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Interval linear and nonlinear systems

Department of Applied Mathematics

Supervisor of the doctoral thesis: Doc. Mgr. Milan Hlad́ık, Ph.D.

Study programme: Informatics

Study branch: Discrete Models and Algorithms

Prague 2019



I declare that I carried out this doctoral thesis independently, and only with the cited
sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No. 121/
2000 Sb., the Copyright Act, as amended, in particular the fact that the Charles
University has the right to conclude a license agreement on the use of this work as a
school work pursuant to Section 60 subsection 1 of the Copyright Act.

In ........ date ............ signature of the author



Title: Interval linear and nonlinear systems

Author: RNDr. Jaroslav Horáček
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nomial conditions are compared. Two strongest conditions are proved to be equivalent
under certain assumption. Solving of interval linear systems is used to approach other
problems in the rest of the work.

Computing enclosures of determinants of interval matrices is addressed. NP-hardness
of both relative and absolute approximation is proved. New method based on solving
square interval linear systems and Cramer’s rule is designed. Various classes of matrices
with polynomially computable bounds on determinant are characterized. Solving of
interval linear systems is also used to compute the least squares linear and nonlinear
interval regression. It is then applied to real medical pulmonary testing data producing
several potentially clinically significant hypotheses. A part of the application is a
description of the new breath detection algorithm. Regarding nonlinear systems an
approach to linearizing a constraint satisfaction on an interval box problem into a
system of real inequalities is shown. Such an approach is a generalization of the
previous work by Araya, Trombettoni and Neveu. The features of this approach are
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1 Introduction

”To develop a complete mind: Study the art of science; study the science
of art. Learn how to see. Realize that everything connects to everything
else.”

A quote attributed to Leonardo DaVinci.

In applications, many problems can be transformed to solving a system of linear
equations. That is why linear systems often play a prominent role. There are various
reasons why to incorporate intervals into such systems (rounding errors, inaccuracy of
measurement, uncertainty, etc.). Similarly, in this work the main theme that weaves
through all the chapters are interval linear systems. Of course, during the work we
also meet nonlinear problems. However, it will be possible to deal with them using
the linear means.

The first goal of this work is to present our contributions to several areas of
interval analysis. Moreover, the work is submitted as a doctoral thesis of the author.

Most chapters are based on reworked and extended journal or conference papers
published with other co-authors; mainly Michal Černý, Milan Hlad́ık, Jan Horáček and
Václav Koucký. Some of the results were also a product of joint work with defended
students that were supervised by the author of this work; namely Josef Matějka and
Petra Pelikánová. Some chapters contain also unpublished results and new material.

Parts of the text keep a survey book style with links to other works to enable the
reader (either a professional or a student) to quickly pick up basics of the addressed
area. That is the third goal of this work.

The material of this work is built in a cumulative way, hence a chapter usually
uses the material from the previous chapters. However, we believe that each chapter
could be read in a stand-alone manner with only occasional turning of pages. Most of
the chapters are concluded with references to broader literature on various topics.

The work is divided into 12 chapters. Below is the brief content of each chapter:
Chapter 2. Roles of intervals. We introduce our understanding of intervals and
their roles • We show simple examples comprehensible without knowledge of interval
analysis • We discuss properties and advantages of intervals • The literature concern-
ing applications and various ares of interval analysis referenced.

Chapter 3. Basic notation and ideas. Basic noninterval notation is introduced •
Interval notation, concepts and structures we use are introduced • We briefly discuss
the relation between intervals and rounded arithmetics • We discuss testing of interval
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methods and how to compare interval results.

Chapter 4. Interval matrix ZOO. Known classes of interval matrices, their prop-
erties and examples are presented • Their relations are depicted.

Chapter 5. Square interval linear systems. Various known direct and iterative
methods are discussed • We discuss related topics such as preconditioning, finding ini-
tial enclosures and stopping criteria • We introduce the shaving method that enables
further improvement of an enclosure • The methods are briefly compared.

Chapter 6. Overdetermined interval linear systems. The least squares solu-
tion is discussed • Various known methods for solving square interval linear systems
are adapted for solving overdetermined interval systems • We introduce some known
methods for solving overdetermined systems. • We introduce the subsquares approach
and its variants.

Chapter 7. (Un)solvability of interval linear systems. Various conditions for
detecting unsolvability are introduced • Checking full column rank is discussed and two
sufficient conditions are proved to be equivalent under certain assumption • Checking
solvability is addressed • The mentioned methods are compared.

Chapter 8. Determinant of an interval matrix. Known results about interval
determinants are addressed • NP-hardness of absolute and relative approximation is
proved • Known methods are refined to compute determinants of interval matrices •
A method based on Cramer’s rule is designed • Determinants of symmetric matrices
are addressed • Classes of matrices with polynomially computable tasks related to
interval determinants are explored • The methods are tested.

Chapter 9. Application of intervals to medical data. The Multiple breath
washout procedure for lung function testing is introduced • Our algorithm for finding
breath ends is introduced • Special type of regression where matrix is integer is dis-
cussed • Interval regression is applied to clinical data • Hypothetical conclusions are
derived from the results.

Chapter 10. A linear approach to CSP. Linearization of nonlinear constraints
is discussed • Linear programming approach is introduced • Vertex selection for lin-
earization is discussed • Nonvertex selection for linearization is discussed • Properties
of the proposed linearization are analyzed.

Chapter 11. Complexity of selected interval problems. Computational com-
plexity in relation to intervals is explained • Complexity of various problems is ad-
dressed • Polynomially computable cases or classes of problems are characterized.
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Chapter 12. LIME2: interval toolbox. Interval toolbox LIME is introduced •
Properties and goals of LIME are specified • Features and methods of LIME are listed
• Installation and use is described.

1.1 Main results of the work
Here, we briefly summarize the main results of the work:

• Chapter 4. In this chapter we restructure results by Neumaier and others.
New examples are added and relations between classes of interval matrices are
analyzed and clearly visualized.

• Chapter 5. Many methods for solving interval linear systems need to use pre-
conditioning. However, such an operation typically enlarges the original solution
set. Methods applied to a preconditioned system return an enclosure of the en-
larged solution set. In such cases a method that can further improve such an
enclosure is of high importance. We introduce the shaving method that takes an
enclosure and iteratively tries to shave off slices of the enclosure to get closer to
the original solution set.

• Chapter 6. We shed more light on known methods for solving overdetermined
interval linear systems. For overdetermined systems of interval linear equations
we designed a new subsquares approach and its variants that can be easily par-
allelized and most of all can detect unsolvability of the system.

• Chapter 7. We describe several conditions for checking unsolvability and solv-
ability of interval linear systems. Two conditions for detecting unsolvability that
are based on full column rank detection are proved to be equivalent under certain
assumption. Range of application of all conditions is visualized using heat maps.

• Chapter 8. In this chapter we prove that computing both the relative and
absolute approximation of the exact determinant of an interval matrix is NP-
hard. We characterize several classes of matrices with polynomially computable
bounds on interval determinant. We design a new faster algorithm, based on
Cramer’s rule, for computing enclosure of the determinant of an interval matrix.

• Chapter 9. The interval least squares regression is applied to real world medical
data from lung function testing. We show how to improve computation speed
for certain regression input. We developed a new algorithm for detecting breath
ends in clinical data. Such an algorithm can outperform the state-of-the-art
algorithms even a commercial one. Based on the results we derive several hy-
potheses. If they turn to be true, it would have a significant impact on the area
of current lung assessment methods.

• Chapter 10. Nonlinear constraint satisfaction problems are part of many practi-
cal problems. In this chapter we show how to linearize the nonlinear constraints
and solve them using linear programming. For such a linearization an expansion
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point is needed. Older approaches used vertex points of the initial box, we show
how to use an arbitrary point from the box. We prove that such a linearization
is never worse then Jaulin’s bounding with two parallel affine functions.

• Chapter 11. We discuss the complexity issues related to interval linear algebra.
Then we provide a concise survey of complexity of selected problems from interval
linear algebra.

• Chapter 12. We briefly introduce LIME, our interval package for Octave. Such
package contains most of the methods mentioned in this work and some more.

For the list of author’s publications and defended students see Chapter 13.



2 Roles of intervals

▶ Various roles of intervals
▶ Early use of intervals
▶ Properties and advantages of intervals
▶ Literature and sources on intervals

In this chapter various roles of intervals are demonstrated. They are introduced
via examples that do not require a proper definition of an interval arithmetics yet.
Later, useful properties and advantages of intervals are pointed out. We slightly men-
tion the early works concerning intervals. The chapter is concluded with references to
applications and other aspects of intervals.

2.1 Examples of intervals
Let us start with six simple examples. They illustrate various roles intervals can play.

Example 2.1. One of the earliest works on intervals was probably by Archimedes
(287–212 BC). In his treatise Measurement of a Circle he gave the following verified
bounds for π

310
71 < π < 31

7 .

Note that he proved that π indeed lies in the given bounds.

Example 2.2. Let us say, we want to know what time t it will take an object (simu-
lated as a mass point) to fall from height h = 50 meters. If we take the h as a constant,
then time t can be simply expressed as a function of a gravitational acceleration g as

t(g) =
√︄

2h
g

= 10
√
g

seconds.

However, gravitational acceleration differs at various places on Earth as elaborated in
the work [66]. The lowest estimated value g is on the Nevado Huascarán summit, Peru
and the highest value g is on the surface of the Arctic Ocean

g = 9.76392 ms−2 g = 9.83366 ms−2.
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If we do not know the exact g of our area we should simultaneously evaluate
the formula for all g’s of all measured surface points. However, since the function t is
decreasing in g it is enough to evaluate it for g to obtain the shortest time and for g
to obtain the longest time. Hence, when not computing with a specific g the time lies
in the interval

[t(g), t(g)] = [3.1889 . . . , 3.2002 . . . ].
To make the bounds to safely contain the value of the time t we can say

t ∈ [3.1889, 3.2003] seconds.

Example 2.3. Let us take the continuous function

f(x) = x3 − 10x2 + 27x− 18,

and let us inspect the existence of a root on the interval [2, 5]. The function f is
continuous on [2, 5], hence the intermediate value theorem states that f takes any
value between f(2) and f(5) on this interval. As f(2) = 4 and f(5) = −8 the
function f must take zero for some point in [2, 5]. Therefore, [2, 5] is a verified interval
containing a zero of the function f .

We can go further and use bisection – splitting the initial interval into halves and
applying the intermediate value theorem on the two halves separately. If the function
values at the endpoints of one half do not have different signs, then we go on to inspect
the other half. The procedure can be recursively repeated. Here is the list of examined
intervals safely containing a root.

[2, 5]
[2, 3.5]
[2.75, 3.5]
[2.75, 3.125]
[2.9375, 3.125]
[2.9375, 3.03125]

If we properly handle the rounding errors the intervals introduce verified bounds on
the location where the root lies. With each step the width of a resulting enclosure
decreases. Since f(x) = (x− 1)(x− 3)(x− 6) we know that the exact root is 3. Such
a method is very simple and can be further improved.

Example 2.4. A patient is connected to a breathing mask and instructed to breathe
normally. During the breathing session various physical characteristics are measured
by sensors in the mask. One of the variables measured is actual flow of air inside the
mask. The sensor measures the flow value every given time slice. Let the length of a
time-slice be d (usually d = 5ms). Moreover, the flow sensor has accuracy 5%. Hence,
each measured flow in each time slice t denoted as φt becomes an interval

[0.95 · φt, 1.05 · φt].

Instead of a sequence of real numbers we get a sequence of intervals as depicted in
Figure 2.1.
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Figure 2.1: Simple verified volume computation. The circles represent flow measured
in each time slice (vertical bars), short horizontal bars depict upper and lower bound
on each measured flow incorporating 5 % measurement accuracy. Darker and lighter
area depict the upper and lower bound on the volume respectively.

Many approaches to clinical assessment of lung function require the knowledge
of the total volume of inhaled/exhaled air. Volume can be obtained as integration of
flow – computing the area of the surface under the flow data. Since the time slice is
small enough, the bounds for the volume can be computed as[︄

d ·
n−1∑︂
i=1

0.95 · min(φi, φi+1), d ·
n−1∑︂
i=1

1.05 · max(φi, φi+1)
]︄
.

Such an approach can be used for other integration applications. The example is based
on the real medical background later explained in Chapter 9. It is a philosophical
question whether these bounds are verified (whether the measurement accuracy covers
all phenomena that can occur). However, it is a safe way of using the measured data.

Example 2.5. Let us take the function f from the previous example. We want to
inspect whether it is increasing on the interval [5, 5.9]. Since the first derivative of
f(x) is

f ′(x) = 3x2 − 20x+ 27,
which is greater than 0 on [5, 5.9]. Thus f is increasing on this interval.

Example 2.6. Let us have one nonlinear constraint

x2 − cos(y) = 0,

where x ∈ [−1, 1] and y ∈ [−1, 1]. Let us bound the feasible solutions of the constraint.
The initial bounds on x and y can be further reduced.

For y ∈ [−1, 1] the range of the function cos is included in [0.54, 1]. The maximum
value is cos(0) = 1 and the minimum value is cos(−1) = cos(1) = 0.540302 · · · > 0.54.

Now, by expressing x as |x| =
√︂

cos(y) for cos(y) ∈ [0.54, 1] we get from mono-
tonicity of

√
· that |x| ∈ [0.73, 1], i.e,

x ∈ [−1,−0.73] ∪ [0.73, 1].
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Note that we actually proved that no solution has x, in the interval [−0.7, 0.7],

In the above mentioned examples an interval played the following four roles:

1. interval in which a phenomenon occurs everywhere (Example 2.5),

2. interval in which a phenomenon occurs for sure, but we cannot tell where exactly
(Example 2.1 and 2.3),

3. interval in which a phenomenon might occur (Example 2.2, 2.4 and 2.6),

4. interval in which a phenomenon does not occur (Example 2.6).

Such a perception of intervals is nothing new, we as people do it every day. The
1. is used when speaking of interval training (a form of training requiring to keep
doing an exercise for a given period of time), a training when during an interval one
must keep doing a prescribed activity followed by a short break. We use the 2. when
watching Perseids or eclipse of the sun in the sky (these phenomenons have a known
interval in which they occur). We use the 3. when placing a bet on a goal during a
given period of a game. The 4. is used when referring to an amount of time between
meals, a gap between objects, a break between two halves of a match.

In this work we are going to exploit these roles of intervals in various ways.

2.2 Application of intervals
Except from using the intervals in the way explained in the first section. The intervals
can be, more specifically, used for various purposes:

• To handle rounding errors. By proper outward rounding of intermediate
calculation results a verified interval containing the proper desired values can be
obtained.

• To express uncertainty. In some situations we are not sure about the proper
distribution of a phenomenon. Note that the situation is a bit different from
having a uniform distribution on the interval. By uniform distribution we model
the situation on an interval, however, in reality the obtained value can come
from outside of the interval. Nevertheless, in the case of intervals the lower and
upper bounds are verified to keep the value in between.

• To cover measurement errors. Machines have usually given operating accu-
racy in a form of ±error which produces interval bounds.

• To proof a property for all representatives. For example, in a dynamical
system it is possible to prove that all points starting from a given initial area
will reach an equilibrium.
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Intervals can be used everywhere where the problems evince the kind of uncer-
tainty already described – computer assisted proofs, economics, medicine, solving nu-
merical systems and differential equations, constraint satisfaction problems and global
optimization, computing physical constants, robotics, etc. It would be redundant to
list all the possible applications, since it has been done many times. More uses of
intervals can be found in [104, 132]. For more applications see, e.g., [5], [104]. The
applications of intervals lies on many foundations.

2.3 Early works on intervals
We have already mentioned Archimedes and his approach to enclosing π with intervals.
If we fast-forward to 20th century we encounter the following names in relation to
intervals:

• 1931 – Rosalind Cecily Young published her paper The algebra of multi-valued
quantities [222].

• 1951 – Paul Sumner Dweyer in his book Linear computations discusses range
numbers and their use to measure rounding errors [36].

• 1956 – Mieczyslaw Warmus in his paper Calculus of approximations builds an
interval apparatus for formulation of numerical problems [219].

• 1958 – Teruo Sunaga in his paper Theory of interval algebra and its application
to numerical analysis develops interval calculus and shows its properties and
examples in order to solve problems [209].

• 1961 – Ramon E. Moore published his Ph.D. thesis Interval arithmetic and
automatic error analysis in digital computing [130].

This list is just to give a reader a brief peek into the historical connections of
interval analysis. We are aware that this list is possibly very incomplete. History
related to interval arithmetics is an interesting subject and would need much more
space than we can afford here. More information regarding history of intervals can be
found in [5, 196].1

Although the intervals were known early in 20th century it took some time before
they were used in computers. There were possibly two reasons: interval operations
were considered too slow in comparison with their real counterparts and the resulting
intervals were huge. However, this comparison with real numbers was a bit unfair
because interval computations solve a different problem – instead of “some” solution
of unknown quality interval arithmetics gives us rigorous bounds for the solution.
Regarding the widths of intervals, with the successive developments of new methods
the resulting intervals have started to be of applicable quality.

1Many early papers on intervals are accessible at http://www.cs.utep.edu/interval-comp/
early.html (Accessed February 10, 2019).

http://www.cs.utep.edu/interval-comp/early.html
http://www.cs.utep.edu/interval-comp/early.html
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2.4 More on intervals
There are a lot of works to start with for better knowledge of intervals. A very short
introduction is, e.g, [215] by Tucker or [104] by Kearfott. A classical book on intro-
duction to interval analysis is [133] by Moore, Kearfott and Cloud. Another Moore’s
book on more mathematical applications of interval analysis is [132]. It contains large
list of interval-related publications. Many key concepts are shown in another classical
books – [3] by Alefeld and Herzberger and [139] by Neumaier. A book with applica-
tions mostly in robotics and control is [99] by Jaulin and et al. There is a work on
verified numerics by Rump [193]. Regarding global optimization there is a book [59]
by Hansen and Walster. A list of interval related publications is [51, 52]. All problems
can be viewed from the computational complexity point of view. There is a thorough
book [111] or one can read our survey paper on computational complexity and interval
linear algebra [85]. Also Rohn’s hanbook [176] can serve as a useful signpost to other
interval topics. For introduction to computer (interval) arithmetic see, e.g., [115] or
the IEEE interval standard [162].



3 Basic notation and ideas

▶ Basic notation
▶ Basic interval notation, arithmetics, operations and relations
▶ Interval structures, expressions and functions
▶ Intervals and rounding
▶ Comparison of interval structures
▶ Testing of interval algorithms

This is a preliminary chapter containing the elementary building blocks for this
work. We start with the basic notation for real mathematical objects. Then we move
towards interval related material. We briefly introduce interval arithmetics and other
operations on intervals. Later, we explain how to work with more complex interval
structures – vectors, matrices, expressions and functions. Relation of intervals and
computer rounded arithmetics is discussed. Because in almost every subsequent chap-
ter we compare various algorithms with interval outputs, we explain how to compare
quality of interval results here. We also state what software and computational power
we use for such testing..

3.1 Notation
For the sake of clarity we provide a list of notation that we are going to use for real
structures:

notation explanation

A a real matrix
x, b a real column vector

I or In identity matrix of the corresponding size
ei ith column of I
E all-ones matrix of the corresponding size
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notation explanation

Aij the coefficient in ith row and jth column of a matrix A
aij or a(i,j) the coefficient in ith row and jth column of a matrix A

Ai∗ ith row of a matrix A
A∗j ith column of a matrix A

A1,(1:3) a vector (a11, a12, a13) (notation borrowed from Matlab)
AT A transposed
| · | absolute value (for vectors and matrices works element-wise)

∥ · ∥p vector or matrix p-norm
A+ the Moore-Penrose pseudoinverse of A
A−1 inverse matrix
A−T inverse of AT

ϱ(A) spectral radius of A
Sn a set of all vectors of length n with coefficients from the set S
Yn the set {±1}n

For every vector x ∈ Rn we define its sign vector sign(x) ∈ {±1}n as

sign(x)i =

⎧⎪⎪⎨⎪⎪⎩
1, if xi ≥ 0,
0, if xi = 0.

−1, if xi < 0.

Functions max,min applied on a vector are understand in a similar way as in
Matlab, they choose maximum/minimum of the vector coefficients. For a given vector
x ∈ Rn we denote

Dx = diag(x1, . . . , xn) =

⎛⎜⎜⎜⎜⎜⎜⎝
x1 0 . . . 0
0 x2 . . . 0
... ... . . . ...
0 0 . . . xn

⎞⎟⎟⎟⎟⎟⎟⎠ .

By writing |x−y| < ϵ for two vectors x, y of the same length we mean |xi−yi| < ϵ
for each i. Hence, when relation operators such as >,<,≤,≥,= are applied to vectors
or matrices, then, unless not stated otherwise, they are understood component-wise.

3.2 Interval
The key notion of this work is an interval. Even though, there are various types of
intervals, here we understand it as a synonym for a real closed interval.
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Definition 3.1 (Interval). For a, a ∈ R a real closed interval a is defined as

a = [a, a] = {a ∈ R | a ≤ a ≤ a},

a, a are called the lower and upper bound respectively.

If it holds that a = a, then we call the interval degenerate. If a = −a, then we
call the interval symmetric. We denote the set of all real closed intervals by IR. Open
intervals will be only rarely needed and their use will be explicitly announced. They
will be typeset with parentheses (i.e., (a, b)).

An interval can be also defined using a center and a distance from this center.

Definition 3.2 (Interval 2). For ac ∈ R and positive a∆ ∈ R a real closed interval a
can be also defined as

a = [ac − a∆, ac + a∆],

ac and a∆ are called the midpoint and radius respectively.

Sometimes it simplifies the notation to move the subscripts to the top, i.e., ac, a∆,
especially when other subscripts are used. We use this notation interchangeably. To
be concise, when speaking about an interval a we implicitly assume that ac, a∆ are
respectively its midpoint and radius.

Even though, the two definitions are obviously equivalent, using a proper defini-
tion may save excessive notation. Intervals and derived interval structures are denoted
in boldface (i.e., x,A, b,f). Real numbers, vectors, matrices, functions, etc., are type-
set in normal font (i.e., x,A, b, f).

3.3 Set operations
Intervals can be viewed as sets and therefore the typical set operations can be defined
for them.

Definition 3.3 (Set operations). Let us have two intervals a = [a, a] and b = [b, b].
Then a ∩ b = ∅ if a < b or b < a. Otherwise

a ∩ b = [max(a, b), min(a, b)],
a ∪ b = {x ∈ a ∨ x ∈ b}.

Since the result of the operation ∪ is not always a single interval we define the
hull as

□(a, b) = a ⊔ b = [min(a, b), max(a, b)].

Note that for the hull we use two different notations, that can be interchanged. Gene-
rally, the hull is understood as the interval of the minimal width containing the sets a
and b. The set operations can be easily extended to take more intervals as arguments.
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3.4 Interval arithmetics
An arithmetics can be defined on intervals. We are going to use a standard definition
mentioned in, e.g, [133]. What we need from an arithmetical operation ◦ on two
intervals a, b is

a ◦ b = □{a ◦ b | a ∈ a, b ∈ b}.

The following definition of the basic operations satisfies such a demand.

Definition 3.4 (Interval arithmetics). Let us have two intervals a = [a, a] and b =
[b, b]. Arithmetical operations +,−, ·, / are defined as

a + b = [a+ b, a+ b],
a − b = [a− b, a− b],
a · b = [min(M),max(M)], where M = {ab, ab, ab, ab},
a/b = a · (1/b), where 1/b = [1/b, 1/b], 0 /∈ b.

