the same structure:

3.5 Proposition. Positive modal logic is sound and complete with respect to the
triples 〈X, R,A+〉, where R ⊆ X×X is a relation and A+ is a set of subsets of
X, such that

(JT-1) A+ is closed under finite unions and intersections,

9



(JT-2) A+ is closed under 2(−) and 3(−).

(JT-3) x 6= y in X iff x ∈ A 63 y for some A ∈ A+ ∪A−,

(JT-4) if ∀A ∈ A+ ∪A−, y ∈ A implies x ∈ 3A, then (x, y) ∈ R,

(JT-5) for any M ⊆ A+ ∪A− with finite intersection property,
⋂
M 6= ∅,

where A− = {X \ A | A ∈ A+} and, for a subset M ⊆ X,

2M = {x ∈ X | ∀y. (x, y) ∈ R implies y ∈ M},
3M = {x ∈ X | ∃y s.t. (x, y) ∈ R and y ∈ M}.

3.3 Belnap-Dunn logic of bispaces

d-Frames are not the first type of structure that models Belnap’s logic. In fact, alge-
braic structures called bilattices were introduced long before d-frames for this reason.
In Chapter 6 we show that the category of bilattices embeds into the category of d-
compact d-regular d-frames and, moreover, that most of axioms of bilattice logic are
still valid even in this broader class:

3.6 Theorem.
The following axioms of four-valued logic are valid in any d-compact d-regular d-
frame:

(Weak implication)

(⊃ 1) ϕ ⊃ (ψ ⊃ ϕ)

(⊃ 2) (ϕ ⊃ (ψ ⊃ γ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ γ))

(¬¬ R) ¬¬ϕ ⊃ ϕ

(Logical conjunction and disjunction)

(∧· ⊃) (ϕ ∧· ψ) ⊃ ϕ and (ϕ ∧· ψ) ⊃ ψ

(⊃ ∧· ) ϕ ⊃ (ψ ⊃ (ϕ ∧· ψ))

(⊃ tt) ϕ ⊃ tt
(⊃ ∨· ) ϕ ⊃ (ϕ ∨· ψ) and ψ ⊃ (ϕ ∨· ψ)

(∨· ⊃) (ϕ ⊃ γ) ⊃ ((ψ ⊃ γ) ⊃ ((ϕ ∨· ψ) ⊃ γ))

(⊃ ff) ff ⊃ ϕ

(Informational conjunction and disjunction)

(u ⊃) (ϕ u ψ) ⊃ ϕ and (ϕ u ψ) ⊃ ψ

(⊃ u) ϕ ⊃ (ψ ⊃ (ϕ u ψ))

(⊃ >) ϕ ⊃ >
(⊃ t) ϕ ⊃ (ϕ t ψ) and ψ ⊃ (ϕ t ψ)
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(t ⊃) (ϕ ⊃ γ) ⊃ ((ψ ⊃ γ) ⊃ ((ϕ t ψ) ⊃ γ))

(⊃ ⊥) ⊥ ⊃ ϕ

(Negation)

(¬∧· L) ¬(ϕ ∧· ψ) ⊂ ¬ϕ ∨· ¬ψ

(¬ ∨· ) ¬(ϕ ∨· ψ) ≡ ¬ϕ ∧· ¬ψ

(¬ u) ¬(ϕ u ψ) ≡ ¬ϕ u ¬ψ

(¬t L) ¬(ϕ t ψ) ⊂ ¬ϕ t ¬ψ

(¬⊃ R) ¬(ϕ ⊃ ψ) ⊃ ϕ ∧· ¬ψ

where ϕ ≡ ψ is a shorthand for (ϕ ⊃ ψ) ∧· (ψ ⊃ ϕ). Furthermore, the rule of Modus
Ponens is sound:

(MP) ϕ, (ϕ ⊃ ψ) ` ψ

Furthermore, it is also shown that a modal extension of bilattices can be also
modelled in the category of d-compact d-regular d-frames as algebras of the follow-
ing type:

Wd(L)⊕Wd(L)→ L

3.3.1 Belnap-Dunn geometric logic

Belnap, inspired by Scott’s [Sco70], argued that (when paraphrased),

(?) predicates ought to be constructed as directed joins of their (finite) approxima-
tions (§81.1 and §81.3.2 in [Bel76]).

A directed join in the information order is understood as a computation which gen-
erates its output gradually, in a limiting process. Requiring (?) simply means that all
predicates must be somehow computable, even though some predicates may only
be represented by an infinite computation which produces them.

This requirement, although justified philosophically, is not fulfilled by bilattices.
On the other hand, d-compact d-regular d-frames are better suited to model Bel-
nap’s logic since they satisfy (?) automatically. In the last section, we introduce
a logic of d-frames and prove its soundness and completeness:

3.7 Theorem (Completeness).
If a judgement ϕ in d-frame logic is true for all d-frames which satisfy Γ, i.e. Γ � ϕ,
then ϕ is provable from Γ, i.e. Γ ` ϕ.

Proof sketch. Because dFr〈Var | σΓ〉 � Γ, it is also the case that dFr〈Var | σΓ〉 � ϕ

(where σΓ is the closure of Γ under all substitutions). Then, we obtain the proof

11



of Γ ` ϕ by unfolding the iterative procedure which produces dFr〈Var | σΓ〉; every
application of r produces one derivation in the proof. �

4 List of Publications

Journal papers

Richard N. Balla, Bernhard Banaschewski, Tomáš Jakl, Aleš Pultr, Joanne Walters-
Waylande: Tightness relative to some (co)reflections in topology, Quaestiones Mathemat-
icae, 2015.

Conference proceedings
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Future work

During the final stages of the thesis preparation the author opened a number of new
topics which deserve their own dedicated publication. Namely, in the thesis we set
out solid grounds for papers with working titles:

1. Point-Free Presentation of the Bitopological Real Numbers (Section 3.5.3)

2. New Models for Positive Modal Logic (Section 4.5.1)

3. Logic of d-Frames (Section 6.3)
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