In the definition of division we presume b does not contain 0. When we need to
divide with intervals containing zero, an extended version of interval arithmetics can
be used [114, 155].

The set IR with the defined interval arithmetics does not form a field. Only
some properties of a field hold. There exist distinct zero element 0 = [0, 0] and unit
element 1 = [1, 1] (we will denote them just 0 and 1 respectively). Moreover, for all
a ∈ IR it holds that

0 + a = a,

1 · a = a,

0 · a = 0.

By definition, the addition and multiplication are commutative and associative.

x + y = y + x, x + (y + z) = (x + y) + z,
xy = yx, x(yz) = (xy)z.

Unfortunately, there is no inverse element with respect to addition and multiplication.

Proposition 3.5. For a nondegenerate interval a = [a, a] there does not exist an
inverse element with respect to addition.

Proof. Let a be a nondegenerate interval and let b be its inverse element with respect
to addition. According to the definition of the zero interval we get

0 = [0, 0] = a + b = [a, a] + [b, b] = [a+ b, a+ b].

Thus a+ b = 0 and a+ b = 0. It follows that

b = −a, b = −a.
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Hence
b = [−a,−a].

For the bounds of the interval a it holds that a ≤ a. However, the bounds of b are
contradiction to the definition of interval since −a ≥ −a.

According to the definition of an interval the inverse element with respect to
addition exists only for a degenerate interval. The proof for nonexistence of inverse
element with respect to multiplication can be provided similarly, but requires more
tedious elaboration.

Moreover, the distributivity does not hold either. Generally,

a(b + c) ̸= ab + ac.

Example 3.6. For intervals a = [1, 2], b = [1, 1] and c = [−1,−1] we obtain the
following results.

a(b + c) = [0, 0],
ab + ac = [−1, 1].

However, the subdistributivity always holds

a(b + c) ⊆ ab + ac.

Such an overestimation caused by the second formula is a result of a so-called depen-
dency problem. Whenever real number is chosen from a the same value should be fixed
for the second occurrence of the second a. However, the interval arithmetics does not
see both a’s as one and the same variable, but rather as two different variables. We
will touch dependency in Section 3.8 in more detail.

3.5 Relations
Basic relations of intervals can be defined in the following way.

Definition 3.7 (Relations). For two intervals a = [a, a] and b = [b, b].
The relation a = b holds if

a = b and a = b.

The relation a ≤ b holds if
a ≤ b.

The relation a < b holds if
a < b.

Similarly for the relations ≥, <,>.

Note, that some intervals are incomparable, e.g.,

[1, 3] ≰ [2, 4] and [1, 3] ≱ [2, 4].
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3.6 More interval notation
Regarding intervals we need to define more notation:

notion formula explanation

wid(a) a− a width of an interval
mid(a) ac = (a+ a)/2 midpoint of an interval
rad(a) wid(a)/2 radius of an interval
mig(a) min(|a|, |a|) or 0 when 0 ∈ a mignitude of an interval
mag(a) max(|a|, |a|) magnitude of an interval
|a| {|a|, a ∈ a} absolute values of an interval

Note the difference between the absolute value and magnitude. Sometimes these
two notions are used interchangably. Nevertheless, here in our work, we are going to
strictly distinguish between them. The magnitude of an interval is a number while the
absolute value of an interval is an interval:

If a > 0 |a| = [a, a] ,
If a < 0 |a| = [|a|, |a|] ,
If 0 ∈ a |a| = [0,max{|a|, |a|}] .

For many important properties of the introduced functions and operations see [139].

3.7 Vectors and matrices
Intervals can be used as building blocks for more complex structures. In this section
we address interval vectors and matrices. An interval matrix (or an interval vector as
its special case) can be defined as a matrix having intervals as its coefficients.

Definition 3.8 (Interval vector and matrix). Let bi,aij for i = 1, . . . ,m and j =
1, . . . , n be intervals then an m-dimensional interval vector b and an m × n interval
matrix A are defined as

b =

⎛⎜⎜⎜⎜⎜⎜⎝
b1

b2
...

bm

⎞⎟⎟⎟⎟⎟⎟⎠ , A =

⎛⎜⎜⎜⎝
a11 . . . a1n

... ...
am1 . . . amn

⎞⎟⎟⎟⎠ ,

When we talk about square matrices, we always assume the size of A is n × n.
Otherwise, the size m × n is assumed. Note that an n-dimensional interval vector
actually represents an n-dimensional box aligned with axes. That is why we use the
phrases “interval vector” and “interval box” interchangeably.
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The relations =,≤,≥, <,>,⊆,∈ are understood component-wise. So are the set
operations ∪,∩,□,⊔. Hence an m × n interval matrix can be also defined using two
real m× n matrices A,A as

A = {A | A ≤ A}.

Formally, it is slightly different from Definition 3.8, however it is simple to transit
between the two points of view. We can also define an interval matrix using its
midpoint Ac and radius A∆ matrix as

A = [Ac − A∆, Ac + A∆].

For the sake of concise notation, when speaking about A we always implicitly assume
that A,A are its lower and upper bound respectively and that Ac, A∆ are its midpoint
and radius respectively.

For two interval matrices A,B of the same size the interval arithmetics opera-
tions + and − are performed component-wise as

(A + B)ij = aij + bij,

(A − B)ij = aij − bij.

For an m×n matrix A and an n× p matrix B the matrix multiplication AB, can be
carried out similarly as in the case of real matrices.

(AB)ij =
n∑︂

k=1
aikbkj.

Even though, the result gives sharp bounds on the matrix product, it can contain
matrices that cannot be obtained by any product of A ∈ A, B ∈ B. Here is an
example from [133].

Example 3.9. For two matrices

A =
(︂
[1, 2] [3, 4]

)︂
, B =

⎛⎝ [5, 6] [7, 8]
[9, 10] [11, 12]

⎞⎠
the product is AB =

(︂
[32, 52] [40, 64]

)︂
. Let us take the matrix

(︂
32 64

)︂
; the element

32 is obtained by multiplying A by lower bound of the right column of B and the
element 64 is obtained by multiplying A by upper bound of the right column of B.

The operation + is for interval matrices commutative and associative. There are
cases when associativity of multiplication multiplication fails [139]. As in the case of
intervals, for matrices we again get subdistributivity [139].

A(B + C) ⊆ AB + AC,

(A + B)C ⊆ AB + AC.

The already mentioned functions and operations wid(·), mid(·), rad(·), mig(·), mag(·)
and | · | are for interval vectors and matrices understood component-wise. They posses
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several useful properties:

mag(A) = |Ac| + A∆, (3.1)
mid(A ± B) = Ac ±Bc, (3.2)

mid(AB) = mid(A) mid(B), if A or B is thin, (3.3)
rad(AB) = |A| rad(B) if A is thin or Bc = 0, (3.4)

rad(A + B) = rad(A) + rad(B). (3.5)

Interval version of other notation such as ϱ(·) or (·)−1 will be introduced in the
corresponding chapters later when needed. Next, we introduce the useful concept of
interval matrix norms.

Definition 3.10 (Interval matrix norm). For interval matrices a matrix norm ∥ · ∥
can be defined as

∥A∥ = max{∥A∥, A ∈ A}.

Regarding the computation of matrix norms, there are easily computable matrix
norms:

∥A∥1 = max
j

∑︂
i

mag(Aij),

∥A∥∞ = max
i

∑︂
j

mag(Aij).

Furthermore, we can use a so-called scaled maximum norm as a generalization of the
maximum norm ∥ · ∥∞. For any vector x ∈ IRn and a vector 0 < u ∈ Rn we define

∥x∥u := max{mag(xi)/ui | i = 1, . . . , n},

and
∥A∥u := ∥ mag(A)u ∥u.

Note that for u = (1, . . . , 1)T we get the maximum norm. The following holds for such
a norm [139]

∥A∥u < α ⇐⇒ mag(A)u < αu, (3.6)
∥A∥u ≤ α ⇐⇒ mag(A)u ≤ αu. (3.7)

In the further text, many of our results will be in terms of matrix norms. We will
use only consistent matrix norms, i.e, those that satisfy

∥A · x∥ ≤ ∥A∥ · ∥x∥.

All the mentioned norms satisfy this property [126, 139]. Note all norms were defined
for interval matrices. To define ∥ · ∥1, ∥ · ∥∞, ∥ · ∥u for real matrices it is enough to
replace mag(·) with | · |.
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3.8 Interval expressions and functions
One of the important tasks is to enclose the range of a real-valued function. This
section is loosely inspired by [139] and [215]. Let us consider a function f : D ↦→ R,
where D ⊆ Rn, the range is then

f(D) = {f(x) | x ∈ D}.

For a monotone (or piece-wise monotone) function the range can be expressed exactly.
Elementary functions such as cos(x), sin(x), |x|, ax, log(x) satisfy this property. We
can use these functions as building blocks for more complex functions.

Generally, we want to extend a real-valued function f to an interval function f

f : IRn ↦→ IR.

Such a generalization should poses some favorable characteristics. First, it would be
useful if

f(x) = f(x), ∀x ∈ D.

Here, x can be seen as a degenerate interval vector. Or an interval function should at
least satisfy

f(x) ∈ f(x), for x ∈ x ⊆ □D.

Such a function is called interval extension. Another favorable property is inclusion
monotonicity, i.e.,

x ⊆ y ⇒ f(x) ⊆ f(y).
For a function a natural interval extension can be obtained by viewing its variables as
intervals and its operators/subfunctions as interval operators/subfunctions. In [131]
we can find the following theorem by Moore.

Theorem 3.11. The natural interval extension f associated with a real function f that
is a combination of only constants, variables, arithmetical operations and elementary
functions (sin(x), cos(x), |x|, ax, log(x) . . . ) is an inclusion monotone interval extension
such that

{f(x) | x ∈ x} ⊆ f(x),

for any x, where f(x) is defined.

Note that there is a difference between f(x) and f(x). The first denotes com-
putation of range of a function over x and the second is an interval function. The
following example demonstrates that not every interval extension is narrow.

Example 3.12. For x ∈ x = [−1, 2] compare the following:

x − x = [−3, 1] vs. 0,
x · x = [−2, 4] vs. x2 = [0, 4].
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The previous examples suffered from a so-called dependency problem – the in-
terval arithmetic as is defined does not see the double occurrence of x and treats
both occurrences as separate variables. We have actually met this phenomenon when
talking about subdistributivity of interval arithmetic operations or interval matrix
multiplication. Not surprisingly, we have the following theorem by Moore [131].

Theorem 3.13. Let f(x1, . . . , xn, y1, . . . , ym) be an real function from the previous
theorem with n + m variables and let f be its natural extension. Suppose that the
variables y1, . . . , ym occur only once in f . Then

□{f(x, y) | x ∈ x, y ∈ y} =
⋃︂

x∈x

f(x,y),

for (x,y) where f(x,y) is defined.

Especially, if each variable in arithmetical expression occurs only once, then the
following holds.

f(x) = □{f(x) | x ∈ x}.

There are many other methods for enclosing the range of f(x) for x ∈ x. One
way is to use the mean value form

f(x) = f(xc) + f ′(ψ)(x− xc),

where ψ lies on a line segment between x and xc. Since ψ ∈ x we have the interval
extension

f(x) ⊆ f(xc) + f ′(x)(x − xc).

The function f ′ is a gradient of f . Its range can be estimated in various ways e.g.,
using slopes [139]. We are going to use such methods in Chapter 10. For more on
range of real-valued functions and polynomials see, e.g., [46, 134, 194, 196].

3.9 Rounded interval arithmetic
Now, we briefly touch the topic that we will address only rarely in the text. It is a well-
known fact that computers cannot represent all numbers from R. Let us denote the set
of machine representable numbers by Rpc. When a number cannot be represented it is
necessary to round it to some representable number. Speaking of rounding procedure
for a real number a, we are interested in the two main types: rounding to +∞ (↑ a)
and rounding to −∞ (↓a).

These roundings preserve the property of the relation ≤ on R. Thus, for a, b ∈ R

a ≤ b ⇒ ↑a ≤ ↑b.
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Also for every a ∈ R it holds that

↑↑a = ↑a.

We have already defined the set IR as a set of real closed intervals. We can also define
the set IRpc, the set of real closed intervals with machine representable endpoints. We
can switch from IR to IRpc with use of directed rounding:

[a, b] ∈ IR ↦→ [↓a, ↑b] ∈ IRpc.

Such an implementation needs switching of rounding mode. If a being machine repre-
sentable implies −a is also machine representable, then only one directed rounding is
enough:

[↓a, ↑b] = [↓a,− ↓−b] = [− ↑−a, ↑b].
The interval arithmetics can be defined also on IRpc. For example addition of two
intervals a = [a, a], b = [b, b] ∈ IRpc can be defined as

a +pc b = [↓(a+ b), ↑(a+ b)].

In the following text, we will keep working with IR, however, we keep in mind that
to obtain verified results algorithms must be implemented via IRpc. That is, when we
talk about the hull or enclosure we implicitly assume that its end-points are machine
representable.

There are many packages that handle computing with IRpc, e.g., Intlab for Mat-
lab and Octave [188], Octave interval package [62], libieee1788 for C++ [135] and
many others [113]. However, not all of them conform to the interval arithmetics stan-
dard IEEE 1788-2015 [162]. More on rounding and interval arithmetics can be found
in, e.g. [132, 133, 139].

3.10 Comparing quality of interval results
In this work we need to compare intervals or interval vectors (boxes) returned by
various methods. If two methods a and b return single intervals a and b respectively
(e.g., methods for computing the determinant of an interval matrix), the returned
solutions can be compared as

rat(a, b) = wid(a)
wid(b) . (3.8)

If the two methods return n-dimensional interval vectors a = (a1, . . . ,an) and b =
(b1, . . . , bn) respectively, their quality is compared as the average ratio of widths of
the corresponding elements ∑︁n

i=1 rat(ai, bi)
n

. (3.9)

Only rarely will it be compared as ∑︁n
i=1 wid(ai)∑︁n
i=1 wid(bi)

. (3.10)
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In each comparison we use a reference method, i.e., a method to which other methods
are compared. In the text, the previous formulas are used in the following way. The
method b (the second one) is always the reference method and a is the method com-
pared to it. Hence, if the ratio is > 1, then the method a is worse than b, if the ratio
is < 1, then the intervals returned by a are tighter than the ones by b.

3.11 How we test
Most of the chapters need to compare more methods for solving a certain interval
problem. Features of each method can be demonstrated by special cases (particular
interval matrix or system, etc.). Nevertheless, to compare methods more thoroughly,
we test them on larger sets of random problems. Of course, the problems in real
applications are not exactly random, however, in some cases the testing on random
systems gives us a hint about the natural behavior of the methods.

If not stated otherwise, the tests are computed using the two settings:

1. DESKTOP – computationally demanding tests run on a desktop machine with 8-
CPU machine Intel(R) Core(TM) i7-4790K, 4.00GHz, 15937 MB RAM, Octave
4.0.3., Octave Interval package 3.0.0.

2. LAPTOP – computationally not so exhaustive tests are executed on laptop with
Intel Core i5-7200U – 2.5GHz, TB 3.1GHz, HyperThreading; 8GB DDR4 mem-
ory. Octave 4.2.2, Octave Interval package 3.2.0.

Most of the methods tested here are implemented in interval toolbox LIME (see
more in Chapter 12), which is built on Oliver Heimlich’s [62] interval package for
Octave.
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• M-matrices and inverse nonnegative matrices
• Strictly diagonally dominant matrices
• H-matices
• Regular and strongly regular matrices
• Relations between matrix classes
• Other types of matrices

We defined general interval matrices in the previous chapter. However, there
is a large variety of special types of interval matrices. Many of them emerged as
generalization of notions from the classical linear algebra. Nevertheless, in this chapter
we focus only on interval matrices. For more insight into real matrices see, for example,
the works [19, 41, 91, 150].

Some of the classes of interval matrices have favorable properties (easily com-
putable inverse, regularity etc.) and algorithms usually work well for them. We feel
the necessity of characterizing the distinct classes of interval matrices, their features
and links between them, since we believe it would increase the understanding of the
rest of the work. This chapter is loosely based on Chapter 3 and 4 from Neumaier’s
book [139]. We focus on the most common types of matrices that are usually used
in connection with quality of solving interval linear systems and related problems. In
this short chapter we re-structure Neumaier’s material and add some new examples
and comments to make the relations between the classes of matrices more visible and
clear. The final Figure 4.1 illustrates the relationships between the classes of interval
matrices.

4.1 Regular matrices
Regular matrices are of special importance.

Definition 4.1 (Regular matrix). A square interval matrix A is regular if every A ∈ A
is nonsingular.

Note that there is a slight terminology confusion in addressing the similar quality
of real and interval matrices.
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real matrices → nonsingular
interval matrices → regular

The interval matrices that are not regular are called singular as in the case of real
matrices.

In Chapter 11 we show that checking regularity is generally a coNP-complete
problem. There exist a lot of sufficient and necessary conditions for regularity of
interval matrices [179]. All of them are of exponential nature.

Fortunately, there are some polynomially computable sufficient conditions and
not explicitly exponential algorithms for checking regularity [38, 96, 163, 164]. The
following useful condition is from [164].

Theorem 4.2. A square interval matrix A is regular if for some real matrix R the
following condition holds

ϱ(|I −RAc| + |R|A∆) < 1.

Particularly, if Ac is regular, then for R = A−1
c the condition reads ϱ(|A−1

c |A∆) < 1.

It can be shown that if the first condition holds for some R then

ϱ(|A−1
c |A∆) ≤ ϱ(|I −RAc| + |R|A∆),

which makes the midpoint inverse a kind of optimal choice. Later we use the following
simple consequence of Theorem 4.2.

Corollary 4.3. A square interval matrix A with Ac = I is regular if

ϱ(A∆) < 1.

4.2 M-matrices
In many applications matrices of a special form, called Z-matrices, appear [7, 18, 19,
39].

Definition 4.4 (Z-matrix). A square real matrix A is called a Z-matrix if aij ≤ 0
for every i ̸= j. A square interval matrix A is called a Z-matrix, if every A ∈ A is a
Z-matrix.

By adding more restriction to Z-matrices we obtain an important subclass of
interval matrices.

Definition 4.5 (M-matrix). An interval matrix A is an M-matrix if it is a Z-matrix
and there exists 0 < u ∈ Rn such that Au > 0 (understood component-wise).
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According to [150] the term “M-matrix” was first used by Ostrowski in [146]
where he studied such matrices extensively. They are often connected to various prob-
lems in mathematics, biology, physics, etc. For more applications and properties of real
M-matrices one can see [19, 41, 150]. Another feature of M-matrices is computational,
since many algorithms behave well when working with an M-matrix.

Before stating the equivalent characterization of M-matrices, we need to specify
what do we mean by an inverse interval matrix, a principal minor and a P-matrix.

Definition 4.6 (Inverse interval matrix). Let us have a regular interval matrix A.
We define its interval inverse matrix A−1 as

A−1 = [B, B],

Bij = min{(A−1)ij | A ∈ A},

Bij = max{(A−1)ij | A ∈ A},

for i, j = 1, . . . , n.

Definition 4.7 (Principal minor). For a square matrix a principal matrix occurs when
deleting some rows of the matrix and also the corresponding columns with the same
indices. A determinant of a principal matrix is called a principal minor.

Definition 4.8 (P-matrix). A square real matrix is a P-matrix if its every principal
minor is positive. A square interval matrix A is a P-matrix if every A ∈ A is a
P-matrix.

Theorem 4.9. The following statements are equivalent

1. A is an M-matrix,

2. every A ∈ A is an M-matrix,

3. A,A are M-matrices,

4. A is a regular Z-matrix and A−1 = [A−1
, A−1] ≥ 0,

5. A is a Z-matrix and P-matrix.

The statements 1.–4. come from [139]. The statement 2. implies that if A is
an M-matrix and B ⊆ A, then B is also an M-matrix. From 4. we can see that
M-matrices are inverse nonnegative matrices (see the next section). The statement 5.
is a simple generalization of the similar claim for real matrices [150]. To check that
a matrix is an M-matrix, the statement 4. gives a hint how to find a positive vector
u proving that A is an M-matrix. First, solve the system Au = e. Because A−1

should be nonnegative, for the solution u it should hold that u = A−1e > 0. Second,
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check whether Au > 0. The check needs to be performed in a verified way. It is
also possible to exploit the statement 3. If both A,A are Z-matrices and their verified
inverse is nonnegative, then A is an M-matrix. From 4. it can be seen that M-matrices
are regular. For a more detailed proof see e.g., [139] Regarding 5., computation of
determinants of interval matrices can be used. For example, a tight enclosure of a
determinant of a 2 × 2 interval matrix can be expressed as

det
⎛⎝a11 a12

a21 a22

⎞⎠ = a11 · a22 − a12 · a21.

This topic is further elaborated in Chapter 8.

Example 4.10. Let us have the matrix

A =
⎛⎝ 2 −1

[−2, 0] 2

⎞⎠ .
Clearly A is a Z-matrix. Furthermore, A is an M-matrix since all principal minors
are positive det(A1) = 2, det(A2) = 2, det(A12) = [2, 4].

Example 4.11. Let us show another way to prove that the Z-matrix A from the
previous example is an M-matrix. For

u =
⎛⎝ 1

1.5

⎞⎠ we see that Au =
⎛⎝ 0.5

[1, 3]

⎞⎠ > 0.

4.3 Inverse nonnegative matrices
From previous section it is already known that every M-matrix has a nonnegative
inverse. M-matrices are part of a larger class of interval matrices.

Definition 4.12 (Inverse nonnegative). A square interval matrix A is called inverse
nonnegative if A is regular and A−1 ≥ 0.

For such a class of matrices there is a theorem by Kuttler in [117] which gives us
explicit bounds on a matrix inverse.

Theorem 4.13 (Kuttler). Let A be an interval matrix. If its lower and upper bounds
A,A are regular and A−1, A

−1 ≥ 0 then A is regular and

A−1 = [A−1
, A−1] ≥ 0.

Example 4.14. If we take the already known matrix

A =
⎛⎝ 2 −1

[−2, 0] 2

⎞⎠ ,
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using the algebraic formula for inverse of a real 2 × 2 matrix we can inspect both
inverses of A and A

A−1 =
⎛⎝1 0.5

1 1

⎞⎠ , A
−1 =

⎛⎝0.5 0.25
0 0.5

⎞⎠ ,
and according to Kuttler’s theorem we get

A−1 = [A−1
, A−1] =

⎛⎝[0.5, 1] [0.25, 0.5]
[0, 1] [0.5, 1]

⎞⎠ ,
which confirms that A is an inverse nonnegative matrix. Notice that A−1 is not regular
since it contains, for example, the singular matrix⎛⎝0.5 0.5

0.5 0.5

⎞⎠ .
Example 4.15. According to Kuttler’s theorem, the matrix

B =
⎛⎝ −2 1

[5, 6] −2

⎞⎠
has the inverse

B−1 =
⎛⎝ [1, 2] [0.5, 1]

[2.5, 5] [1, 2]

⎞⎠ .
which proves that B is inverse nonnegative, although it is not a Z-matrix (also not an
M-matrix). Hence, not every inverse nonnegative matrix must be an M-matrix.

4.4 H-matrices
H-matrices are a generalization of M-matrices by lifting the condition on signs of ma-
trix off-diagonal elements. The class of H-matrices inherits some favorable properties
from M-matrices; regularity, for example (see [139]). We define an H-matrix using a
comparison matrix.

Definition 4.16 (Comparison matrix). For a square real matrix A its comparison
matrix ⟨A⟩ is defined as

⟨A⟩ii = Aii,

⟨A⟩ij = −|Aij| for i ̸= j.

For a square interval matrix A its comparison matrix ⟨A⟩ is defined as

⟨A⟩ii = mig(Aii),
⟨A⟩ij = − mag(Aij) for i ̸= j.
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Note that ⟨A⟩ is forced to be a Z-matrix.

Definition 4.17 (H-matrix). A square real matrix A is an H-matrix if ⟨A⟩ is an
M-matrix. A square interval matrix A is an H-matrix if ⟨A⟩ is an M-matrix.

Hence checking of H-matrix property can be transformed to checking M-matrix
property. The following equivalent conditions can be found in Neumaier [139].

Theorem 4.18. The following statements are equivalent:

1. A is an H-matrix,

2. every A ∈ A is an H-matrix,

3. ⟨A⟩ is regular and ⟨A⟩−1e > 0.

Example 4.19. If A is an M-matrix, then ⟨A⟩ = A, which is according to Theorem
4.9 also an M-matrix. Therefore, every M-matrix is also an H-matrix.

Example 4.20. The slightly changed matrix from Example 4.10

A =
⎛⎝ 2 1

[0, 2] 2

⎞⎠

is not an M-matrix, however ⟨A⟩ =
⎛⎝ 2 −1

−2 2

⎞⎠ which is an M-matrix, hence A is an

H-matrix because its inverse is

⟨A⟩−1 =
⎛⎝1 0.5

1 1

⎞⎠ ≥ 0.

Example 4.21. Every regular lower or upper triangular matrix is an H-matrix [139].

Example 4.22. Every matrix that is sufficiently close to the identity matrix is also
an H-matrix, i.e., every matrix that satisfies

∥I − A∥ < 1,

for some consistent matrix norm is an H-matrix [139].

Nevertheless, there exist inverse nonnegative matrices that are not H-matrices.

Example 4.23. The inverse nonnegative matrix from Example 4.15 is not even an
H-matrix, because its comparison matrix is not an M-matrix (its determinant is −2).
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4.5 Strictly diagonally dominant matrices
The condition for H-matrices ⟨A⟩u > 0 can be rewritten for u = (1, . . . , 1)T as

mig(aii) >
∑︂
k ̸=i

mag(aik), for i = 1, . . . , n. (4.1)

Definition 4.24 (Strictly diagonally dominant matrix). A square interval matrix A
satisfying the condition 4.1 is called strictly diagonally dominant.

Clearly, according to its definition, every strictly diagonally dominant matrix is
an H-matrix. Therefore it is also regular. Whenever a (preconditioned) matrix is close
to the identity matrix then it is strictly diagonally dominant (and also an H-matrix).

Example 4.25. If ∥I − A∥∞ < 1 then A is strictly diagonally dominant.

Example 4.26. The matrix

A =
⎛⎝ 2 [−1, 0]

[−1, 0] 2

⎞⎠
is strictly diagonally dominant and also an M-matrix (hence also inverse nonnegative).

Example 4.27. Not every strictly diagonally dominant matrix is an M-matrix. The
strictly diagonally dominant matrix

A =
⎛⎝ −2 [0, 1]

[0, 1] −2

⎞⎠
is not an M-matrix because it is not a Z-matrix. Moreover, A is not inverse nonnegative
since

A−1 =
⎛⎝−2 0

0 −2

⎞⎠−1

=
⎛⎝−0.5 0

0 −0.5

⎞⎠ .
Example 4.28. There exists an H-matrix that is not an M-matrix, not strictly diag-
onally dominant and not inverse nonnegative. The matrix

A =
⎛⎝ 2 1

[0, 2] 2

⎞⎠
is not an M-matrix (it is not a Z-matrix), but it is an H-matrix. It is clearly not
strictly diagonally dominant. And since

A−1 =
⎛⎝2 1

0 2

⎞⎠−1

=
⎛⎝0.5 −0.25

0 0.5

⎞⎠ ,
it is not inverse nonnegative.
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Example 4.29. The slightly adapted matrix from Example 4.26

A =
⎛⎝ 2 [−1, 0]

[−1, 0] 1

⎞⎠ ,
is an M-matrix, however it is not strictly diagonally dominant.

Example 4.30. There exists an H-matrix that is neither an M-matrix nor strictly
diagonally dominant, but it is inverse nonnegative. The matrix

A =

⎛⎜⎜⎝
[1, 1 + ε] −1 1

0 1 −2
0 0 1

⎞⎟⎟⎠ , for ε > 0,

is not an M-matrix (because it is not a Z-matrix), but it is an H-matrix since

⟨A⟩−1 =

⎛⎜⎜⎝
1 1 3
0 1 2
0 0 1

⎞⎟⎟⎠ ≥ 0.

A is clearly not strictly diagonally dominant. It is inverse nonnegative since

A−1 =

⎛⎜⎜⎝
1 1 1
0 1 2
0 0 1

⎞⎟⎟⎠ ≥ 0

and, according to the Sherman–Morison formula,

A
−1 =

⎛⎜⎜⎝
1

1+ε
1

1+ε
1

1+ε

0 1 2
0 0 1

⎞⎟⎟⎠ ≥ 0.

Example 4.31. There exists an H-matrix, that is not an M-matrix and is both strictly
diagonally dominant and inverse nonnegative. The matrix

A =

⎛⎜⎜⎝
[11/30, 11/30 + ε] −0.1 1/30

−0.1 0.3 −0.1
1/30 −0.1 11/30

⎞⎟⎟⎠ , for some ε > 0,

is not an M-matrix (because it is not a Z-matrix). The matrix is clearly strictly
diagonally dominant. It is an H-matrix since for its comparison matrix

⟨A⟩ =

⎛⎜⎜⎝
11/30 −0.1 −1/30
−0.1 0.3 −0.1

−1/30 −0.1 11/30

⎞⎟⎟⎠ ,
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and u = (1, 1, 1)T > 0 it holds that ⟨A⟩u > 0. Finally, it is inverse nonnegative since

A−1 =

⎛⎜⎜⎝
3 1 0
1 4 1
0 1 3

⎞⎟⎟⎠ ≥ 0.

and, according to the Sherman–Morrison formula,

A
−1 =

⎛⎜⎜⎝
3

1+3ε
1

1+3ε
0

1
1+3ε

4+11ε
1+3ε

1
0 1 3

⎞⎟⎟⎠ ≥ 0.

4.6 Strongly regular matrices
Usually, before computing with an interval matrix some kind of preconditioning is
applied. It means a matrix A is multiplied with a real regular matrix C

A ↦→ CA.

Such a resulting matrix might possess properties more suitable for further processing
(for example it will prevent growth of intervals’ widths). A usual preconditioner is
C = A−1

c . Of course, in finite arithmetic we can not often get precise midpoint inverse.
Nevertheless, we can use C ≈ A−1

c . If we precondition with the midpoint inverse, first
thing we want is A−1

c A to be regular.

Definition 4.32 (Strongly regular matrix). Let A be a square interval matrix. Let
Ac be regular. If A−1

c A is regular, then A is called strongly regular.

In [139] there are many useful conditions for deciding strong regularity.

Theorem 4.33. Let A be a square interval matrix and Ac be regular, then the following
statements are equivalent:

1. A is strongly regular,

2. AT is strongly regular,

3. ϱ(|A−1
c |A∆) < 1,

4. ∥I − A−1
c A∥ < 1 for some consistent matrix norm,

5. A−1
c A is an H-matrix.

Note that the statement 3. is a sufficient condition for regularity, hence every
strongly regular matrix is regular. Let us comment on the statement 4. When, as-
suming the exact arithmetics, A is preconditioned by A−1

c , the resulting matrix has
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an identity matrix I as its midpoint. Hence we can view the resulting interval matrix
as wrapping around I. To maintain its regularity, such a matrix cannot reach too far
from I, which we can formulate as ∥I − A−1

c A∥ < 1.
We can also apply preconditioning from both sides

A ↦→ C1AC2.

However, that does not extend the class of strongly regular matrices [139].

Theorem 4.34. Let A be a square interval matrix and C1, C2 be square real matrices.
Suppose that C1AC2 is an H-matrix, then A is strongly regular.

Example 4.35. If we set C1 = C2 = I in Theorem 4.34, then it implies that every
H-matrix is strongly regular.

Here we have an example from [139] that not every regular matrix is strongly
regular.
Example 4.36. The matrix

A =
⎛⎝[0, 2] 1

−1 [0, 2]

⎞⎠
is regular (e.g., since det(A) = [1, 5] > 0). We have

A−1
c =

⎛⎝0.5 −0.5
0.5 0.5

⎞⎠ and A∆ =
⎛⎝1 0

0 1

⎞⎠ ,
hence,

ϱ(|A−1
c |A∆) = ϱ

⎛⎝0.5 0.5
0.5 0.5

⎞⎠ = 1,

which, according to Theorem 4.33, means A is not strongly regular.
Example 4.37. The matrix from Example 4.15 is strongly regular.
Example 4.38. Regular matrices with inverse nonnegative midpoint are strongly
regular [139]. Hence inverse nonnegative matrices are strongly regular too.

However, not every strongly regular matrix is inverse nonnegative.
Example 4.39. The matrix

A =
⎛⎝[0, 1] 1

−1 [0, 1]

⎞⎠ ,
is regular (because det(A) = [1, 2]), and it is strongly regular because ϱ(|A−1

c |A∆) =
0.6 < 1. Nevertheless, its inverse is

A−1 =
⎛⎝[0.5, 1] [−1,−0.5]

[0.5, 1] [0, 1]

⎞⎠ ,
which means A is not inverse nonnegative.
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4.7 Mutual relations
For the sake of clarity, the relations between the mentioned classes of interval matrices
are captured in Figure 4.1.

4.8 More on interval matrices
There is a survey on properties of matrices that are computable in polynomial time
is [75]. Discussion about the relationship between regularity and singularity can be
found in [186]. We saw that when upper and lower bound matrix is an M-matrix
then the whole interval matrix is an M-matrix. When checking a certain property for
certain boundary matrices implies the property for all matrices included in the interval
matrix, it is called interval property. There is a survey paper on such matrices [50].
A survey devoted to checking various matrix properties is [173]. Results regarding
positive definiteness, stability and P-matrices can be found there. More on interval
P-matrices can be found, e.g., in [20, 73, 185]. Other results regarding stability are
[31, 63, 199]. For more on totally nonnegative interval matrices see [1, 44]. To know
more about sign regular matrices see [2, 45]. For information about matrices with
parametric dependencies see [76, 153]. Complexity issues related to interval matrices
can be found in [112, 85]. More about inverse interval matrix can be found in [169, 183].
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Figure 4.1: Inclusion relations between the mentioned classes of interval matrices;
SDD (strictly diagonally dominant matrices), M (M-matrices), H (H-matrices). The
numbers refer to examples that show existence of an interval matrix lying in the
intersection of two particular classes. The darker area corresponds to the set of inverse
nonnegative matrices.



5 Square interval linear systems

▶ Solution set of an linear system
▶ Interval hull and enclosure
▶ Verified solution of a real system
▶ Preconditioning
▶ Direct and iterative methods for enclosures
▶ Comparison of methods
▶ Shaving method

Interval linear systems form a crucial part of interval linear algebra. Moreover,
many linear algebraic problems can be transformed to solving a square interval system.
That is why in this chapter we deal with solving square interval systems first. We
define what do we mean by the solution set of an interval linear system. We discuss a
characterization of a solution set. As this set might be of a complex shape it is usually
enclosed with an n-dimensional box for further processing. We address computation
of the tightest n-dimensional box enclosing this set (the hull). However, computing
the hull is an NP-hard problem, that is why we sometimes need to be satisfied with a
larger box (an enclosure). Of course, the tighter the enclosure is the better. There are
various methods for computing enclosures of the solution set. We divide them into two
groups – the iterative methods and direct methods. We introduce some representatives
for each group – Krawczyk’s method, the Jacobi and Gauss–Seidel method as iterative
methods and the Hansen–Bliek–Rohn–Ning–Kearfott–Neumaier method and Gaussian
elimination as direct methods. Sometimes a verified solution of a real system is needed,
hence we describe Rump’s ε-inflation method, which can be also used as an enclosure
method. The related topics such as preconditioning, finding an initial enclosure and
stopping criteria are discussed as well. At the end we compare the mentioned methods,
since we need to know which method to use when solving of square interval systems
is later needed as a subtask of a problem. We also introduce and demonstrate our
shaving method introduced in [81] that is able to further improve obtained enclosures.
In this chapter we deal only with square interval systems, overdetermined systems are
described in the next chapter. We conclude the chapter with a list of further references.
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5.1 Solution set and its characterization
For the sake of clarity let us first define a system of interval linear equations or, as we
abbreviate it, an interval linear system. It can be defined as a set of all real systems
that are contained within bounds given by an interval matrix and an interval vector.
Definition 5.1 (Interval linear system). For an m × n interval matrix A and an m-
dimensional interval vector b we call the following structure an interval linear system

{Ax = b | A ∈ A, b ∈ b}.

Note that when a matrix (vector) is selected from an interval matrix (vector)
each coefficient is selected independently. For the sake of simplicity it will be denoted
by

Ax = b.

When m = n holds, in another words a system has the same number of variables
and equations, we call it a square system. In practical applications, descriptions of
problems often lead to square systems. If m > n then a system is called overdetermined
and if m < n, then a system is called underdetermined. Moreover, solving of square
systems will be in later chapters useful for dealing with other problems, e.g., solv-
ing overdetermined systems, computing determinants, constructing the least squares
regression, etc.

First, it is necessary to define what is meant by the solution set of an interval
linear system.
Definition 5.2 (Solution set). The solution set Σ of an interval linear system Ax = b
is the defined as follows

Σ = {x | Ax = b for some A ∈ A, b ∈ b }.

Example 5.3. The following examples are inspired by [116]. The solution set of the
system ⎛⎝ [2, 4] [−2, 1]

[−1, 2] [2, 4]

⎞⎠x =
⎛⎝[−2, 2]

[−2, 2]

⎞⎠ ,
forms four spikes. To obtain its top left spike we take its subsystem⎛⎝[2, 4] [0, 1]

[0, 2] [2, 4]

⎞⎠x =
⎛⎝[−2, 0]

[0, 2]

⎞⎠ .
Both solution sets are depicted in Figure 5.1.

If the solution set Σ corresponding to Ax = b is nonempty, we call the system
(weakly) solvable. If it is empty, we call the system unsolvable. If every real system
(Ax = b) ∈ (Ax = b) is solvable, we call the interval system strongly solvable. We
deal with unsolvability and solvability more in Chapter 7.

It can be seen that a solution set may be of a complicated shape – it is generally
nonconvex, however, it is convex in each orthant. The shape of the solution set is
described by the following theorem stated in [144].
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Figure 5.1: The solution sets of the interval linear systems from Example 5.3.

Theorem 5.4 (Oettli–Prager). Let us have an interval linear system Ax = b. Vector
x ∈ Rn is a solution of this system (x ∈ Σ) if and only if

|Acx− bc| ≤ A∆|x| + b∆.

Proof. There are various proofs of this theorem. The first proof was given in [144], a
constructive proof is given in [178] and a simple proof can be found in [139].

Such nonlinear inequalities can be for each orthant transformed into a set of
linear inequalities. That explains the convexity of the solution set in each orthant. We
will show the transformation in the next section.

5.2 Interval hull
Because a solution set might be of a complicated shape, for practical use its simplified
representation is more suitable. The simplest idea is to enclose it by an n-dimensional
box aligned with axes. If such a box is the tightest possible we call it the interval hull.
Let us define it more formally.
Definition 5.5 (Interval hull). When A is regular and Σ is the solution set of Ax = b,
the interval vector h = [h, h] given by

hi = min
x∈Σ

xi,

hi = max
x∈Σ

xi i = (1, . . . , n),

is called the interval hull.

The formula in the Oettli–Prager theorem can be rewritten using linear inequal-
ities only. The absolute values can be rewritten in the following way. We can get rid
of the first one by breaking it down into the two cases

Acx− bc ≤ A∆|x| + b∆, (5.1)
−(Acx− bc) ≤ A∆|x| + b∆. (5.2)
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The second absolute value can be rewritten with the use of knowledge of the orthant
we currently work with. The following holds

|x| = Dzx, where z = sign x.

That gives rise to the condition
0 ≤ Dzx. (5.3)

For every orthant the conditions (5.1), (5.2) and (5.3) form a system of linear
inequalities. Therefore we can use linear programming. Generally, we have to solve
(2n × 2n) linear programming problems (for each orthant in each coordinate compute
the upper and lower bound). That is obviously too much computing. However, if we
know some enclosure of the solution set (known in advance or computed with some of
the later mentioned methods), then we can apply linear programming to only those
orthants across which the enclosure stretches.

Of course, in both cases the linear programming needs to be verified. For infor-
mation about its verification see, e.g., [16, 106].

If we are unlucky, we must test all the exponentially many orthants. It is no
surprise since computing the exact hull is an NP-hard problem [184]. However, as we
will further see, for certain classes of matrices (or systems), the orthant search and
even linear programming could be avoided and there is much more convenient way to
compute the interval hull.

There are other methods for computing the hull which are also possibly of expo-
nential nature [3, 59, 94, 139, 176].

5.3 Enclosure of Σ
As computing the hull is generally a computationally difficult task, we must sometimes
lower our demands and compute only an interval box containing the solution set Σ.
Of course, the tighter is the box the better.

Definition 5.6 (Enclosure). For an interval system Ax = b any x ∈ IRn such that

Σ ⊆ x

is called an enclosure.

As enclosing the solution set of an interval linear system is a crucial task ap-
plicable to many other problems, in the next two chapters the main goal will be the
following:

Problem: Compute a tight enclosure of the solution set of Ax = b.

In another words our goal is always to compute the tightest enclosure in a rea-
sonable amount of time. Note that in this work we address both the computation of
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hull and the computation of enclosure as solving. Sometimes, we refer to an enclosure
of the solution set of an interval linear system just as enclosure of the interval linear
system.

In order to obtain a finite enclosure we need the solution set to be bounded.
Rohn proved in [171] that the solution set is bounded if and only if A is regular.
Regularity can be checked by means discussed in Chapter 4.

In the rest of the chapter we are going to introduce various approaches to this
problem. Before that, we briefly explain the concept of preconditioning borrowed from
numerical mathematics.

5.4 Preconditioning of a square system
In the case of interval systems preconditioning means transforming the system into a
more feasible form for further processing. Mostly, to overcome uncontrollable growth
of widths of intervals during computation. Here we assume that A is a square matrix.
The general transformation is

Ax = b ↦→ (CA)x = (Cb),
where C is a real square matrix of a corresponding size.

The most promising choice is usually C = A−1
c . It is also optimal from a certain

viewpoint [139]. Such a preconditioning leads to a new system where the matrix has I
as a midpoint (if we assume exact arithmetics). Such matrices are theoretically nice.
As we saw in the previous chapter our goal is to transform A into an H-matrix. That
is why strongly regular matrices play a prominent role in our problems, specially in
solving of interval linear systems.

Because we work only with finite arithmetics a typical choice is preconditioning
with approximate midpoint inverse, i.e., C ≈ A−1

c .
Unfortunately, beside the positive effect of preconditioning, it will often enlarge

the solution set of the new system. This is the cost we need to pay.
Example 5.7. Let us take the first system from Example 5.3 and use two precondi-
tioning matrices

C1 ≈ A−1
c =

⎛⎝ 3 −0.5
0.5 3

⎞⎠−1

, C2 ≈

⎛⎝3 0
0 3

⎞⎠−1

.

The solution sets of the two new resulting systems are depicted in Figure 5.2. In the
first case the hull of the new system is

h1 =
⎛⎝ [−14, 14]

[−14, 14]

⎞⎠ .
However, in the second case the hull remains the same.

h2 =
⎛⎝ [−4, 4]

[−4, 4]

⎞⎠ .
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Figure 5.2: The two preconditionings from Example 5.7 – C1(left) and C2 (right).
The darker area is the original solution set, the lighter area is the solution set of the
preconditioned system.

This is no coincidence since preconditioning with a diagonal matrix D where
Dii ̸= 0 preserves the original solution set [143]. This can be used for example when
A is strictly diagonally dominant [189].

The preconditioning by A−1
c is not always the optimal choice [74, 103]. There are

other possibilities [59, 105] of preconditioning. In some cases the preconditioning is
not favorable, e.g., when applying Gaussian elimination on a system where the matrix
is an M-matrix [139]. In some cases preconditioning can even be avoided [201].

5.5 ε-inflation method
In further text we are also going to need a verified enclosure of a solution of a real
square linear system. That is why we start with this topic first. It seems to be the
same problem as solving an interval system because we need to enclose the coefficients
of the real system with intervals to prevent rounding errors anyway. This is basically
true. However, the radii of intervals are extremely small and hence specific methods
can be used that return tight enclosures and are fast. We chose to present an efficient
method introduced by Rump in his dissertation thesis [190]. In English it is described,
e.g., in [191, 196]. Here we use the version described in [196].

Let us have a square real system Ax = b with a nonsingular A. Our goal is to
compute a tight verified enclosure of x = A−1b. Many methods introduced later start
with some initial enclosure of the solution and try to contract it or shave it. This
method follows a rather opposite approach. It starts with some approximation of the
solution. Let us say ˜︁x = Cb,

where C ≈ A−1. The initial degenerated enclosure x(0) = [˜︁x, ˜︁x] is then being inflated
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until a certain condition is met

y := x(k) · [0.9, 1.1] + [−ε, ε],
x(k+1) := Cb+ (I − CA)y.

Relative inflation by the interval [0.9, 1.1] and absolute inflation by the interval [−ε, ε]
for some small ε (Rump chooses ε = 10−20) are used. Both of the intervals are set
empirically. If at some iteration point

x(k+1) ⊆ interior(y)

holds, then according to the fix point theorem [189] we know that A and C are regular
and

A−1b ∈ x(k+1).

If ϱ(I − CA) < 1, then the algorithm converges [196]. The algorithm works also for
interval matrices (one can just replace A, b with A, b respectively). The algorithm
works also for multiple right-hand sides at once, hence it can be used to compute a
verified inverse of a real matrix.

5.6 Direct computation
As we implied in the introduction, in this work we distinguish between methods with
direct computation and methods with iterative computation. We start with direct
methods first. The number of steps that a direct method executes can be counted in
advance and for every size of input they basically provide the same number of steps.

5.6.1 Gaussian elimination
Interval version of Gaussian elimination has already been described many times, see
[3, 58, 139]. It works similarly to real Gaussian elimination. Only some minor changes
are needed. First, for elimination into row echelon form we use interval arithmetics
instead of the real one. Second, if we view the elimination process as simultaneous
elimination on all real systems contained in an interval system, then we can put an
interval [0, 0] instead of each eliminated element under a pivot.

Example 5.8. Notice the elimination of the element under the pivot by subtraction
of the first row from the second one.⎛⎝[1, 2] [1, 2]

[1, 2] [3, 3]

⎞⎠ ∼

⎛⎝[1, 2] [1, 2]
[0, 0] [1, 2]

⎞⎠ .
Solving of an interval system consists of two phases – elimination and backward

substitution (described as Algorithm 5.9 and 5.10 respectively).
The elimination assumes that pivot intervals do not contain zero. Sometimes a

matrix can be rearranged in such a form. However, as shown in [3], such a rearrange-
ment might not exist even if A is regular. Nevertheless, the elimination can be carried
out without row interchange for H-matrices and tridiagonal matrices [3].
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Algorithm 5.9 (Elimination phase). The algorithm takes an interval matrix A and
an interval vector b of the corresponding size and eliminates the matrix (A | b) into
row echelon form.

1. For rows i = 1, . . . , (n− 1) do the following steps.

2. For j ∈ {i, . . . , n} a find row with 0 /∈ aji.

3. If such row cannot be found, notify that A is possibly singular.

4. For every row j > i set

aji := [0, 0],

a(j,i+1:n) := a(j,i+1:n) − aji

aii

· a(i,i+1:n),

bj := bj − aji

aii

· bi.

The step 2. can be combined with some kind of pivoting. As in [61] we select a
pivot with the smallest mignitude (mignitude pivoting).
Algorithm 5.10 (Backward substitution). The algorithm takes (A | b) in the row
echelon form and computes enclosures of all variables by systematic substitution from
below.

1. For each row i = n, . . . , 1 do the following steps.

2. Compute enclosure of xi as

xi = 1
aii

⎛⎝bi −
n∑︂

j=i+1
aijxi

⎞⎠ .
Gaussian elimination without preconditioning may work when intervals are small.

However Gaussian elimination generally suffers from multiple use of interval coeffi-
cients during elimination. The widths of resulting interval enclosures tend to grow
exponentially. For more information on such a phenomenon see, e.g., [133, 196].
Example 5.11. Let Ac be the 10 × 10 Toeplitz matrix with the first row equal to
(1, 2, 3, 4, . . . , 9, 10)T . Let bc be (1, 1, . . . , 1)T . The radii of all intervals are set to 10−6.
Widths of variable enclosures returned by Gaussian elimination without precondition-
ing are shown in Table 5.1. In each next coefficient the width of enclosure widens
“roughly” by 3.

Fortunately, for special classes of matrices this algorithm works (at least theoret-
ically) well. It can be performed without preconditioning on H-matrices with certain
overestimation and it returns the hull for M-matrices and b > 0 or 0 ∈ b or b > 0
[139]. For other classes of matrices use of preconditioning might be needed. Gaussian
elimination with preconditioning can be proved to work better than the later intro-
duced Jacobi and Gauss–Seidel method [139]. Gaussian elimination was also a subject
to various improvements, e.g., [42, 49].



5.6. Direct computation 49

Table 5.1: Overestimation of variable enclosures by Gaussian elimination and back-
ward substitution without preconditioning from Example 5.11. The first column indi-
cates a variable; the width of each variable enclosure is (α · 10e).

variable α 10e

x10 1.08 10−2

x9 2.62 10−2

x8 8.69 10−2

x7 2.97 10−1

x6 1.01 100

x5 3.46 100

x4 1.18 101

x3 4.03 101

x2 1.38 102

x1 1.67 102

5.6.2 The Hansen–Bliek–Rohn–Ning–Kearfott–Neumaier method
This method was first developed by Hansen in [57] and also independently by Bliek
in his dissertation thesis. The stronger results were reformulated by Rohn in [167]
using only one matrix inverse. In [143], Ning and Kearfott generalized the method for
H-matrices. A simpler proof was given by Neumaier in [140]. The following version of
the theorem is from [143]. For simplicity we refer to this method as the HBR method.

Theorem 5.12 (HBR). Let Ax = b a square interval system, with A being an
H-matrix of order n,

u = ⟨A⟩−1 mag(b), di = (⟨A⟩−1)ii,

and
αi = ⟨A⟩ii − 1/di, βi = ui/di − mag(bi),

for i = 1, . . . , n. Then Σ is contained in x with components

xi = bi + [−βi, βi]
Aii + [−αi, αi]

,

for i = 1, . . . , n.

This method has a nice feature; when Ac is a diagonal matrix, then the returned
x is the hull, the proof can be found found in [140, 143]. In this theorem only one
computation of a verified matrix inverse is needed. The verified bounds on ⟨A⟩−1 can
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Figure 5.3: Two colliding projectiles and the area of interest.

be computed using the ε-inflation method. Another approach for finding the upper
bound on ⟨A⟩−1 can be found in [140].

5.7 Iterative computation
In iterative computation we usually start with an initial enclosure x(0) containing the
solution set. Nevertheless, some methods do not require that. If they are given a
box containing only a part of the solution, they compute an enclosure of this part, if
they are given a box with no solution, they can usually recognize that. Such methods
generate a sequence of enclosures

x(0),x(1), . . . ,x(k),x(k+1).

Such a sequence is often nested

x(0) ⊇ x(1) ⊇ · · · ⊇ x(k) ⊇ x(k+1).

Regarding the sequence, three issues need to be addressed — how to determine x(0),
how to derive x(k+1) from x(k) and how to stop the iteration. We start with the
first and the third issue. The second one depends on a particular method – we later
introduce approaches by Krawczyk’s method, the Jacobi method and the Gauss–Seidel
method.

5.7.1 Initial enclosure
All the next methods rely on some existing enclosure x(0) of the solution set. There
are some ways how to determine an initial enclosure. First, we might guess it from
the nature of a problem to be solved.

Example 5.13. Let us have two projectiles A,B as depicted in Figure 5.3. Both
projectiles move with a known constant velocity in directions having some added un-
certainty. We might be interested in whether it is possible that the two projectiles
collide in the marked area. For example, when we know that there is a city in this
area, we are extremely interested in solutions only in this area.

Second, we can compute an initial enclosure using some direct method and try
improve it iteratively. This approach will be later used for overdetermined interval
linear systems.

And third, we can use an explicit formula giving us an initial enclosure. For
example the next proposition comes from [139].
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Proposition 5.14. Let Ax = b be a square interval system and C be a square real
matrix of the corresponding size. If it holds that

⟨CA⟩u ≥ v > 0, for some u ≥ 0,
then

Σ ⊆ ∥Cb∥v[−u, u].

A good candidate for such a vector u may be an approximate solution of the
system ⟨CA⟩u = e and v can be set to v := ⟨CA⟩u. The argumentation behind this
can be also found in [139]. As usual, we use C ≈ A−1

c .
Sometimes much computationally easier initial enclosure can be obtained by

using just maximum norm [133], when we set A′ = I − CA and ∥A′∥ < 1 (CA is an
H-matrix), then

Σ ⊆ ∥Cb∥
1 − ∥A′∥

[−e, e]. (5.4)

5.7.2 Stopping criteria
The stopping criterion reflects similarity of two consequent enclosures in a nested se-
quence. Unless stated otherwise stopping criterion will be a combination of maximum
number of steps (usually 20) and the following condition which takes into account
the difference of lower and upper bounds separately. For two subsequent enclosures
x(k),x(k+1) we stop when

|x(k) − x(k+1)| < ε and |x(k) − x(k+1)| < ε,

where ε is a vector with all coefficients equal to some small positive number. It can
be heuristically preset with respect to widths of intervals,

ε ≈ min
ij

(wid(Aij)) × 10−5. (5.5)

5.7.3 Krawczyk’s method
The method is described in e.g., [133, 139]. For a given interval linear system Ax = b
let us suppose there is an initial enclosure x(0) ⊇ Σ. For every x = A−1b, where
A ∈ A, b ∈ b and C being a suitable real matrix it holds that

x = A−1b = Cb− (CA− I)A−1b ∈ Cb − (CA − I)x(0).

Hence, the iteration is
y(i+1) := Cb − (CA − I)x(i),

x(i+1) := y(i+1) ∩ x(i).

Due to the intersection the algorithm creates a sequence of nested interval vec-
tors. Another point of view on Krawczyk’s method is that it is a restriction of a more
general method for nonlinear systems to linear systems only [110]. This method is
very simple and better enclosures can be obtained by other methods. An advantage
is that when a preconditioner C is available there are no divisions in the algorithm
(unlike in the further introduced Jacobi and Gauss–Seidel method).
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5.7.4 The Jacobi and Gauss–Seidel method
In this subsection we discuss the well-known iterative algorithms – the Jacobi method
and the Gauss–Seidel method. Both methods need some initial enclosure x(0). First,
let us start with the Jacobi method. The ith equation of a real system Ax = b is the
following

ai1x1 + ai2x2 + · · · + aiixi + · · · + ainxn = bi.

The variable xi can be expressed as

xi = 1
aii

[︃
bi − (ai1x1 + · · · + ai(i−1)xi−1 + ai(i+1)xi+1 + · · · + ainxn)

]︃
.

When we have an interval system Ax = b and a known enclosure x we get

xi ⊆ 1
aii

[︃
bi − (ai1x1 + · · · + ai(i−1)xi−1 + ai(i+1)xi+1 + · · · + ainxn)

]︃
.

This formula gives rise to iterative Algorithm 5.15.

Algorithm 5.15 (Jacobi method). Input is a square system Ax = b and some initial
enclosure of the solution set x(0). It returns an enclosure x of a solution set.

1. For each variable xi compute a new enclosure as

y
(k+1)
i = 1

aii

⎛⎝bi −
∑︂
j ̸=i

aijx
(k)
j

⎞⎠ for i = (1, . . . , n). (5.6)

2. Intersect with the old enclosure

xk+1 = xk ∩ yk+1.

3. Repeat steps 1. to 2. until stopping criteria are not met.

From the prescription of iterative improvement it is clear that it can be com-
puted in parallel for each variable. It is possible to rewrite (5.6) in a form that helps
mathematical software with optimized matrix multiplication:

y(k+1) = D−1(b − Jxk), (5.7)

where D is the main diagonal of A and J is A with the intervals on the main diagonal
set to [0, 0].

Example 5.16. In this example we show the differences between the two versions of
the Jacobi iteration (5.6) and (5.7). They were compared on random interval linear
systems. The midpoint coefficients of a system were taken independently uniformly
from interval [−10, 10] and then wrapped with intervals with radii 10−3. The simple
initial enclosure (5.4) was used and we set ϵ = 10−6. We tested using the DESK-
TOP setting. Both methods returned identical enclosures and did identical number
of iterations, only the computation times differed. For each size we took the average
computation time on 100 systems. The average computation times in seconds are dis-
played in Table 5.2. The average times include preconditioning. The matrix version
of the Jacobi method is clearly faster.
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Table 5.2: The two implementations of the Jacobi method (5.6) and (5.7) – average
computation times (in seconds), n is the number of variables of a system.

n Jacobi (5.6) matrix Jacobi (5.7)

10 0.26 0.07
20 0.52 0.07
30 0.92 0.08
40 1.31 0.10
50 1.72 0.11
60 2.25 0.14
70 2.67 0.17
80 3.21 0.20
90 3.76 0.25
100 4.37 0.30

The previous results need to be taken with caution, because they may be partly
system/software dependent. However, when optimized matrix multiplication is acces-
sible, we recommend to use the (5.7) version of the Jacobi algorithm.

The Gauss–Seidel method is an improvement of the Jacobi method. The only
difference is that it immediately uses the newly computed enclosures of variables.
Algorithm 5.17 (Gauss–Seidel method). Substitute the formula (5.6) in step 2. of
the Jacobi method by

y
(k+1)
i = 1

aii

⎛⎝bi −
∑︂
j<i

aijx
(k+1)
j −

∑︂
j>i

aijx
(k)
j

⎞⎠ for i = (1, . . . , n).

The advantage of the Gauss–Seidel method is its faster convergence, the draw-
back is that it cannot be parallelized. Since the the number of operations per one
iteration is the same as for the Jacobi method (5.6), when comparing the Gauss–Seidel
and the parallel Jacobi we could expect the similar results regarding computation time
as in Example 5.16. During experiments testing the fewer iterations did compensate
for much larger time needed per one iteration.

Both methods assume there are no intervals containing 0 on the main diagonal
of A. If this is not the case, then extended interval arithmetic can be used [133]. This
does not happen for Krawczyk’s method.

It is proved that when used with a preconditioner C, the Gauss–Seidel method
never yields worse bounds than any method based on matrix splitting of CA (i.e., the
Jacobi, Krawczyk’s, etc.) [139]. However, the Jacobi and the Gauss–Seidel practically
converge to the same enclosures.

When applied to a system with an M-matrix, both methods can be used with-
out preconditioning and return the hull. Similarly to Krawczyk’s method, for both
methods, if some ∅ ̸= y(k+1) ⊆ interior x(0) (the initial enclosure is strictly improved
during iterations) then it proves that A is an H-matrix [139].
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5.8 Small comparison of methods
In upcoming problems we are going to exploit existence of methods for solving square
interval linear systems. That is why at the end of this chapter we provide a small
comparison of the mentioned methods. We are going to compare:

• ge – Gaussian elimination with mignitude pivoting,

• jacobi – matrix version of the Jacobi method (5.7) with maximum number of
iterations set to 20 and ε chosen according to (5.5); for initial enclosure we use
the formula (5.4),

• krawczyk – Krawczyk’s method with the same setting as Jacobi,

• hbr – the Hansen–Bliek–Rohn method; the enclosure on ⟨A⟩−1 is computed using
the inflation method.

The suffix +pre means that the method is used with preconditioning by midpoint
inverse.

In [143] they compare several methods for computing enclosures of interval linear
systems; mostly variants of the HBR-method and Gaussian elimination. We borrow
their three examples and demonstrate also properties of other methods.

Example 5.18. Let us have the system Ax = b, where

A =

⎛⎜⎜⎜⎜⎜⎝
[4, 6] [−1, 1] [−1, 1] [−1, 1]

[−1, 1] [−6,−4] [−1, 1] [−1, 1]
[−1, 1] [−1, 1] [9, 11] [−1, 1]
[−1, 1] [−1, 1] [−1, 1] [−11,−9]

⎞⎟⎟⎟⎟⎟⎠ , b =

⎛⎜⎜⎜⎜⎜⎝
[−2, 4]
[1, 8]

[−4, 10]
[2, 12]

⎞⎟⎟⎟⎟⎟⎠ .

Note that A is a strictly diagonally dominant, hence Gaussian elimination can be used
without preconditioning [139]. The resulting enclosure is

xge =

⎛⎜⎜⎜⎜⎜⎝
[−2.60, 3.10]
[−3.90, 1.50]
[−1.43, 2.15]
[−2.35, 0.60]

⎞⎟⎟⎟⎟⎟⎠ .

When using the Jacobi method we obtain

xjacobi =

⎛⎜⎜⎜⎜⎜⎝
[−2.60, 3.10]
[−3.90, 1.65]
[−1.48, 2.15]
[−2.35, 0.79]

⎞⎟⎟⎟⎟⎟⎠ .
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Notice that in each interval coefficient at least one bound is exactly the same as in
xge. The HBR method returns the narrowest enclosure

xhbr =

⎛⎜⎜⎜⎜⎜⎝
[−2.50, 3.10]
[−3.90, 1.20]
[−1.40, 2.15]
[−2.35, 0.60]

⎞⎟⎟⎟⎟⎟⎠ ,

and since the midpoint matrix Ac of A is diagonal, it is the interval hull.

When A is an H-matrix and Ac is diagonal then it can be proved that xge ⊆ xjac

and in each interval coefficient has at least one bound the same [139]. Let us use
another example from [143], in which A is an M-matrix.

Example 5.19. Let us have a system Ax = b, where

A =

⎛⎜⎜⎝
[3.7, 4.3] [−1.5,−0.5] [0, 0]

[−1.5,−0.5] [3.7, 4.3] [−1.5, 0.5]
[0, 0] [−1.5,−0.5] [3.7, 4.3]

⎞⎟⎟⎠ , b =

⎛⎜⎜⎝
[−14, 14]
[−9, 9]
[−3, 3]

⎞⎟⎟⎠ .
Using the previously tested four methods we get

xge = xjacobi = xhbr =

⎛⎜⎜⎝
[−6.38, 6.38]
[−6.40, 6.40]
[−3.40, 3.40]

⎞⎟⎟⎠ ,
which is the interval hull.

In the next example Gaussian elimination gives better bounds.

Example 5.20. Using the previous example with a different right-hand side

b =

⎛⎜⎜⎝
[−14, 0]
[−9, 0]
[−3, 0]

⎞⎟⎟⎠ .
The tightest enclosure is returned by Gaussian elimination and the Jacobi method
without preconditioning

xge = xjacobi

⎛⎜⎜⎝
[−6.38, 0]
[−6.40, 0]
[−3.40, 0]

⎞⎟⎟⎠ .
The enclosure returned by Gaussian elimination with preconditioning gives

xge+pre =

⎛⎜⎜⎝
[−6.38, 1.35]
[−6.40, 1.74]
[−3.40, 1.40]

⎞⎟⎟⎠ .
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Table 5.3: Square interval linear systems – comparison of enclosures. The reference
method is hbr, the uniform radii was set to r = 0.001, n is the number of variables of
a system.

n ge+pre jacobi+pre krawczyk+pre

10 1.00083 1.00012 1.00187
20 1.00091 1.00005 1.00139
30 1.00122 1.00021 1.00222
40 1.00081 1.00025 1.00207
50 1.00091 1.00024 1.00200
60 1.00065 1.00021 1.00192
70 1.00058 1.00031 1.00232
80 1.00085 1.00032 1.00231
90 1.00086 1.00039 1.00238
100 1.00119 1.00038 1.00240

The HBR method gives wider bounds

xhbr =

⎛⎜⎜⎝
[−6.38, 1.12]
[−6.40, 1.54]
[−3.40, 1.40]

⎞⎟⎟⎠ .
Sometimes the HBR method gives better bounds, sometimes Gaussian elimina-

tion does. In some cases both methods return the same bounds and in some cases the
intersection of their results gives even shaper bounds [143].

Now let us test more thoroughly for larger random systems. The systems are
generated as in Example 5.16. We test on 100 systems for each size (number of
variables n). The reference method is hbr; other methods are compared to it using
3.9. The ratios of enclosures for radii r = 0.001 are in Table 5.3, computation times
in Table 5.4 and number of finite enclosures returned in Table 5.5. Clearly hbr is
the winner from both computational time and enclosure tightness perspective. The
similar results for radii r = 0.01 are displayed in Tables 5.6, 5.7 and 5.8.

It can be seen, that the methods return similar results. It happens because
all methods actually use preconditioning (explicitly or implicitly) after which the re-
sulting matrix in system is an H-matrix. For slightly larger radii the ratios are still
similar, however, some methods fail to produce finite enclosures for larger systems.
This happens mostly because of failure of the initial enclosure (5.4).

5.9 Shaving method
Most of the previously mentioned methods use preconditioning. We saw that precon-
ditioning can inflate the original solution set and even though we can get close to the
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Table 5.4: Square interval linear systems – average computation times. The uniform
radii was set to r = 0.001, the computation times are in seconds, n is the number of
variables of a system.

n ge+pre jacobi+pre hbr krawczyk+pre

10 0.44 0.10 0.03 0.11
20 1.65 0.11 0.04 0.12
30 3.64 0.14 0.05 0.15
40 6.41 0.16 0.06 0.17
50 10.00 0.18 0.08 0.21
60 14.42 0.21 0.11 0.25
70 19.62 0.25 0.14 0.32
80 25.67 0.30 0.18 0.39
90 32.59 0.36 0.23 0.49
100 40.39 0.42 0.29 0.61

Table 5.5: Square interval linear systems – percentage of finite enclosures returned.
The uniform radii was set to r = 0.001, n is the number of variables of a system.

n ge+pre jacobi+pre hbr krawczyk+qpre

10 100 98 100 98
20 100 93 100 93
30 97 90 97 91
40 96 91 96 91
50 95 84 95 85
60 97 88 97 90
70 94 80 94 85
80 94 71 94 78
90 89 68 89 75
100 90 55 90 65
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Table 5.6: Square interval liner systems – enclosures comparison. The reference
method is hbr, the uniform radii was set to r = 0.01, the symbol ’-’ means that a
method returned no finite enclosure in all 100 test cases, n is the number of variables
of a system.

n ge+pre jacobi+pre krawczyk+pre

10 1.00430 1.00178 1.01213
20 1.00303 1.00247 1.01208
30 1.00444 1.00226 1.01004
40 1.00648 1.00251 1.01007
50 1.00678 1.00244 1.00911
60 1.00812 - 1.00939
70 1.00772 - -
80 1.00842 - -
90 1.00877 - -
100 1.00749 - -

Table 5.7: Square interval liner systems – average computation times. The uniform
radii was set to r = 0.01, the computation times are in seconds, the symbol ’-’ means
that a method returned no finite enclosure in all 100 test cases, n is the number of
variables of a system.

n ge+pre jacobi+pre hbr krawczyk+pre

10 0.44 0.13 0.03 0.14
20 1.64 0.18 0.04 0.18
30 3.64 0.20 0.05 0.21
40 6.41 0.24 0.06 0.25
50 10.04 0.27 0.08 0.30
60 14.43 - 0.11 0.37
70 19.73 - 0.14 -
80 25.78 - 0.18 -
90 32.88 - 0.23 -
100 40.69 - 0.29 -
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Table 5.8: Square interval liner systems – percentage of finite enclosures returned.
The uniform radii is set to r = 0.01, n is the number of variables of a system.

n ge+pre jacobi+pre hbr krawczyk+qpre

10 98 90 98 90
20 92 80 92 82
30 83 56 83 60
40 70 19 70 28
50 59 6 59 11
60 43 0 43 1
70 31 0 31 0
80 10 0 10 0
90 5 0 5 0
100 3 0 3 0

interval hull of the preconditioned system, we still may get large overestimation, see
Example 5.3.

The resulting enclosure can be further tightened/shaved. In this section we
explain our method that provides such a shaving. The term “shaving” is borrowed
from the area of solving constraint satisfaction problems [54, 214]. This section is an
adapted version of our paper [81].

Let x ∈ IRn be an initial enclosure of the solution set Σ. The main idea behind
shaving methods is to examine a slice of x. An upper α-slice x(↑, i, α) is defined for
ith variable and a nonnegative width α as

x(↑, i, α)j =

⎧⎨⎩xj if j ̸= i,

[xj − α, xj] if j = i.
(5.8)

If we find that x(↑, i, α) contains no solution, then we cut off the slice and the tighter
enclosure x′ reads

x′j :=

⎧⎨⎩xj if j ̸= i,

[xj, xj − α] if j = i.

The situation is similar for the lower α-slice x(↓, i, α). The enclosure can be repeatedly
shaved by choosing various variables for i ∈ {1, . . . , n} and their lower and upper slices.
Naturally, the larger the width of a slice is the more efficient is the shaving. To develop
an efficient shaving method, we need a shaving condition that decides whether there
is no solution contained in a given box x. Let us start with a real system first.
Lemma 5.21 (Hlad́ık, Horáček [81]). Let A ∈ Rn×n, b ∈ Rn and x ∈ IRn. Then the
linear system

Ax = b, x ∈ x

has no solution if and only if the linear system
ATw + y − z = 0, bTw + xTy − xT z = −1, y, z ≥ 0 (5.9)
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is solvable.

Proof. The system can be rewritten as a system of inequalities

Ax ≤ b,

−Ax ≤ −b,
Ix ≤ x,

−Ix ≤ −x.

By the well-known Farkas lemma (cf. [40]), the system Ax = b, x ≤ x ≤ x has
no solution if and only if the linear system

ATw1 − ATw2 + y − z = 0, bTw1 − bTw2 + xTy − xT z < 0, w1, w2, y, z ≥ 0

is solvable. After substituting w = w1 − w2 we obtain

ATw + y − z = 0, bTw + xTy − xT z < 0, y, z ≥ 0 (5.10)

Since every positive multiple of (w, y, z)T also solves the system (5.10), the system
(5.9) can be obtained after normalization.

Now, we see that

Ax = b, A ∈ A, b ∈ b, x ∈ x (5.11)

has no solution if and only if (5.9) is solvable for each A ∈ A and b ∈ b. Checking such a
type of solvability (so called strong solvability) is known to be computationally difficult
(more precisely, coNP-complete); see Chapter 11. Below, we present an adaptation of
the sufficient condition developed in [70].

5.9.1 A sufficient condition for strong solvability
In this section we show a heuristic way to show that (5.9) is strongly solvable. First
we try to guess a vector (w, y, z) that satisfies a special one particular instance of
(5.9), where A ∈ A, b ∈ b, x ∈ x, i.e., for the midpoint system Acx = bc, x ∈ x. Such
a vector will give us a hint how to transform the system (5.9) into a square interval
system that can be solved using the before mentioned means. Enclosure of the solution
set in a certain shape can prove strong solvability of (5.9).

First, we solve the linear programming problem

min bT
c w + xTy − xT z

subject to
AT

c w + y − z = 0, −e ≤ w ≤ e, y, z ≥ 0,
and denote an optimal solution by w∗, y∗, z∗. The w is additionally bounded to prevent
infinite optimal value. Notice that the solution needs not to be verified as it plays a
role of a heuristic only. Suppose that the optimal value is negative. If it is not the
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case, then (5.9) is not solvable for A = Ac, b = bc, and hence x contains a solution.
If y∗i = 0 for some i, then we fix the variable yi = 0, and similarly for the entries of
z∗. From now on, y, z denotes variables with the fixed values. This way we get rid
of some columns (and also variables) of the system. After the fixation we obtain the
potentially smaller system

ATw + y − z = 0, bTw + xTy − xT z = −1, (5.12)

where A ∈ A and b ∈ b.
If it is an overdetermined system, then it has the form of ATw = 0, bTw =

−1 (A is a square matrix, hence the only possibility to obtain an overdetermined
system is y = z = 0). As a positive multiple of w∗ solves AT

c w = 0, we have that
Ac is singular, which contradicts the assumption that Σ is bounded by x. If (5.12)
is underdetermined, then we add equations to the system to make it square. The
left-hand side of the additional equations will be formed by an orthogonal basis of the
null space of (5.12), and the right-hand side is calculated such that w∗, y∗, z∗ solves
the equations. Now we are sure that we have a square system. We denote it by

Cv = d, C ∈ C. (5.13)

Let v = (w, u) be the solution of the system, where u consists of the variables origi-
nating from (y, z). In a similar manner, let v = (w,u) be an enclosure of the solution
set of (5.13). If u ≥ 0, then (5.9) is solvable for each interval instance, which implies
that (5.11) is not strongly solvable.

5.9.2 Computing the width of a slice
Now, we employ the above ideas to handle the problem of determining as large as
possible slice of x containing no solution. Since the slice x has the form of (5.8),
which depends on the parameter α ≥ 0, the interval system (5.12) and also (5.13)
depend on α, too. Thus, we have to determine the largest value of α such that an
enclosure to (5.13) still satisfies the nonnegativity condition u ≥ 0.

One possibility is to use a binary search for the optimal α. However, this would
require solving plenty of interval linear systems. In the following, we rather describe
a simple method for calculating a feasible, not necessary optimal, value of α.

Due to the way the lower and upper α-slice (5.8) are defined, when we take an
α-slice of x, such an α occurs only once in the system (5.13) (exactly in one coefficient
of modified x or x after fixation). Moreover, the new system is

(C + αEij)v = d, C ∈ C, (5.14)

where Eij = eie
T
j is the matrix with 1 at a certain position (i, j), and zeros elsewhere.

The solution of the new system can be easily expressed.

Lemma 5.22 (Hlad́ık, Horáček [81]). Let ˜︁v be a solution to Cv = d. Then the solution
of (C + αEij)v = d is

˜︁v − α˜︁vj

1 + αC−1
ji

C−1
∗i .



62 Chapter 5. Square interval linear systems

Proof. By the Sherman–Morrison formula for the inverse we get

(C + αEij)−1 = (C + (αei)eT
j )−1

= C−1 −
C−1

(︂
αeie

T
j

)︂
C−1

1 + eT
j C
−1αei

= C−1 − α

1 + αC−1
ij

(︂
C−1ei

)︂ (︂
eT

j C
−1
)︂

= C−1 − α

1 + αC−1
ji

C−1
∗i C

−1
j∗ .

Multiplying by d we get

(C + αEij)−1d = C−1d− α

1 + αC−1
ji

C−1
∗i C

−1
j∗ d = ˜︁v − α˜︁vj

1 + αC−1
ji

C−1
∗i .

Suppose we already have an enclosure v of the solution set of (5.13) for a 0-slice.
By the above lemma, an enclosure of the solution set of (5.14) is

v − αvj

1 + αC−1
ji

C−1
∗i .

Now we try to increase α > 0 until it still satisfies several conditions of this
formula. When α = 0, then the denominator is 1. After inflating α the denominator
should stay positive, otherwise it contains zero. If C−1

ji ≥ 0 then no restriction is
forced on α. If C−1

ji < 0 then it must hold that

−1 < α ·
[︂
C−1

ji ,C
−1
ji

]︂
,

which gives the first restriction on α

α < − 1
C−1

ji

. (5.15)

In order to keep (5.11) unsolvable u must remain nonnegative after inflating the
slice by α. For each variable corresponding to u it is necessary that

uk − αuj

1 + αC−1
ji

C−1
ki ≥ 0.

Since the left-hand side is an interval, its lower bound is required to be nonnegative,
i.e.

uk − α

1 + αC−1
ji

ujC
−1
ki ≥ 0.

By expressing α, we obtain

α ≤ uk

ujC
−1
ki − ukC−1

ji

. (5.16)
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for each k such that ujC
−1
ki > ukC−1

ji .

Finally, from the formulas (5.15) and (5.16) we determine the maximal feasible
α∗ for inflating the α-slice. In order that the result is reliable, the formulas should be
evaluated by interval arithmetic (even though they contain real variables only).

The computational cost of this method for computing α∗ is low. We have to
calculate v, an enclosure to (5.13), and C−1

∗i , which is an enclosure to the solutions set
of the interval system

Cu = ei, C ∈ C.

In total, we need to solve only two interval linear systems of equations. On the other
hand, the computed α∗ may not be the largest possible width of the slice.

5.9.3 Iterative improvement
Since α∗ need not be optimal, we can think of improving it by repeating the whole
process. We put α := α∗, and v will be an enclosure to (5.14). Similarly, C−1

∗i will be
an enclosure to the solutions set of the interval system

(C + αEij)u = ei, C ∈ C. (5.17)

We determine the corresponding slice width α◦, update α∗ := α∗ + α◦ and repeat
the process while improvement is significant (i.e., α◦ is large enough). Each iteration
requires solving two interval systems, however, since the systems differ in one coefficient
only, the new enclosures can be computed more effectively.

First, if we used the preconditioning by the (approximate) midpoint inverse, we
can reuse the preconditioner from the previous iteration as the midpoint of (5.14)
differs at the entry (i, j) only, its inverse is easily updated by using the Sherman–
Morrison formula.

Updating the enclosure to (5.17) can be done even more efficiently. For a given
C ∈ C, we have by the Sherman–Morrison formula

(C + αEij)−1 = C−1 − α

1 + αC−1
ji

C−1
∗i C

−1
j∗ .

Its ith column draws

(C + αEij)−1
∗i = C−1

∗i − α

1 + αC−1
ji

C−1
∗i C

−1
ji = 1

1 + αC−1
ji

C−1
∗i .

Thus, C−1
∗i is updated as

1
1 + αC−1

ji

C−1
∗i

without solving any system. Since the jth updated element C−1
ji may be overestimated,

we rather compute it by
1

α + 1/C−1
ji

instead of 1
1 + αC−1

ji

C−1
ji .

In summary, while the first iteration needs to solve two interval systems, the others
need to solve only one.
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Table 5.9: Testing the shaving method without iterative improvement. The fixed
radius is denoted by r, the computation time is in seconds, n is the number of variables
of a system, the ratio column shows the improvement to verifylss, the last column
shows the average number of shaved off slices.

n r time ratio # shavings

5 0.5 0.2568 0.7137 13.02
10 0.25 0.6375 0.7522 30.94
20 0.05 1.879 0.7848 61.09
50 0.025 14.58 0.8569 187.2
100 0.01 78.78 0.9049 373.8

5.9.4 Testing the shaving method
To give a hint about the cases for which the shaving method can help, let us present two
tables from our previous work [81]. The method was tested on square interval systems
with various fixed radii. Random square systems were generated and tested in the
same way as in Example 5.16. The computations were carried out in Matlab 7.11.0.584
(R2010b) on a six-processor machine AMD Phenom(tm) II X6 1090T Processor, CPU
800 MHz, with 15579 MB RAM. Interval arithmetics and some basic interval functions
were provided by the interval toolbox Intlab v6 [188]. The shaving method was run
on an enclosure returned by Intlab method verifylss, which is a combination of a
modified Krawczyk’s method and the HBR method [61]. The quality of enclosures was
compared using the formula (3.10). In Table 5.9 we see the results for shaving without
iterative improvement of shaved slices widths (each variable is shaved only once from
above and from below). In Table 5.10 the shaving method is tested on the same data
but with added iterative improvement. For small interval radii the before mentioned
methods return tight enough results and use of the shaving method is superfluous.
However, for relatively large interval radii (such that the interval matrix is “nearly”
singular) the shaving method pays off.

5.10 Some other references
There are other methods for solving interval linear systems, e.g., [14, 71]. Some meth-
ods can deal with matrices of a certain class [4, 93]. The results for systems with
Toeplitz matrices are in [47]. To learn more about other concepts of solvability see,
e.g., [178, 202]. More on block systems can be found in [48]. For verified solution
of large systems see [192], for sparse systems see [193]. Methods for solving square
interval linear systems were also compared in, e.g., [61, 143].
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Table 5.10: Testing the shaving method with iterative improvement. The fixed radius
is denoted by r, the computation time is in seconds, n is the number of variables of a
system, the ratio column shows the improvement to verifylss, the last column shows
the average number of shaved off slices.

n r time ratio # shavings

5 0.5 0.4977 0.6465 18.06
10 0.25 0.9941 0.6814 45.06
20 0.05 3.136 0.7161 87.77
50 0.025 26.65 0.8071 281.9
100 0.01 228.5 0.8693 946.3
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6 Overdetermined interval linear
systems

▶ The least squares solution
▶ Preconditioning of an overdetermined system
▶ Various methods for enclosing a solution set
▶ Subsquares method and its variations
▶ Comparison of methods

When a system has more equations than variables, we call it overdetermined.
The previously described methods for solving square systems usually cannot be ap-
plied directly to them. In this chapter we first introduce the traditional approach to
solving such systems via the least squares. We then discuss preconditioning for the
overdetermined case. Then modification of some earlier known methods — Jacobi,
Gaussian elimination — is shown. Rohn’s method is introduced. All the methods are
compared. The chapter is loosely based on our paper [83]. Similarly to introducing
the shaving method in the previous chapter, here we introduce our subsquares method
[84] that can further improve the obtained enclosure or can be used separately. Several
variants of this method are developed. Its favorable properties are discussed. We end
the chapter with more references to another methods for solving overdetermined and
underdetermined systems.

6.1 Definition
Let us start with the formal definition.

Definition 6.1. (Overdetermined interval linear system) Let us have an interval ma-
trix A ∈ IRm×n, where m > n and an interval vector b ∈ IRm. We call

Ax = b

an overdetermined interval linear system.

To motivate the use of overdetermined interval systems see the following example.

Example 6.2. This example is borrowed from [165]. Let us have an n× n matrix A
for which we want to compute an eigenvector corresponding to a known eigenvalue λ.
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It is known that it can be computed as a solution of the following system

(A− λI)v = 0.

However, the matrix on the left side is singular. To overcome this, let us “normalize” v.
Either the first coefficient of v is 0 or v can be multiplied by a suitable scalar to make
the first coefficient equal to 1. After setting C = (A − λI) for both cases the above
system can be rewritten as the two following overdetermined systems:⎛⎜⎜⎜⎝

c1,2 . . . c2,n

... ...
cn,2 . . . cn,n

⎞⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎝
v2
...
vn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
0
...
0

⎞⎟⎟⎟⎠ or

⎛⎜⎜⎜⎝
−c1,1

...
−cn,1

⎞⎟⎟⎟⎠ .
If the second system is solvable and x′ is the solution of the system, then (1, x′)T is
the desired eigenvector. If the second system is not solvable, we can recursively repeat
the procedure for the first system. The algorithm can be accordingly applied to an
interval matrix A.

6.2 The least squares approach
When most people work with an overdetermined system they understand its solution
in the least squares perspective.

Definition 6.3 (Interval least squares). For an overdetermined interval linear system
Ax = b the least squares solution is defined as

Σlsq = {x | ATAx = AT b for some A ∈ A, b ∈ b }.

Such an approach can be found in [138] or [191] . It is easily seen that

□(Σ) ⊆ □(Σlsq).

Hence an enclosure of the set Σlsq is also an enclosure of the set Σ. For more information
about this approach and relationship between Σ and Σlsq see [138]. The question is
how to enclose Σlsq. The first idea is to solve the interval normal equation

ATAx = AT b.

This approach might not work because interval matrix multiplication can cause a
huge overestimation (see Example 3.9; however later in Chapter 9 we will see that this
approach can be used in some special cases). Even a use some preconditioner C

(CA)T (CA)x = (CA)T b,

does often not work either. Anyway, we can use an equivalent expression for the least
squares formula (again see [138, 191])⎛⎝ I A

AT 0

⎞⎠⎛⎝ y

x

⎞⎠ =
⎛⎝ b

0

⎞⎠ .
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Such a system is a square system and hence the methods from the previous chapter
can be applied. After computing an enclosure (y,x)T ∈ IRm+n of its solution set, the
second part x is an enclosure of Σlsq.

Since the returned interval vector contains the solution of the interval least
squares, this method returns a nonempty enclosure even if the original system is un-
solvable. Another drawback is that if the original system is of size m × n we have to
solve a new one of size (m+ n) × (m+ n). That is why we often refer to this method
as supersquare approach.

Example 6.4. For the overdetermined system Ax = b with

A =

⎛⎜⎜⎝
[−0.8, 0.2] [−20.1,−19.5]

[−15.6,−15.2] [14.8, 16.7]
[18.8, 20.1] [8.1, 9.5]

⎞⎟⎟⎠ , b =

⎛⎜⎜⎝
[292.1, 292.7]

[−361.9,−361.1]
[28.4, 30.3]

⎞⎟⎟⎠ ,
the solution set, the hull of the original system, the hull of the supersquare system
and the hull of the interval normal equation are displayed in Figure 6.1.

Figure 6.1: The interval least squares. Dark area is the solution set of the original
system, the smallest rectangle is the hull of the original system, the intermediate
rectangle is the hull of the supersquare system and the largest rectangle is the hull of
the interval normal equation.

When solving a system by the supersquare approach, the new matrix is sym-
metric, hence dependencies occur in the new system (each interval coefficient from
the original system is used twice in the new system, that is why when we choose one
number from the first interval we should choose the same value in the second one to
avoid overestimation). Here, methods dealing with dependencies between coefficients
in interval linear systems could be used (e.g., [67, 152, 196]).
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6.3 Preconditioning of an overdetermined system
Also an overdetermined system needs often to be transformed to a form that avoids
expansion of intervals. It is achieved by multiplication with a preconditioner C of a
corresponding size.

Ax = b ↦→ CAx = Cb.

A choice of C is proposed in [60]. Let A be of size m×n. Transform its midpoint
Ac into an upper trapezoidal form, Gaussian elimination with rounded arithmetics can
be applied since we do not need exact result. The same elimination operations are
simultaneously performed on an identity matrix of order m. Such a matrix is then
taken as a preconditioner.

In [218] there is yet another slightly different possibility for preconditioning an
overdetermined system by

C ≈

⎛⎝Ac
1 0

Ac
2 I

⎞⎠−1

, (6.1)

where Ac
1 consists of the first n rows of Ac and Ac

2 consists of the remaining m − n
rows of Ac, 0 is the (m− n) × n matrix of all zeros and I is the identity matrix of size
(m−n)× (m−n). These preconditioners were designed for use with interval Gaussian
elimination, that is why they might not be suitable for all methods. Later we will
see that some methods use their own preconditioners (e.g., Rohn’s method in Section
6.6). If not stated otherwise, when using a preconditioner for an overdetermined
system, we prefer the second choice, since it is a generalization of the midpoint inverse
preconditioning for square systems.

After an overdetermined system is preconditioned with C, the center of the
resulting matrix is approximately of the shape⎛⎝ I

0

⎞⎠ ,
where I is the n× n identity matrix and 0 is the (m− n) × n matrix of all zeros. The
reasoning is illustrated by the Figure 6.2.

6.4 Gaussian elimination
Interval Gaussian elimination for overdetermined systems was proposed by Hansen in
[60]. The idea is pretty the same as for square interval systems: rows are eliminated
in the same way as explained in Section 5.6.1. The only difference is that the matrix
(A | b) of size m × (n + 1) corresponding to Ax = b is eliminated into the following
shape:

(A | b) ↦→

⎛⎝ C d e

0 u v

⎞⎠ ,



6.5. Iterative methods 71

Figure 6.2: Illustration of the preconditioning by C computed by (6.1). The darkest
area corresponds to the midpoint matrix of the preconditioned system.

where C is an (n−1)× (n−1) interval matrix in row echelon form, d, e are (n−1)×1
interval vectors, 0 is an (m−n+1)×(n−1) matrix of all zeros and u,v are (m−n+1)×1
interval vectors.

The vectors u,v form m− n+ 1 interval equations in the shape

uixn = vi for i = 1, . . . , (m− n+ 1).

The solution of these equations gives the following enclosure for the variable xn

xn =
⋂︂

i : 0/∈ui

(vi/ui) .

If the intersection is empty, then the system has no solution. Nonetheless, if the
intersection is unbounded, it can either mean that the solution set of the system is
unbounded or huge overestimation due to large number of interval operations occurred.
The enclosures for the other variables can be obtained using the backward substitution
as described in Section 5.6.1.

6.5 Iterative methods
In the previous chapter we introduced three iterative methods for solving square inter-
val linear systems – the Jacobi, the Gauss–Seidel and Krawczyk’s method. After we
apply preconditioning from Section 6.3 only the first n rows possibly do not contain
zeros on the diagonal. That is why we can apply an iterative method to the square
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subsystem consisting of the first n equations of the preconditioned system. The solu-
tion set of the original overdetermined interval system must lie inside the solution set
of a square subsystem (subsquare).

Proposition 6.5. Let Σ be the solution set of Ax = b and let Σsubs be the solution
set of a square subsystem of Ax = b. Then

Σ ⊆ Σsubs.

Proof. The original system Ax = b has more equations that can put no or more
restriction on the solution set of the square subsystem.

6.6 Rohn’s method
We would like to mention the method introduced by Rohn [174]. In his paper more
information and theoretical insight can be found. The following theorem is the basis
of the method.

Theorem 6.6. Let Ax = b be an overdetermined interval linear system with A being
an m×n interval matrix and Σ being its solution set. Let R be an arbitrary real n×m
matrix, let x0 and d > 0 be arbitrary n-dimensional real vectors such that

Gd+ g < d, (6.2)

where
G = |I −RAc| + |R|A∆,

and
g = |R(Acx0 − bc)| + |R|(A∆|x0| + b∆).

Then
Σ ⊆ [x0 − d, x0 + d].

The question is how to find the vector d, the matrix R and the vector xo. To compute
d, we can, for example, rewrite the inequality (6.2) as

d = Gd+ g + ε, (6.3)

for some small vector ε > 0. Then, start with d = 0 and iteratively refine d. This
algorithm will stop after a finite number of steps if ϱ(G) < 1 holds.

In [82] we proposed another option for finding d. One can rewrite the equality 6.3)
as

(I −G)d = g + ε,
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Table 6.1: Rohn’s method – testing of the iterative and direct approach for finding
d from Example 6.7. The second column displays the average ratio of the vectors d
returned by the two methods computed by the formula (6.4), the last two columns
display the average computation times, m × n is the size of a system matrix.

m × n rat t iterative t direct

5 × 3 1.0000 0.0047 0.0012
15 × 10 1.0000 0.0067 0.0024
25 × 21 1.0000 0.0068 0.0023
35 × 23 1.0000 0.0066 0.0024
50 × 35 1.0000 0.0067 0.0024
73 × 55 1.0000 0.0072 0.0024
100 × 87 1.0000 0.0077 0.0028
200 × 170 1.0000 0.0066 0.0024

and solve the real system directly. After finding a solution, the vector d is tested
for positivity. In the two following examples we test the two methods on random
overdetermined systems.

Example 6.7. A solvable random overdetermined system is generated in the following
way. First, a midpoint matrix Ac is generated by uniformly randomly and indepen-
dently choosing its coefficients from interval [−10, 10]. Second, a random solution
vector x is generated also with coefficients from interval [−10, 10]. The right-hand
side bc is then computed as b = Acx. An interval system is obtained by wrapping the
Ac, bc with intervals having a fixed radius r. Here, we test the systems for r = 10−3.
The small positive vector ε has its coefficients 10−6. The iteration limit is 50. The re-
sults of the comparison are shown in Table 6.1. The second column shows the average
ratios of dit, ddir returned by the iterative and direct method respectively. The ratio
is computed as average ratio of the coefficients of the two n-dimensional vectors

rat =
(︄

n∑︂
i=1

dit
i

ddir
i

)︄
/n. (6.4)

For each size we test on 100 random systems. The ratios in Table 6.1 show that
both methods return basically identical results. The next two columns show average
computation times (using the LAPTOP setting). Even thought, the measured times
are very small, the results are in favor of the direct method. The results, however,
depend on the method used for solving real linear systems (here we used Octave’s
linsolve). In conclusion, we rather prefer the direct method for computation of d
because this way we do not have to care about properly setting ε.

We still have to determine x0 and R. Rohn recommends to take

x0 ≈ Rbc, R ≈ (AT
c Ac)−1AT

c ,
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but not necessarily. Rohn suggests that Theorem 6.6 provides an instrument for it-
erative improvement of enclosure. We do not have to use only Ac to compute R, we
can take any (e.g., random) matrix A ∈ A, compute an enclosure and then intersect
it with the old one. We can repeat this process as many times we want and provide
an iterative improvement of the enclosure.

Example 6.8. For the overdetermined system from Example 6.4 we selected 20 ran-
dom A ∈ A to compute R ≈ (ATA)−1AT . We also included A = Ac. For this system
A = Ac plays a prominent role, since for no other A was the enclosure better. The
resulting boxes are displayed in Figure 6.3.

When the random systems were generated as in Example 6.7 for the same sizes,
and the first enclosure was computed using R ≈ (AT

c Ac)−1AT
c , then no improvement

of the enclosure was detected after 50 such iterations. Hence, it seems that testing
other choices of R does not pay off in this case.

Figure 6.3: Result of Rohn’s algorithm from Example 6.8 for various selections of
R ≈ (AT A)−1AT for A ∈ A. The dark area is the solution set of the system. The
darkest rectangle is the enclosure for R ≈ (AT

c Ac)−1AT
c . Other 20 enclosures (boxes)

correspond to 20 random choices of A ∈ A.

6.7 Comparison of methods
In this section the previously described methods for solving overdetermined systems
are compared. First, we start with a simple examples revealing that the methods do
not return empty enclosure for an unsolvable system. Next we compare the methods
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on random overdetermined systems with various fixed radii of interval coefficients.
We are aware that it is not completely fair to compare direct and iterative methods
together. However, a comparison will give us at least a hint of the properties of such
methods. The tested methods are:

• rohn – Rohn’s method for overdetermined systems with direct computation of d,

• jacobi – preconditioned system with the Jacobi iterative method implemented
in matrix multiplication form applied to the first n equations, with maximum
number of iterations set to 20, and ε = 10−5,

• lsq – enclosing the least squares solution, by transforming a system into a su-
persquare and then solving with the HBR mehod,

• ge – Gaussian elimination for overdetermined systems with preconditioning and
mignitude pivoting.

When a method name has the suffix -pre, it means that it is applied without precon-
ditioning, the suffix +pre means the preconditioning with midpoint inverse was used.
First let us test the methods for an unsolvable system.

Example 6.9. Let us have the unsolvable system with the following Ac, bc and fixed
radii of interval coefficients set to r = 0.1.

Ac =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−6 2 −9
0 8 6
7 −9 −5
4 −5 −8

−5 −7 6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, bc =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

9
54

−120
−95
57

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The returned enclosures are in Table 6.2. We can see that no method can detect
unsolvability of the system.

Table 6.2: Comparison of enclosures returned by various methods applied on the
unsolvable system from Example 6.9.

x x1 x2 x3

rohn [−9.4682, −8.6938] [2.6762, 3.2171] [5.2755, 5.7940]
jacobi+pre [−10.804, −9.2545] [1.4635, 2.8699] [5.5646, 6.7552]
lsq [−9.4951, −8.6841] [2.6655, 3.2364] [5.2681, 5.8091]
ge+pre [−10.404, −7.9421] [2.6365, 3.6731] [5.0720, 5.8993]
ge-pre [−10.804, −9.2545] [1.4653, 2.8699] [5.5671, 6.7552]
hull ∅ ∅ ∅
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Table 6.3: Overdetermined interval linear systems – average ratios of enclosures
returned by various methods compared to the hull, m × n is the size of a system
matrix.

m × n rohn jacobi lsq ge

5 × 3 1.114 7.961 1.114 7.961
15 × 13 1.038 4.538 1.039 4.538
35 × 23 1.116 14.963 1.116 14.962
50 × 35 1.101 11.946 1.101 11.945
100 × 87 1.043 11.043 1.047 17.562

Next, all the methods are compared on 100 random solvable systems for each size.
Such systems were generated by using the same procedure as described in Example
6.7. The radii of interval coefficients were fixed to r = 10−4. The average ratios of
enclosures are compared using the formula (3.9). They are displayed in Table 6.3 and
the average computation times are in Table 6.4. For such a “small” radii, the returned
enclosures lie in one orthant, that is why we compared the quality of enclosures to the
hull. The hull was computed as in Section 5.2, however, because of computation time
reasons, using only nonverified linear programming. The results must be hence taken
with caution, nevertheless, empirically for such systems a nonverified hull is nearly
identical to the verified hull.

The ge and jacobi return comparable enclosures. So do rohn and lsq. We
believe it is no coincidence. The way jacobi and ge are defined for overdetermined
systems suggest that only the first n rows are basically used for computing an enclosure.
We explain the similarity of rohn and jacobi by the use of the matrix R in rohn.
Since it is basically the Moore-Penrose pseudoinverse of Ac the solution set Σ of the
preconditioned system and Σlsq tend to coincide for small radii. In Table 6.5 we show
that this is not the case for larger radii.

The rohn is the winner from computation time perspective, since the disadvan-
tage of need to solve much larger supersquare system in lsq manifests itself. The ge
shows excessive demands regarding computational time. In all cases methods returned
finite enclosures, except for the size 100 × 87 jacobi returned infinite enclosures in 5
cases, ge in 2 cases.

6.8 Subsquares approach
In this section we present a scheme for solving overdetermined systems, which we
developed in [84]. This method uses algorithms described in Chapter 5 and applies
them on selected square subsystems of the original system. Although, we mentioned
the term “subsquare” earlier in Section 6.5, we rather define it more formally here.

Definition 6.10 (Subsquare). By a square subsystem or subsquare of an overdeter-
mined system Ax = b, where A is of size m × n, we mean any choice of n equations
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Table 6.4: Overdetermined interval linear systems – average computation times in
seconds for various methods, m × n is the size of a system matrix.

m × n rohn jacobi lsq ge

5 × 3 0.011 0.065 0.042 0.091
15 × 13 0.011 0.078 0.077 0.919
35 × 23 0.012 0.088 0.147 4.273
50 × 35 0.013 0.107 0.237 9.032
100 × 87 0.020 0.280 0.992 39.989

Table 6.5: Enclosures returned by lsq compared to enclosures by rohn. The symbol
’-’ means that no finite enclosure was returned by lsq, the symbol ’--’ means that
no finite enclosure was returned by both methods, m×n is the size of a system matrix.

m × n r = 0.01 r = 0.1

5 × 3 1.005 1.061
15 × 13 1.054 3.502
35 × 23 1.061 18.721
50 × 35 1.103 -
100 × 87 2.140 --

(without repetition) from the original m ones.

Note that the original solution set lies in the solution set of each subsquare (see
Proposition 6.5). For the sake of simplicity we will denote the square subsystem of
Ax = b created by equations i1, i2, . . . , in as A{i1,i2,...,in}x = b{i1,i2,...,in}. When we use
some order (e.g., dictionary order) of subsquares (here it does not depend which one)
the jth square subsystem will be denoted by Ajx = bj. Examples of subsquares can
be seen in Example 6.11.

Example 6.11. Let us take again the system from Example 6.4. There are three
possible subsquares:

A{1,2} =
⎛⎝ [−0.8, 0.2] [−20.1,−19.5]

[−15.6,−15.2] [14.8, 16.7]

⎞⎠ , b{1,2} =
⎛⎝ [292.1, 292.7]

[−361.9,−361.1]

⎞⎠ .
A{1,3} =

⎛⎝ [−0.8, 0.2] [−20.1,−19.5]
[18.8, 20.1] [8.1, 9.5]

⎞⎠ , b{1,3} =
⎛⎝[292.1, 292.7]

[28.4, 30.3]

⎞⎠ .
A{2,3} =

⎛⎝[−15.6,−15.2] [14.8, 16.7]
[18.8, 20.1] [8.1, 9.5]

⎞⎠ , b{2,3} =
⎛⎝[−361.9,−361.1]

[28.4, 30.3]

⎞⎠ .
Their solution sets and hulls are depicted in Figure 6.4. Notice that the intersec-

tion of hulls/enclosures of subsquares tends to the hull of the original system. When
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Figure 6.4: The subsquares from Example 6.11 – on the left there are the solution
sets, on the right there are the hulls of A{1,2}x = b{1,2} (the intermediate color),
A{1,3}x = b{1,3} (the darkest color) and A{2,3}x = b{2,3} (the lightest color).

some subsquares of an overdetermined system are chosen, the intersection of their so-
lution enclosures provides hopefully tighter enclosure on the original solution set. The
enclosures of all subsquares computed using the HBR method are depicted in Figure
6.5. It can be seen that the intersection of enclosures is indeed close to the original
hull.

Figure 6.5: The enclosures of the subsquares from Example 6.11. Rectangles rep-
resent enclosures of subsquares computed by the HBR method. The darkest area
represents the hull of the original overdetermined system, the lighter rectangle is an
enclosure computed by Rohn’s method.
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6.8.1 Simple algorithm
If we compute enclosures of square subsystems separately and then intersect the re-
sulting enclosures, we get the simple Algorithm 6.12.

Algorithm 6.12. (Simple subsquares) Input is an overdetermined system Ax = b.
The algorithm returns an enclosure x of its solution set.

1. Select k random subsquares Aix = bi for i ∈ {1, . . . , k}.

2. Compute enclosures of all subsquares x1, . . . ,xk.

3. Intersect the enclosures, i.e., return the enclosure x := ⋂︁k
i=1 xi.

4. If xi ∩ xj = ∅ for some two i ̸= j (x is empty), then the original system is not
solvable.

Such an approach is a little naive, but it has its advantages. First, if we compute
enclosures of all possible square subsystems, we may, as the Figure 6.4 suggests, expect
getting close to the interval hull.

Example 6.13. The enclosure obtained by intersecting enclosures of all subsquares
is compared to the interval hull of the original system. To compute the hull we used
the procedure described in Section 5.2. For computation time reasons only 10 systems
were generated for each size. The systems were again generated in the same way as in
Example 6.7. To spare time we used only a nonverified linear programming (Octave
glpk method). Hence, the results should taken with caution, however experience shows
that the nonverified hull is for systems generated in such a way close to the verified
hull. The Table 6.6 shows the results for random examples of systems.

If we have an m×n system, the number of all square subsystems is equal to
(︂

m
n

)︂
.

However, we can see that for n small or for n close to m the number
(︂

m
n

)︂
may not

be so large. The low computational time emerges when a system is noodle-shaped or
nearly-square. However for a nearly-square systems there are not enough equations to
plausibly form subsquares that could shave the intersecting enclosure well.

The second advantage is that Algorithm 6.12 can be made faster by incorporating
parallelism – solving of one subsquare system does not depend on the others. The
third advantage is that Algorithm 6.12 can, in contrast to other methods, often decide
whether a system is unsolvable – if an intersection of enclosures of some two subsquares
is empty, then the whole overdetermined system is unsolvable. We test the number of
subsquares needed to detect unsolvability in Chapter 7.

For most rectangular systems it is however not convenient to compute enclo-
sures of all or many square subsystems. The selection of subsquares and the solving
algorithm can be modified to be less time consuming.

6.8.2 Selecting less subsquares
We wish to have a method that returns sharp enclosures, can reveal unsolvability and
is parallelizable. All can be done by the simple algorithm. However, there is a problem
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Table 6.6: Simple subsquares method solving all subsquares compared to the non-
verified hull – enclosures comparison (Example 6.13). The second and third column
shows the average ratio of subsquares method to the unverified hull. The last column
shows the average computation time of subsq method. Various system matrix sizes
m × n and radii r were tested.

m × n r = 0.01 r = 0.0001 time subsq

5 × 3 1.0067 1.0001 0.3 s
9 × 5 1.0115 1.0001 4.2 s
13 × 7 1.0189 1.0002 1 m 2 s
15 × 9 1.0248 1.0003 3 m 17 s
25 × 21 1.0926 1.0011 12 m 56 s
30 × 29 1.4522 1.0022 2.4 s

– extremely long computation time for a general overdetermined system. For solving
by subsquares method we definitely need to choose less subsquares. Here are some
desirable properties of the set of selected subsquares:

1. We do not want to have too many subsquares.

2. We want each equation in the overdetermined system to be covered by at least
one subsquare.

3. The overlap of subsquares (equations shared by any two subsquares) must not
be too low, nor too high.

4. We select subsquares that narrow the resulting enclosure as much as possible.

We can select subsquares randomly, but then we do not have the control over
this selection. This works fine, however, it is not clear how many subsquares should
we choose according to the size of the overdetemined system. Moreover, experiments
have shown that it is advantageous when subsquares overlap. That is why we propose
a different strategy.

The first and second property can be settled by covering the system with sub-
squares step by step using some overlap parameter. About the third property, experi-
ments show that taking the consecutive overlap ≈ n/3 is a reasonable choice. Property
four is a difficult task to handle. We think deciding which systems to choose (in a
favourable time) is still an area to be explored. Yet random selection will serve us
well.

Among many possibilities we tested, the following selection of subsystems worked
well. During the selection algorithm we divide numbers of equations of an overdeter-
mined system into two sets – Covered, which contains equations that are already
contained in some subsquare, and Waiting, which contains equations that are not
covered yet. We also use a parameter overlap to define the overlap of two subsequent
subsquares.
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The first subsystem is chosen randomly, other subsystems will be composed of
overlap equations with indices from Covered and (n−overlap) equations with indices
from Waiting. The last system is composed of all remaining uncovered equations
and then some already covered equations are added to form a square system. The
selection procedure is described in Algorithm 6.14. The algorithm implementation is
not necessarily optimal, it should serve as an illustration. The procedure randsel(n, S)
selects n random nonrepeating numbers from a set S. The total number of subsquares
selected by this algorithm is

1 +
⌈︃

m − n

n − overlap

⌉︃
. (6.5)

Algorithm 6.14 (Selecting subsquares). Algorithm takes an overdetermined system
Ax = b with m equations and n variables. Algorithm chooses a suitable set of
subsquares stored in variable Subsquares.

1. Set Subsquares := ∅, Covered := ∅ and Waiting := {1, 2, . . . ,m}.

2. While Waiting ̸= ∅ repeat the following steps.

3. At the beginning (if Covered = ∅), set Indices := randsel(n, Waiting).

4. At the end (if |Waiting| ≤ (n− overlap)) set

Indices := Waiting ∪ randsel(n− |Waiting|, Covered).

5. Otherwise, set

Indices := randsel(overlap, Covered) ∪ randsel(n− overlap, Waiting).

6. Add the subsquare AIndicesx = bIndices to Subsquares.

7. Update Covered := Covered ∪ Indices.

8. Update Waiting := Waiting \ Indices.

6.8.3 Solving subsquares – the multi-Jacobi method
The only thing left is to solve the selected subsquares. The first obvious choice is to
solve each subsquare separately and then intersect the enclosures as in the case of the
simple algorithm 6.12.

In [84] we proposed a different strategy. We use the Jacobi method for solving
each subsquare. Nevertheless, the subsquares are not solved completely but only one
Jacobi iteration is applied to all subsquares. After the iteration is completed, the
global enclosure is updated (by intersection). Then, the second iteration is applied to
each subsquare and so on. Let us call this method the multi-Jacobi method.

The following example shows, that the multi-Jacobi method is more efficient
than the simple subsquares approach.



82 Chapter 6. Overdetermined interval linear systems

Table 6.7: Random subsquares compared to the multi-Jacobi method – average ratios
of enclosures (Example 6.15). Random subsquares are compared to the multi-Jacobi
method, each column corresponds to a fixed radius r of intervals, the symbol ’-’
means the methods did not return finite enclosure for any of the systems, m × n is the
size of a system matrix.

m × n r = 0.0001 r = 0.001 r = 0.01

5 × 3 1.85 1.41 1.60
15 × 13 1.57 1.41 1.53
35 × 23 1.66 1.89 2.66
50 × 35 1.75 1.85 1.83
100 × 87 2.26 1.60 -

Example 6.15. We compare the multi-Jacobi method with the simple subsquares
method. The HBR method is used to solve subsquares of the second method. Initial
enclosure of both methods is found as a HBR enclosure of some subsquare. The second
method chooses the same number of random square subsystems (according to (6.5)).
The random solvable systems are generated in the same way as in Example 6.7. The
results are in Table 6.7. The multi-Jacobi method reaches better enclosures with some
minor computational time added (Table 6.8). The table shows the average ratios
of computation times t(multi−Jacobi)

t(subsquares) . The idea behind the success of the multi-Jacobi
might be similar to simulated annealing process.

Next, we try to run the multi-Jacobi on the results of the best method from the
comparison for overdetermined interval systems – Rohn’s method.

Example 6.16. For comparison we choose Rohn’s method with direct computation
of d. The multi-Jacobi method uses ε = 10−5 for stopping criterion. The results of the
comparison are displayed in Table 6.9. We can see that in some cases it can slightly
improve the enclosure returned by Rohn’s method. As Rohn’s method is the best, a
large improvement of an enclosure cannot be expected. The computation times for
the multi-Jacobi method include computation of Rohn’s enclosure.

A larger computation time is not too much of an issue since the multi-Jacobi
method can be parallelized. If an enclosure is obtained by some other method the
multi-Jacobi method can be used as a second shaver. We need to remind that one
advantage of the multi-Jacobi method to Rohn’s method is that it can detect unsolv-
ability.

6.9 Other methods
There exist other approaches to solving overdetermined interval systems. Popova
inroduced an approach for underdetermined and overdetermined systems that can
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Table 6.8: Random subsquares vs. multi-Jacobi method – ratio of computation times
t(multi−Jacobi)

t(subsquares) in seconds.

size r = 0.0001 r = 0.001 r = 0.01

5 × 3 2.79 2.82 2.92
15 × 13 1.50 1.72 2.18
35 × 23 1.40 1.55 2.06
50 × 35 1.27 1.51 1.90
100 × 87 1.17 1.19 0.79

Table 6.9: The multi-Jacobi method run on results of Rohn’s method – average en-
closure ratios and average computation times. The computation times are in seconds,
m × n is the size of a system matrix, fixed radius of intervals is denoted by r, overlap
is the parameter for selection of subsquares, the last two columns show average com-
putation times in seconds, computation time of the multi-Jacobi method includes the
computation time of Rohn’s.

m × n r overlap av. rat time time Rohn’s time multi-Jacobi

11 × 7 0.1 2 0.991738 0.0112985 0.0679437
11 × 7 0.2 2 0.987414 0.011084 0.0610227
11 × 7 0.3 2 0.985185 0.011123 0.0520721

15 × 10 0.1 3 0.995979 0.011762 0.0818686
15 × 10 0.2 3 0.994436 0.0117518 0.0725302
15 × 10 0.3 3 0.994124 0.0114046 0.0807104

25 × 13 0.1 3 0.999436 0.0117957 0.344695
25 × 13 0.2 3 0.998644 0.0118171 0.272701
25 × 13 0.3 3 0.997601 0.0120146 0.0709837

37 × 20 0.05 7 0.999795 0.0118177 0.0963902
37 × 20 0.0001 7 0.99998 0.0117649 0.103442
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deal with parametric dependencies between intervals in [154]. A generalization of the
Hansen–Bliek–Rohn enclosure for overdetermined systems was done by Rohn in [182].
Underdetermined and overdetermined systems are also discussed in [191].



7 (Un)solvability of interval linear
systems

▶ Methods for detecting unsolvability
▶ Full column rank
▶ Scaled maximum norm
▶ Equivalence of two sufficient conditions for unsolvability
▶ Methods for detecting solvability
▶ Comparison of methods

There exist many methods for computing interval enclosures of the solution set
of an interval linear system. Nevertheless, many of them return nonempty enclosure
even if the system has no solution. In some applications such as system validation or
technical computing we do care whether systems are solvable or unsolvable. Moreover,
solving a system may be a computationally demanding task, therefore in some cases
we want to know ahead whether it is worth trying to solve it.

Unfortunately, checking solvability and unsolvability of am interval linear system
are both hard problems; NP-complete and coNP-complete respectively [85, 178]. That
is why it would be favorable to have at least some sufficient conditions or algorithms
detecting for solvability and unsolvability that are computable in polynomial time. In
this chapter, such algorithms and conditions are in the center of focus. Most of them
are well-known, but used so far for a different purpose than checking unsolvability.
We are going to show how they can be modified to detect unsolvability, what are
the relations between them and how strong they are. The two strongest conditions
are based on sufficient conditions for an interval matrix having full column rank.
Related to the second condition our algorithm for computation of scaled maximum
norm is presented. We prove that under a certain assumption these conditions are
equivalent. The topic of solvability is also touched. We present two strategies for
detecting solvability of an interval linear system. Strength of methods is tested and
graphically displayed using heat maps. This chapter is a slightly modified and extended
version of our paper [87].



86 Chapter 7. (Un)solvability of interval linear systems

7.1 Definition
Even though, we touched solvablity and unsolvability in Chapter 5, let us remind the
definitions and state them more explicitly.

Definition 7.1 (Solvability and unsolvability). If the solution set Σ of Ax = b is
empty, we call the system unsolvable. Otherwise we call it solvable.

In another words, when an interval system is unsolvable, then no system Ax = b
in Ax = b has a solution. Such a solvability concept can be called weak solvability.
There are other concepts of solvability. An interval system is called strongly solvable
when each Ax = b in Ax = b is solvable. There are other more generalized concepts
of solvability [203]. For more details on solvability we refer to [178]. The problem of
this chapter is:

Problem: Decide whether Ax = b is unsolvable or solvable.

7.2 Conditions and algorithms detecting unsolvability
Let us start with the well-known methods, that are not often used for detecting un-
solvability or that can detect unsolvability as a byproduct.

7.2.1 Linear programming
In Section 5.2 we explained how to use verified linear programming in combination
with the Oettli–Prager theorem to compute the hull of a solution set. As showed, signs
of an initial enclosure of the solution set give a hint which orthants need to be inspected
for existence of a solution. If a verified linear programming announces nonexistence
of a solution in all suspected orthants, then the system is unsolvable. However, the
verified linear programming might not always be able to decide about the existence
of a solution in each orthant. Moreover, computation time of this method might be
too long and the method requires an implementation of a verified linear programming.
That is why we only mention this method for the sake of completeness, and we are
not going to compare it against the other methods.

7.2.2 Interval Gaussian Elimination
In Chapter 6 we described the interval version of Gaussian elimination for overdeter-
mined systems. The last m− n+ 1 rows of the eliminated system are in the following
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shape:

unxn = vn,

un+1xn = vn+1,

...
umxn = vm,

for some intervals un, . . . ,um,vn, . . . ,vm that occurred during the elimination. Now,
the interval enclosure of the solution of the variable xn is

xn =
⋂︂

i : 0/∈ui

(vi/ui) .

If such an intersection is empty, then the original system is unsolvable.
Gaussian elimination is often used with preconditioning. When the precondi-

tioning described in Chapter 6 is used, an unsolvable system usually becomes solvable.
However, if we do not use preconditioning, interval operations may result in an over-
estimation anyway, hence we get a nonempty enclosure again, even if the original one
was unsolvable. That is why detection of unsolvability by interval Gaussian elimina-
tion is suitable only for very small systems. We are going to address sizes of systems
that are suitable for this method later.

7.2.3 Square subsystems
The subsquares method described for overdetermined interval systems in Chapter 6
is favorable for certain interval systems. As already mentioned, when the subsquares
are selected randomly, enclosure of their solution set is computed using some method
described in Chapter 5 and then intersected, occurrence of an empty interval proves
empty solution set of the original system. Usually a low number of subsquares is
needed to prove unsolvability.

Example 7.2. To generate random interval overdetermined systems we first gener-
ated Ac, bc with coefficients randomly and uniformly from [−10, 10]. For sufficiently
small radii such systems will be unsolvable. Then, the midpoints were inflated into in-
tervals using defined fixed radius. The average number of subsquares needed to reveal
unsolvability of 100 systems for each size and radius of intervals is shown in Table 7.1.

7.2.4 The least squares enclosure
The least squares approach can also used for detecting unsolvability. As usually, an
interval system can be viewed as a set of point real systems. First, an enclosure of the
all least squares solutions ATAx = AT b for all A ∈ A, b ∈ b is computed. As already
mentioned, possibly the best way to do that is by solving the following interval system⎛⎝ I A

AT 0

⎞⎠⎛⎝ y

x

⎞⎠ =
⎛⎝ b

0

⎞⎠ . (7.1)
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Table 7.1: Number of random subsquares needed to reveal unsolvability (Exam-
ple 7.2).

m × n r = 10−3 r = 10−4 r = 10−5

5 × 3 2.00 2.20 2.05
15 × 13 2.05 2.00 2.05
35 × 23 2.00 2.00 2.00
50 × 35 2.15 2.00 2.00
100 × 87 2.60 2.00 2.00

The enclosure of the all least squares solutions x appears as the last n components of
the obtained enclosure. If 0 /∈ Ax − b we are sure that there is no x,A, b such that
Ax − b = 0, A ∈ A, b ∈ b and the original interval system is not solvable. Another
possibility to prove unsolvability, is to check whether 0 /∈ y, where y appears as the
first m components of the obtained enclosure [35]. Note that we can also use other
before mentioned methods for computing enclosure x of the solution set.

7.3 Full column rank
In this section we define sufficient conditions for detecting unsolvability of an interval
linear system based on full column rank.
Definition 7.3 (Full column rank). A matrix A ∈ Rm×n has full column rank if its
rank is equal to the number of its columns, i.e., rank(A) = n. An interval matrix A
has full column rank if every A ∈ A has full column rank.

Let Ax = b be an interval linear system. If for every instance Ax = b, where
A ∈ A, b ∈ b the matrix (A | b ) has full column rank, then it means that the vector
b does not belong to the column space of A and hence the system has no solution
(according to the well-known Frobenius theorem). Therefore, the whole interval system
Ax = b is unsolvable, if ( A | b ) has full column rank.

Checking whether an interval matrix has full column rank is a coNP-complete
problem [85]. Theorem 4.2 can be generalized for rectangular matrices because the
proof in [164] can be used with only some minor changes.

Theorem 7.4. A square interval matrix A has full column rank if for some real matrix
R the following condition holds

ϱ(|I −RAc| + |R|A∆) < 1.

Particularly, if Ac has full column rank, for R = A+
c the condition reads

ϱ(|A+
c | · A∆) < 1. (7.2)
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Proof. Assume that A = [Ac − A∆, Ac + A∆] does not have full column rank. Then
the system Ax = 0 must have some solution x ̸= 0. According to the Oettli–Prager
theorem

|Acx| ≤ A∆|x|

holds. Using this we have

|x| = |(I −RAc)x+RAcx| ≤ |I −RAc||x| + |R||Acx| ≤
≤ |I −RAc||x| + |R|A∆|x| ≤ (|I −RAc| + |R|A∆)|x|.

Hence, we get
1 ≥ ϱ(|I −RAc| + |R|A∆)

by the Perron–Frobenius theorem [139], which is a contradiction.

Since Ac consists of linearly independent columns we can write

A+
c =

(︂
AT

c Ac

)︂−1
AT

c .

Next we show that taking R = A+
c is optimal from some point of view and under

specific assumptions. The proof is an adaptation of the analogous proof for square
matrices [163].

Theorem 7.5 (Horáček et al., [87]). Assume that R ∈ Rn×m is of the form R = CA+
c ,

where C ∈ Rn×n is nonsingular. If

ϱ(|I −RAc| + |R|A∆) < 1, (7.3)

then Ac has full column rank and

ϱ(|A+
c |A∆) ≤ ϱ(|I −RAc| + |R|A∆).

Proof. We have

ϱ(I −RAc) ≤ ϱ(|I −RAc|) ≤ ϱ(|I −RAc| + |R|A∆) < 1. (7.4)

Thus, RAc is nonsingular and Ac has full column rank. Again, in this case A+
c =

(Ac
TAc)−1AT

c and A+
c Ac = I. Now, define

G := |I −RAc| + |R|A∆ + εeeT , α := ϱ(G) < 1,

where ε > 0 is small enough. Such ϵ exists due to continuity of the spectral radius
[91, 126]. Since G > 0, by Perron–Frobenius Theorem there exists 0 < x ∈ Rn such
that Gx = αx. Using the fact that α < 1, we derive

α|I −RAc|x ≤ |I −RAc|x ≤ |I −RAc|x+ |R|A∆x < αx,
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and when we combine the last and then the first inequality we get

|R|A∆x < α(I − |I −RAc|)x.

By (7.4) and the Neumann series theory, I − |I − RAc| has a nonnegative inverse,
which yields

(I − |I −RAc|)−1|R|A∆x < αx.

Now, from

A+
c = (CI)−1CA+

c = (CA+
c Ac)−1CA+

c = (RAc)−1R

= (I − (I −RAc))−1R =
∞∑︂

i=1
(I −RAc)iR

we derive
|A+

c | ≤
∞∑︂

i=1
|I −RAc|i|R| = (I − |I −RAc|)−1|R|.

Putting all together, we obtain

|A+
c |A∆x ≤ (I − |I −RAc|)−1|R|A∆x < αx.

By Perron–Frobenius theory, ϱ(|A+
c |A∆) < α < 1, from which the statement follows.

Even though the assumption on R of the above theorem is quite restrictive, it
covers a lot of natural choices: not only the pseudoinverse R = A+

c , but also R = AT
c

and their multiples, among others. The following example shows that A+
c is not the

best preconditioner in general.

Example 7.6. Let

Ac =

⎛⎜⎜⎝
1 2
3 4
5 6

⎞⎟⎟⎠ , A∆ = 1
4

⎛⎜⎜⎝
1 1
1 1
1 1

⎞⎟⎟⎠ , R =
⎛⎝−1.5385 0.0769 0.4615

1.2404 0.0192 −0.2596

⎞⎠ .
Then ϱ(|A+

c |A∆) ≈ 1.04167 > 1, so full column rank of A is not confirmed yet.
However, using the sufficient condition for full column rank of A in Theorem 7.4, we
get

ϱ(|I −RAc| + |R|A∆) ≈ 0.89937 < 1,

confirming full column rank of A.

In the further text, many of our results will be in terms of matrix norms. We
will use only consistent matrix norms i.e, those that satisfy

∥A ·B∥ ≤ ∥A∥ · ∥B∥

for real matrices (or vectors) A,B of the corresponding size. The norms mentioned
in Chapter 3 are all consistent. In [181] the following theorem for real matrices can be
found. Here, we prove a stronger version.



7.3. Full column rank 91

Theorem 7.7. Let A ∈ Rm×n. There exists a matrix R ∈ Rn×m such that for an
arbitrary consistent matrix norm ∥ · ∥ the inequality

∥I −RA∥ < 1

holds, if and only if A has full column rank.

Proof. (⇐) This implication is rather simple. If A has full column rank then ATA
is regular and therefore by setting R = (ATA)−1AT we obtain RA = I. Therefore,
∥I −RA∥ = 0 < 1.

(⇒) Let there be a matrix R ∈ Rn×m such that

∥I −RA∥ < 1.

Using the well-known relation between the spectral radius and a consistent norm [126]
we get

ϱ(I −RA) ≤ ∥I −RA∥ < 1.
Hence, I−RA has all its eigenvalues located somewhere within a circle with the center
0 and radius < 1. Adding I to the matrix (−RA) shifts all its eigenvalues to the right
by 1. The eigenvalues of (−RA) are located within a circle with the center −1 and
radius < 1. This circle does not intersect 0, therefore, no eigenvalue can be 0 and
therefore (−RA) and also (RA) are nonsingular. This implies that A must have full
column rank otherwise RA would be singular.

The remaining question is how to choose R. The matrix R can be set as an appro-
ximate pseudoinverse matrix of A (e.g., by using pinv function in Matlab/Octave).

The more important implication of Theorem 7.7 holds also for interval matrices.
The proof easily follows from the definition of interval matrix norm.
Corollary 7.8. Let A ∈ IRm×n be an interval matrix. Suppose there exists a real
matrix R ∈ Rn×m such that for an arbitrary consistent matrix norm ∥ ·∥ the inequality

∥I −RA∥ < 1 (7.5)
holds, then A has full column rank.

The remaining task is to find the matrix R and to compute the norm of an interval
matrix. Inspired by the real case, R can be set as an approximate pseudoinverse of
the midpoint matrix of A. Regarding the computation of matrix norms, there are
easily computable consistent matrix norms ∥A∥1, ∥A∥∞ (defined in Section 3.7). We
do not use the norm ∥ ·∥2 here since checking whether ∥A∥2 < 1 for an interval matrix
A is coNP-hard even for a very specialized case [136]. However, it can happen that
∥A∥1 ≥ 1, ∥A∥∞ ≥ 1, even though the spectral radius ϱ(A) < 1 (for th definition see
Section 11.9). For this sake we can still use the scaled maximum norm ∥A∥u for some
u > 0 (defined also in Section 3.7). Let us demonstrate it for a real matrix.
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Example 7.9. Let us have the matrix

A =

⎛⎜⎜⎝
0.5 0.2 0.3
0.2 0.4 0.2
0.3 0.2 0.5

⎞⎟⎟⎠ ,
then ϱ(A) ≈ 0.94641, ∥A∥1 = 1, ∥A∥∞ = 1. However, for u = (0.62, 0.45, 0.62)T ,
∥A∥u = 0.95111 < 1.

The previous example showed that the scaled maximum norm can help. The
question is how to choose a proper vector u. We know that for each u > 0 the spectral
radius ϱ(A) ≤ ∥A∥u. According to (3.6) and (3.7) we have

∥A∥u ≤ α < 1 ⇐⇒ mag(A) · u ≤ α · u < u. (7.6)

The matrix C = mag(A) is a nonnegative matrix and hence for a certain α and u we
get

α = ϱ(C) = inf
u>0

∥C∥u

[139]. Hence, to compute such a vector u we can run a few steps of the well-known
power method (see, e.g., [126]). It may converge to the eigenvector corresponding to
the largest eigenvalue of C. When ϱ(C) < 1, the approximate eigenvector might be a
suitable candidate for u satisfying (7.6).

Algorithm 7.10 (Computing u). Input is an interval matrix A. Output is a vector
u > 0 satisfying ∥A∥u < 1 when found.

1. Start with some u0 > 0 (possibly u0 = (1, . . . , 1)T ).

2. Compute uk+1 = mag(A)uk until |uk+1 − uk| < ϵ.

3. Set u = uk+1 and check the property (7.6).

4. Return u if satisfied, otherwise return a message stating that such a u was not
found.

Note that unlike the power method, it is not necessary to normalize the vectors
uk, since the algorithm might run only for a few steps.

Example 7.11. For the matrix from Example 7.9

A =

⎛⎜⎜⎝
0.5 0.2 0.3
0.2 0.4 0.2
0.3 0.2 0.5

⎞⎟⎟⎠ ,
with ϱ(A) = ϱ(|A|) ≈ 0.94641, let us take u0 = (1, 1, 1)T . Then

u0 = (1, 1, 1)T , ∥A∥u0 = 1,
u1 = (1, 0.8, 1)T , ∥A∥u1 = 0.96 < 1.
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Example 7.12. The algorithm can also work for nonsymmetric matrices with varying
signs of coefficients. Let

A =

⎛⎜⎜⎜⎜⎜⎝
0.40 −0.27 0.27 0.20
0.27 0.19 0.31 −0.18
0.27 −0.31 0.06 0.13
0.20 0.18 0.13 −0.22

⎞⎟⎟⎟⎟⎟⎠ ,

ϱ(A) ≈ 0.306691, ϱ(|A|) ≈ 0.927584, let us take u0 = (1, 1, 1, 1)T . Then

u0 = (1, 1, 1, 1)T , ∥A∥u0 = 1.14,
u1 = (1.14, 0.95, 0.77, 0.73)T , ∥A∥u1 = 0.96545 < 1.

Example 7.13. However, the algorithm will not always help, let us have

A = 2
5

⎛⎜⎜⎜⎜⎜⎝
1 1 1 1
1 −1 1 −1
1 1 −1 1
1 −1 −1 1

⎞⎟⎟⎟⎟⎟⎠ ,

then ϱ(A) = 0.8 < ϱ(|A|) = 1.6 , let us take u0 = (1, 1, 1, 1)T . Then

u0 = (1, 1, 1, 1)T , ∥A∥u0 = 1.6,
u1 = (1.6, 1.6, 1.6, 1.6)T , ∥A∥u1 = 1.6 > 1.

7.3.1 Relationship between the two sufficient conditions
In the previous subsection the two sufficient conditions for a matrix having full column
rank were introduced – (7.2) and (7.5). The question is what is the relation between
these two conditions?

When A is a square interval matrix, both conditions are of the same strength.

Theorem 7.14. When A is a square interval matrix, then

(7.2) ⇐⇒ (7.5).

Proof. (⇐) When A is a square interval matrix, then for every (I −RA) ∈ (I −RA)

ϱ(I −RA) ≤ ϱ(mag(I −RA)) ≤ ∥I −RA∥ < 1.

Using the properties (3.1)–(3.5) we get

ϱ(mag(I −RA)) = ϱ(|I −RAc| + |R|A∆) < 1,
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which is actually the sufficient condition for regularity from Theorem 4.2. Hence in
the square case (7.5) implies Theorem 4.2 and also (7.2).
(⇒) If Ac has full column rank then A+

c = A−1
c in the square case and the condition

(7.2) means A is strongly regular (Theorem 4.33 statement 3.). When setting R = A−1
c

we get the statement 4. of Theorem 4.33 which is equivalent to (7.5).

What is the relation in the rectangular case? In the following theorem we claim
that the second condition is stronger.

Theorem 7.15 (Horáček et al. [87]). For a general matrix A ∈ IRm×n the implication
a) ⇒ b) holds, where

a) Ac has full column rank and ϱ(|A+
c |A∆) < 1,

b) ∃u ∈ Rn, u > 0 and ∃R ∈ Rn×m such that ∥I −RA∥u < 1.

Proof. When Ac has full column rank then A+
c = (AT

c Ac)−1AT
c , which causes the

matrix A+
c A to have the midpoint matrix equal to I. Hence I − A+

c A is the matrix
with the midpoint matrix 0. According to the property (3.4) it has the radius matrix
equal to |A+

c |A∆. Therefore, for all C ∈ I −A+
c A it holds that |C| ≤ |A+

c |A∆. Hence,
together with a), it gives

ϱ(C) ≤ ϱ
(︂
|A+

c |A∆
)︂
< 1.

By [139] (Lemma 3.2.1), there must exist some u > 0 such that ∥C∥u < 1 for each C ∈
(I −A+

c A). According to the definition of the scaled maximum norm there must exist
u > 0 such that ∥I −A+

c A∥u < 1. Finally, to make b) hold, set R = (AT
c Ac)−1AT

c .

Using Theorem 7.5 we can formulate the other implication. However, we need
to modify the second condition a little.

Theorem 7.16 (Horáček et al. [87]). For a general matrix A ∈ IRm×n the implication
a) ⇐ b*) holds, where

a) Ac has full column rank and ϱ(|(Ac)+|A∆) < 1,

b*) ∃u ∈ Rn, u > 0, ∃R = (CA+
c ) ∈ Rn×m, for some nonsingular C ∈ Rn×n such

that ∥I −RA∥u < 1.

Proof. The statement b*) is equivalent to mag(I −RA)u < u for a suitable R. Using
the properties (3.1)–(3.5) we get

mag(I −RA) = |I −RAc| + |R|A∆
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and
(|I −RAc| + |R|A∆)u < u.

By [139] (Corollary 3.2.3), because the whole matrix on the left side is nonnegative,
the formula is equivalent to ϱ(|I − RAc| + |R|A∆) < 1 and according to Theorem 7.5
the claim a) holds.

7.4 Solvability
In the final comparison of the mentioned methods for detecting unsolvability a method
for detecting the opposite – solvability of a system – might bring a new information to
understanding the bigger picture. Hence, this small section is devoted to this topic. As
was mentioned earlier, here, we are going to deal only with weak solvability concept.
Unfortunately, generally, checking weak solvability is an NP-complete problem [178].
That is why we focus only on sufficient conditions here.

First option is to consider the midpoint system Acx = bc. This system is possibly
unsolvable, that is why we set

x ≈ A+
c bc.

The vector x may not be a solution of the midpoint system, however, we assume that
x is a solution of a system that is close enough to the midpoint system, and hence still
contained in the original interval system. We can check this by applying the Oettli–
Prager theorem to x. The checking must be done in a verified way using interval
arithmetics. We refer to this procedure as midpoint check.

Secondly, the vector sign(x) gives us a hint in which orthant the solution can be
found. With such knowledge we can rewrite the Oettli–Prager formula for the given
orthant and apply verified linear programming. We refer to this procedures as orthant
check.

7.5 Comparison of methods
In this section we compare the previously discussed methods for detecting unsolvabil-
ity; namely:

• ge – Gaussian elimination approach described in Section 7.2.2,

• subsq – the subsquares approach described in Section 7.2.3, with 5 random
square subsystem selections,

• lsq – the least squares approach discussed in Section 7.2.4,

• fcr – the approach using the full column rank sufficient condition (7.5) with
∥ · ∥∞ norm described in Section 7.3,
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• fcrit – the approach using the condition (7.5), with scaled maximum norm and
iterative search for a vector u described in Section 7.3, maximum number of
iterations is set to 5,

• eig – the approach using condition (7.2) with nonverified computation of spectral
radius described in Section 7.3.

The method eig is shown for comparison purpose only, it is not a verified method
since the spectral radius in the formula is not computed in a verified way.

The methods are tested on random systems with intervals having fixed radii. The
radius range is selected to suit a particular group of methods – to catch the region of its
applicability. The methods were applied to systems with various number of variables
(n = 5, 10, 15, . . . , 100), the number of equations m was always selected according
to n as m = 3

2n to form a rectangular system. Random systems were generated as
described in Example 7.2. For each combination of a radius and a system size, 100
random systems were generated and tested for unsolvability by various methods.

The results of testing are displayed as heat maps in Figure 7.1 and 7.2. A point
on a heat map shows the percentage of systems that were detected to be unsolvable
by a given method, a given number of system variables (x-axis) and a given radius
(y-axis). Note that, even though, the sizes (x-axes) remain the same, the interval radii
range (y-axes) might change from method to method. There are basically two types
of methods. The first group works only for “smaller” radii relative to the coefficients
of Ac, bc (r < 0.01) and “smaller” system sizes (n < 40) – ge, lsq, subsq (Figure 7.1).
The methods in the second group work even for “larger” radii (r < 1) – fcr, fcrit,
eig (Figure 7.2).

The method ge works only for very small systems. Since for detection of unsolv-
ability it must be used without preconditioning, the interval operations cause large
overestimation that will occur for larger systems (n > 10) and Gaussian elimination
will find a solution or it will not be able to proceed because all pivot intervals contain
0 at some step.

The methods lsq and subsq detect unsolvability with a similar success rate. The
efficiency and the computation time of subsq depend on the number of random square
subsystems inspected. Both methods depend on the efficiency of a method used for
computing enclosures of square interval systems.

The best methods are fcr and fcrit. The frc is the fastest method (the largest
average computation time that occurred during testing using the DESKTOP setting
was 0.2415 seconds). In the tested cases, the iterative search for scaled maximum norm
seemed to help. It adds only some minor computational time, the longest average
computation took about 0.2426 seconds.

The method eig returned great results too, however because of nonverified com-
putation it did not return verified results and therefore it was excluded from the
competition. Nevertheless, the heat maps of eig and fcrit look very similar. The
strength of fcrit stands or falls on finding a proper vector u. In this case, the heat
maps show, that our heuristic iterative search for u does the job very well.
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(a) ge (b) subsq

(c) beeck

Figure 7.1: Strength of unsolvability tests ge, subsq and beeck. Color corresponds
to percentage of unsolvable systems discovered (the lighter the area the higher the
percentage).
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(a) fcr (b) fcrit

(c) eig

Figure 7.2: Strength of unsolvability tests fcr, fcrit and eig. Color corresponds
to percentage of unsolvable systems discovered (the lighter the area the higher the
percentage). Notice the different scale on y-axis in contrast to Figure 7.1.

(a) midpoint check (b) orthant check

Figure 7.3: Strength of two solvability tests from Section 7.4. Color corresponds to
percentage of solvable systems discovered (the lighter the area the higher percentage).
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With growth of interval widths, generated systems become solvable. To check
this we applied a similar test for the two solvability conditions. The results are depicted
in 7.3. The orthant check is clearly better. The heat map (b) in Figure 7.2 and the
heat map (b) in Figure 7.3 form a gap between the NP-complete and coNP-complete
problem (unsolvability and solvability). For the tested systems the gap seems to be
narrow.
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8 Determinant of an interval
matrix

▶ Known results
▶ Complexity of approximations
▶ Methods for computing determinant enclosures
▶ Determinant of symmetric matrices
▶ Classes of matrices with polynomially computable determinant bounds
▶ Comparison of methods

Applications of interval determinants were discussed in [208] for testing for
Chebyshev systems or in [158] for computer graphics applications. Nevertheless, the
area of interval determinants has not been much explored yet. In this chapter we ad-
dress computational properties of determinants of general interval matrices. Next, we
mention a known tool for computing interval determinants – interval Gaussian elimi-
nation. We then show how to modify existing tools from the classical linear algebra –
Hadamard’s inequality and the Gerschgorin circle theorem. After that, we design our
new method based on Cramer’s rule and solving interval linear systems. Regarding
symmetric matrices, there are results about enclosing their eigenvalues that can also
be used for computing interval determinants. All the methods work much better when
combined with some kind of preconditioning. We briefly address this topic. Since
computing a general interval determinant is intractable we point out classes of matri-
ces with polynomially computable tasks connected to determinants. At the end we
provide thorough testing of the mentioned methods on random general and symmetric
interval matrices and discuss the use of these methods. The chapter is based on our
work [86].

8.1 Definition
Definition 8.1 (Interval determinant 1). Let A be a square interval matrix, then its
determinant is defined as

det(A) = {det(A) | A ∈ A}.

Since the determinant of a real matrix is actually a polynomial, it is continuous.
A closed interval is a compact set, so is the Cartesian product of them. Hence an
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interval matrix is a compact set. The image of the compact set under continuous
mapping is again a compact set. That is why we can define the interval determinant
in a more pleasant but equivalent way.

Definition 8.2 (Interval determinant 2). Let A be a square interval matrix, then its
determinant can be defined as the interval

det(A) =
[︂

min{det(A) | A ∈ A}, max{det(A) | A ∈ A}
]︂
.

Sometimes we refer to the exact determinant as the hull. In the following sec-
tion we will state that computing the exact bounds on an interval determinant is an
intractable problem. That is why, we are usually satisfied with an enclosure of the
interval determinant. Of course, the tighter is the enclosure the better.

Definition 8.3 (Enclosure of interval determinant). Let A be a square interval matrix,
then an interval enclosure of its determinant is defined to be any d ∈ IR such that

det(A) ⊆ d.

Therefore, through this chapter we deal with the following problem:

Problem: Compute a tight enclosure of the determinant of A.

8.2 Known results
To the best knowledge of ours, there are only a few theoretical results regarding interval
determinants. Some of the results can be found in [112, 173]. In [173] we find a theorem
stating that for an arbitrary matrix A ∈ A a matrix A′ ∈ A can be found such that
both A and A′ have equal determinants and all coefficients of A′, except one, come
from some edge matrix of A. (i.e., a real matrix where each coefficient Aij is equal to
the lower or upper bound of Aij).

Theorem 8.4 (Edge theorem). Let A be an interval matrix, then for each A ∈ A,
there exists a pair of indices (k, l) and A′ ∈ A in the following form

A′ij ∈

⎧⎨⎩{Aij, Aij}, (i, j) ̸= (k, l),[︂
Aij, Aij

]︂
, (i, j) = (k, l),

such that det(A) = det(A′).

We prove the theorem with a more detailed demonstration than the one showed
in [173].
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Proof. Let A ∈ A be given. For a matrix A′ ∈ A such that det(A) = det(A′), we
remember the number of coefficients of A′ such that A′ij /∈ {Aij, Aij} (i.e., they do not
lie on the edge of interval matrix). We wish to find A′ that minimizes this number.
We show that there exists A′ ∈ A such that det(A′) = det(A) and this number is at
most 1.

For the sake of contradiction let us assume that this number is 2 or greater.
Thus there exist two pairs of indices (p, q), (r, s) such that A′pq ∈ (Apq, Apq) and A′rs ∈
(Ars, Ars). Notice that here open intervals are used. The determinant of A′ can be
expressed as a function of these coefficients.

det(A) = det(A′) = a · A′pq + b · A′rs + c · A′pqA
′
rs + d, (8.1)

for some a, b, c, d ∈ R. When we fix the value of the determinant, we can express a
variable (without loss of generality A′pq) as

A′pq = −b · A′rs + (d− det(A))
c · A′rs + a

, (8.2)

which is a linear fractional function. Note that the denominator cannot be zero,
otherwise it forces the function (8.1) to have only one variable which is a contradiction
to our assumption that the number of variables is greater than or equal to 2.

The two cases, which are depicted in Figure 8.1, can occur. The dark box
represents the Cartesian product of intervals Ars × Apq. The first case represents a
linear fractional function. In the second case the function degenerates to just a line.
According to the definition of A′ and (8.1) the point (A′pq, A

′
rs) lies in the interior

of the box. Hence the function (8.2) intersects the box. We then move the point
(A′pq, A

′
rs) along the graph of the function (8.2) to reach a new point (A′′rs, A

′′
pq) that

lies on the border of the box. This way we actually obtained a new matrix A′′ from
A′ that decreases the number of coefficients that do not belong to {Aij, Aij} by one.
If necessary, we can repeat the process and reduce the number of such coefficients to
one.

The following claim is an immediate consequence and is also mentioned without
an explicit proof in [173]. It claims that the exact bounds of the interval determinant
can be computed as minimum and maximum determinant of all 2n2 possible edge
matrices of A. Another reasoning for the corollary, not using the Edge theorem, is
simply based just on linearity of determinant of a real matrix with respect to each
coefficient.

Corollary 8.5. For a given square interval matrix A the interval determinant can be
obtained as

det(A) = [min(S),max(S)], where S = {det(A) | ∀i, j Aij = Aij or Aij = Aij}.

Proof. For each A ∈ A a matrix A′ can be constructed. This matrix has at most one
coefficient A′ij ∈ (aij, aij). A determinant of A′ expressed in this coefficient is a linear
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Figure 8.1: The two possible cases from the proof of Theorem 8.4. The dark box
represents the Cartesian product of intervals Ars × Apq. The curve represents the
function (8.2).

function. Clearly the function value can be increased or decreased by setting

A′ij = Aij or Aij = A
′
ij.

That is why the matrix having minimum (or maximum) determinant must be some
edge matrix of A.

A known result coming also from [173] is the following.

Theorem 8.6. Let Ac be a rational nonnegative symmetric positive definite matrix.
Then checking whether the interval matrix

A = [Ac − E,Ac + E]

is regular is a coNP-complete problem.

Proof. For a proof see, e.g., [173].

As a consequence of this theorem we can obtain the following important theorem
[112, 173].

Theorem 8.7. Let Ac be a rational nonnegative matrix. Computing the either of the
exact bounds det(A) or det(A) of the matrix

A = [Ac − E,Ac + E] ,

is NP-hard.
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Proof. The proof of this theorem is also described in [112, 173].

8.3 Complexity of approximations
At the end of the previous section we stated that the problem of computing the exact
bounds of the determinant of an interval matrix is generally an NP-hard problem.
We could hope for having at least some approximation algorithms. Unfortunately, in
this section we prove that this is not the case, neither for relative nor for absolute
approximation.

Theorem 8.8 (Relative approximation, Horáček et al. [86]). Let Ac be a rational
nonnegative symmetric positive definite matrix. Let A = [Ac − E,Ac + E] and ε be
arbitrary such that 0 < ε < 1. If there exists a polynomial time algorithm returning
[a, a] such that

det(A) ⊆ [a, a] ⊆ [1 − ε, 1 + ε] · det(A),

then P = NP.

Proof. We use the fact from Theorem 8.6 that for a rational nonnegative symmetric
positive definite matrix Ac, checking whether the interval matrix A = [Ac − E,Ac + E]
is regular is a coNP-complete problem. We show that if such an ε-approximation
algorithm existed, it would decide regularity from the above mentioned problem; which
implies P = NP.

For a regular interval matrix we must have det(A) > 0 or det(A) < 0. If
det(A) > 0 then, from the second inclusion a ≥ (1 − ε) · det(A) > 0. On the other
hand, if a > 0 then from the first inclusion det(A) ≥ a > 0. Therefore, we have
det(A) > 0 if and only if a > 0. The corresponding equivalence for det(A) < 0 can
be derived in a similar way. Therefore, if we had such an ε-approximation algorithm,
from the sign of the returned determinant enclosure the regularity can be decided.

Theorem 8.9 (Absolute approximation, Horáček et al. [86]). Let Ac be a rational
nonnegative symmetric positive definite n × n matrix. Let A = [Ac − E,Ac + E] and
let ε be arbitrary such that 0 < ε. If there exists a polynomial time algorithm returning
[a, a] such that

det(A) ⊆ [a, a] ⊆ det(A) + [−ε, ε],

then P = NP.

Proof. We again use the fact from Theorem 8.6 and show that if such an ε-appro-
ximation algorithm existed, then we can decide the coNP-complete problem. Which
would imply P = NP.
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Let the matrix Ac consist of rational numbers with nominator and denominator
representable by k bits (we can take k as the maximum number of bits needed for
any nominator or denominator). Then nominators and denominators of coefficients in
Ac −E and Ac +E are also representable using O(k) bits. Each row of the matrices is
now multiplied with a product of all denominators from the corresponding row of both
Ac − E,Ac + E. Each denominator still uses k bits and each nominator uses O(nk)
bits. We obtained a new matrix A′. The whole matrix now uses O(n3k) bits which is
polynomial in n and k.

We only multiplied by nonzero constants therefore the following property holds

0 /∈ det(A) ⇐⇒ 0 /∈ det(A′).

After canceling fractions, the matrix A′ has integer bounds. Its determinant must also
have integer bounds. Therefore deciding whether A′ is regular means deciding whether
| det(A′)| ≥ 1. We can multiply one arbitrary row of A′ by 2ε and get a new matrix
A′′ having det(A′′) = 2ε det(A′). Now, we can apply the approximation algorithm and
compute an absolute approximation [a′′, a′′] of the determinant of A′′. Let det(A′) ≥ 1.
Then det(A′′) ≥ 2ε and the lower bound of the absolute approximation is

a′′ ≥ det(A′′) − ε ≥ ε > 0,

On the other hand, if a′′ > 0 then

2ε det(A′) = det(A′′) ≥ a′′ > 0.

Hence, even det(A′) > 0 and since it is an integer it must be greater or equal to 1.
The case of det(A′) ≤ −1 is handled similarly. Therefore, we proved

0 /∈ det(A) ⇐⇒ 0 /∈ det(A′) ⇐⇒ 0 /∈ [a′′, a′′].

That means we can decide regularity with our ε-approximation algorithm.

8.4 Enclosure of a determinant: general case

8.4.1 Gaussian elimination
To compute an enclosure of the determinant of an interval matrix Gaussian elimination
introduced in Chapter 5 can be used – after transforming a matrix into row echelon
form an enclosure of the determinant is computed as the product of the intervals on
the main diagonal. We remind that, as in the real case, swapping of two rows changes
the sign of the resulting enclosure.

It is usually favorable to use Gaussian elimination together with a precondition-
ing (more details will be explained in Subsection 8.4.6). We would recommend the
midpoint inverse preconditioning as was done in [208].
Example 8.10. Because of properties of interval arithmetic (subdistributivity) inter-
val Gaussian elimination leads to a certain overestimation. Let us have a matrix

A =
⎛⎝a11 a12

a21 a22

⎞⎠ .



8.4. Enclosure of a determinant: general case 107

In Section 4.2 we computed the hull of the determinant of such a matrix as
det(A) = a11 · a22 − a12 · a21 (the determinant of a 2 × 2 matrix is a formula with
single occurrence of each matrix coefficient and we can apply Theorem 3.13).

After one elimination step we get the matrix⎛⎝a11 a12

0 a22 − a21
a11

· a12

⎞⎠ .
The following holds according to subdistibutivity and nonexistence of inverse element
in the interval arithmetics.

a11 ·
(︃

a22 − a21

a11
· a12

)︃
⊇ a11 · a22 − a12 · a21 = det(A).

8.4.2 Gerschgorin discs
It is a well-known result that the determinant of a real matrix is a product of its
eigenvalues. That is why an enclosure of an interval determinant can be computed
as a product of enclosures of interval matrix eigenvalues, e.g., [69, 78, 108, 124]. The
Gerschgorin circle theorem can be used as well.

This classical result claims that for a real square matrix A each its eigenvalue
lies inside at least one Gerschgorin disc in complex plane with centers Aii and radius∑︁

j ̸=i |Aij|. When A is an interval matrix, to each real matrix A ∈ A there corresponds
a set of Gerschgorin discs. Increasing or decreasing the coefficients of A within A
shifts or scales the discs. However, all discs corresponding to ith diagonal element of
A in all situations are contained inside a disc with the center mid(Aii) and the radius
rad(Aii)+∑︁j ̸=i mag(Aij) as depicted in Figure 8.2. We can call such a disc an interval
Gerschgorin disc.

As in the case of the real Gerschgorin discs, it is also well known that in the
union of k intersecting discs there somewhere lie k eigenvalues. By intersecting discs
we mean that their projection on the horizontal axis is a continuous line. That might
complicate the situation a bit. When k interval Gerschgorin discs intersect each A ∈ A
specifies a distribution of k eigenvalues in the bunch of the k interval discs.

That is why we can deal with each bunch of intersecting discs separately. We
compute the verified interval enclosing all products of k eigenvalues regardless of their
position inside this bunch. The computation of the verified enclosures will depend on
the number of discs in the bunch (odd/even) and on whether the bunch contains the
point 0. In Figures 8.3 and 8.4 all the possible cases and resulting verified enclosures
are depicted. The resulting determinant will be a product of intervals corresponding
to all bunches of intersecting discs.

The formulas for enclosures of a bunch of discs are based on the following simple
fact depicted in Figure 8.5: an eigenvalue lying inside an intersection of two discs can
be real or complex (c + bi). In the second case the conjugate complex number c − bi
is also an eigenvalue. Their product is b2 + c2, which can be enclosed from above by
a2, where a is defined in Figure 8.5. The whole reasoning is based on Pythagorean
theorem and geometric properties of hypotenuse.
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Figure 8.2: One interval Gerschgorin disc (the large circle). The grey area mirrors
the scaling and shifting of a real Gerschgorin disc when shifting coefficients of A within
intervals of A

Figure 8.3: Verified enclosures of any product of real eigenvalues inside a bunch of
intersecting interval Gerschgorin discs not containing 0.
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Figure 8.4: Verified enclosures of any product of real eigenvalues inside a bunch of
intersecting interval Gerschgorin discs containing 0.

Figure 8.5: Enclosing a product of two complex eigenvalues.
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The generalized interval Gerschgorin discs approach may produce large overes-
timation. However, it might be useful in case of tight intervals or a matrix close to a
diagonal one.

8.4.3 Hadamard’s inequality
A simple but rather crude enclosure of interval determinant can be obtained by the
well known Hadamard’s inequality. For an n× n real matrix A we have

| det(A)| ≤
n∏︂

i=1
∥A∗i∥2 =

n∏︂
i=1

⎛⎝ n∑︂
j=1

|Aji|2
⎞⎠ 1

2

,

where ∥A∗i∥2 is the Euclidean norm of the ith column of A. This inequality is simply
transferable to the interval case. Since the inequality holds for every A ∈ A we have

det(A) ⊆ [−d,+d] , where d =
n∏︂

i=1

⎛⎝ n∑︂
j=1

mag(Aji)2

⎞⎠ 1
2

.

Since det(A) = det(AT ), the same formula can be computed also for rows instead of
columns and intersection of the two determinant enclosures can be taken. It is a fast
and simple method. A drawback is that the obtained enclosure is often wide. A second
problem is that it is impossible to detect the sign of the determinant.

8.4.4 Cramer’s rule
In this section we introduce our method that is based on Cramer’s rule [86]. In
Chapter 5 we introduced various methods for computing an enclosure of the solution
set of a square interval linear system and we can again make use of them. According
to Cramer’s rule for a real system of equations Ax = b we get

x1 = det(A1←b)
det(A) ,

where x1 is the first coefficient of the solution vector x and A1←b is the matrix that
emerges when we substitute the first column of A with b. We can rewrite the equation
as

det(A) = det(A1←b)
x1

.

Let b = e1 and let us assume that we know x1 from solving a system Ax = b then
det(A1←b) is equal to det(A2:n) which emerges by omitting the first row and column
from A. Now, we have reduced our problem to computing determinant of a matrix of
lower order and we can repeat the same procedure iteratively until the determinant
is easily computable. Such a procedure will not pay off in the case of real matrices.
However, it will help in the interval case. We actually get

det(A) ⊆ det(A2:n)/x1, (8.3)
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where x1 is the interval enclosure of the first coefficient of the solution of Ax = e1,
computed by some of the cited methods. Notice that we can use arbitrary ei instead
of e1. The method works when all enclosures of x1 in the recursive calls (8.3) do not
contain 0.

8.4.5 Monotonicity checking
According to [149], the partial derivatives of det(A) of a real nonsingular matrix
A ∈ Rn×n are

∂ det(A)
∂A

= det(A)A−T .

Let B be an an interval enclosure for the set {A−T | A ∈ A}. Since A is
regular, every A ∈ A has the same sign of determinant. Hence, e.g., det(Ac)Bij gives
information about monotonicity of the determinant.

When long as 0 is not in the interior of Bij, then we can do the following
reasoning: if det(Ac)Bij is a nonnegative interval, then det(A) is nondecreasing in
Aij, and hence its minimal value is attained at Aij = Aij. Similarly for det(Ac)Bij

nonpositive.
In this way, we split the problem of computing det(A) into two subproblems of

computing the lower and upper bounds separately. For each subproblem, we can fix
those interval entries of A at the corresponding lower or upper bounds depending on
the signs of Bij. This makes the set A smaller in general. We can repeat this process
or call another method for the reduced interval matrix.

Notice that there are classes of interval matrices with monotone determinant.
They are called inverse stable [169]. Formally, A is inverse stable if |A−1| > 0 for each
A ∈ A. This class also includes interval M-matrices [12], inverse nonnegative [117] or
totally positive matrices [45] as particular subclasses that are efficiently recognizable;
cf. [75].

8.4.6 Preconditioning
In an interval case by preconditioning we mean transforming an interval matrix into a
form that is more suitable for further processing. It is generally done by multiplying
an interval matrix A with some real matrices B,C from the left and right respectively.

A ↦→ BAC.

Regarding interval determinant, we have the following result.

Proposition 8.11. Let A be a square interval matrix and let B,C be real square
matrices of the corresponding size. Then

det(B) · det(A) · det(C) ⊆ det(BAC).

Proof. For any A ∈ A we have det(B) ·det(A) ·det(C) = det(ABC) ∈ det(BAC).



112 Chapter 8. Determinant of an interval matrix

We will further use the consequence

det(A) ⊆ 1
det(B) · det(C) · det(BAC).

There are many possibilities how to choose the matrices B,C for a square interval
matrix. First, we can use the approach from [208] – take the midpoint matrix Ac and
compute its LU decomposition PAc = LU , where L is a lower triangular matrix
having ones on the main diagonal, U is upper triangular and P is a permutation
matrix. Obviously, det(L) = det(L−1) = 1. Determinant of P is 1 or −1. We take
B ≈ L−1 (the main diagonal of B is set to ones) and C = I . Then according to
Proposition 8.11 we have that

det(A) ⊆ 1
det(P ) · det(L−1PA).

The resulting preconditioned interval matrix should be “close” to the upper triangular
matrix U . We assume that such a preconditioning might be favorable for Gaussian
elimination, since the preconditioned matrix is already close to row echelon form.

For a symmetric matrix an LDLT decomposition can be used. A symmetric
matrix A can be decomposed as A = LDLT , where L is upper triangular with ones
on the main diagonal and D is a diagonal matrix. Similarly, as in the previous case,
we set B ≈ L−1, C ≈ L−T and obtain

det(A) ⊆ det(L−1AL−T ).

The resulting preconditioned interval matrix should be “close” to the diagonal matrix
D.

For solving interval linear systems, there are various preconditioners used [74,
103]. The most common choice is taking B = A−1

c when Ac is nonsingular and C = I.
Such a choice of B,C is also optimal in a certain sense [137, 139]. Of course, we are
computing in a finite precision arithmetic, therefore we take only some approximation
B ≈ A−1

c . According to Theorem 8.11 we get

det(A) ⊆ det(A−1
c A)/ det(A−1

c ).

Notice that the matrix A−1
c does not generally have its determinant equal to 1. That

is why we need to compute a verified determinant of a real matrix. We present an
example of such an algorithm in the next section.

8.5 Verified determinant of a real matrix
In [145] a variety of algorithms for computation of verified determinant of real matrices
is presented. We are going to use the simplest one by Rump [195]. For a real square
matrix X we compute its LU decomposition using the floating point arithmetics such
that

PX ≈ LU,
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where L is lower triangular, U is upper triangular and P is a permutation matrix follow-
ing partial pivoting (therefore det(P ) = ±1). Let XL, XU be approximate inverses
of L,U respectively. We force XL to be lower triangular with unit main diagonal
(therefore det(XL) = 1). We denote Y := XLPXXU . We enclose the coefficients of
X with verified intervals and obtain an interval matrix X. Therefore, the resulting
matrix Y = XLPXXU will be close to the identity matrix and its determinant is
close to 1. To compute its determinant, we can apply, e.g., the interval version of the
Gerschgorin circle theorem (Section 8.4.2). From

det(Y ) = det(P ) det(X) det(XU).

we get
det(X) = 1

det(P ) · det(Y )
det(XU) .

We can also enclose the diagonal elements of XU with tight intervals and compute
its determinant simply as a product of these intervals. If 0 /∈ det(XU) we get

det(X) ∈ det(X) ⊆ 1
det(P ) · det(Y )

det(XU) .

8.6 Enclosure of a determinant: special cases
Even though we are not going to compare all of the mentioned methods in this section,
for the sake of completeness, we will mention some cases of matrices, that enable the use
of another tools. For some classes of interval matrices tasks connected to determinants
are computable efficiently.

8.6.1 Symmetric matrices
Many problems in practical use are described by symmetric matrices. In connection
with determinant a new approach can be used. We specify what we mean by an
interval symmetric matrix in the following definition.

Definition 8.12 (Symmetric interval matrix). For a square interval matrix A we
define the symmetric matrix AS as

AS = {A ∈ A | A = AT }.

Its eigenvalues are defined as follows.

Definition 8.13. For a real symmetric matrix A let λ1 ≥ λ2 ≥ . . . ≥ λn be its
eigenvalues. For AS we define its ith set of eigenvalues as λi(AS) = {λi(A) | A ∈ AS}.

For symmetric interval matrices there exist various methods to enclose each ith
set of eigenvalues. A proposition by Rohn [175] gives a simple enclosure.

Proposition 8.14. λi(AS) ⊆ [λi(Ac) − ϱ(A∆), λi(Ac) + ϱ(A∆)].
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The previous proposition requires computation of verified enclosures of eigenval-
ues of real matrices; for more details on such an issue see, e.g., [128, 129, 221].

There exist various other approaches for computing enclosures of the eigenvalues
(e.g., [107, 119]), there are several iterative improvement methods (e.g., [15, 79]).
For the exact minimum and maximum extremal eigenvalues, there is a closed-form
expression [64], which is however exponential.

8.6.2 Symmetric positive definite matrices
Let AS be a symmetric (strongly) positive definite matrix, that is, every A ∈ AS is
positive definite. For more details about positive definite matrices see Section 11.10.

The matrix with maximum determinant can be found by solving the optimization
problem

max log det(A) subject to A ∈ AS.

The condition A ∈ AS can be rewritten as linear conditions

∀i, j aij ≤ aij ≤ aij, ∀i ̸= j aij = aji,

and the function log det(A) is a so-called self-concordant function for which such an
optimization problem is solvable in polynomial time with respect to dimension of a
problem and 1/ε (where ε is a desired accuracy) using interior point methods; see
Boyd and Vandenberghe [22]. Therefore, we have:

Proposition 8.15. The maximum determinant of a symmetric positive definite matrix
is computable in polynomial time.

8.6.3 Matrices with Ac = I

Preconditioning A by A−1
c results in an interval matrix with I as the midpoint matrix.

We saw that such matrices imply favorable properties (polynomial hull computation
– Subsection 5.6.2, nicer sufficient conditions for regularity – Section 4.1).

Proposition 8.16. Suppose that ϱ(A∆) < 1. Then the minimum determinant of A
is attained for A.

Proof. According to Corollary 4.3 the fact ϱ(A∆) < 1 implies regularity of A; and also
of A.

We will proceed by mathematical induction. For n = 1 the proof is trivial. For
a general case, we express the determinant of A ∈ A as in (8.3)

det(A) = det(A2:n)/x1. (8.4)

Notice that A and A2:n have identity matrices as midpoints, whose determinant is
equal to 1. Regularity of every A ∈ A, and hence of A2:n ∈ A2:n, then implies

det(A) > 0, det(A2:n) > 0.
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Therefore, we know that also x1 > 0. To obtain lower bound on det(A) we need
to minimize the numerator and maximize the denominator of (8.4). By induction
hypothesis, the smallest value of det(A2:n) is attained for A2:n = A2:n. The solution
x of Ax = e1 is the first column of A−1. From Theorem 11.21 it follows that the
upper bound on A−1

∗1 is obtained by setting A = (I − A∆) = A. Therefore A = A
simultaneously minimizes the numerator and maximizes the denominator of (8.4).

Example 8.17. If the condition ϱ(A∆) < 1 does not hold, then the claim is generally
wrong. Let us have the matrix A = [Ac − A∆, Ac + A∆] where

Ac =

⎛⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎠ , A∆ =

⎛⎜⎜⎝
1 1 1
1 1 1
1 1 1

⎞⎟⎟⎠ .
we have ϱ(A∆) = 3 and det(A) = −2, however, the det(A) = [−6, 14]. The minimum
bound is attained, e.g., for the matrix⎛⎜⎜⎝

0 −1 1
−1 2 1
1 1 2

⎞⎟⎟⎠ .

The reasoning from the proof of Theorem 8.16 cannot be applied for computing
the upper bound of det(A).

Example 8.18. For the matrix A = [Ac − A∆, Ac + A∆] where

Ac =

⎛⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎠ , A∆ = 1
4 ·

⎛⎜⎜⎝
1 1 1
1 1 1
1 1 1

⎞⎟⎟⎠ ,
we have ϱ(A∆) = 0.75 < 1 and det(A) = [0.25, 2.1875]. However, det(A) = 1.75.

Computing the maximum determinant of A is a more challenging problem. It is
an open question whether is can be done in polynomial time. Obviously, the maximum
determinant of A is attained for a matrix A ∈ A such that Aii = Aii for each i.
Specifying the off-diagonal entries is, however, not so easy.

8.6.4 Tridiagonal H-matrices
Consider an interval tridiagonal matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 b2 0 . . . 0
c2 a2 b3

. . . ...
0 c3 a3

. . . 0
... . . . . . . . . . bn

0 . . . 0 cn an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Suppose that it is an interval H-matrix, which means that each matrix A ∈ A is
an H-matrix (for a definition see Section 4.4). Without loss of generality let us assume
that the main diagonal is positive, that is, ai > 0 for all i = 1, . . . , n. Otherwise, we
can multiply the corresponding rows by −1.

Recall that the determinant Dn of such a real tridiagonal matrix of order n can
be computed by the recursive formula

Dn = anDn−1 − bncnDn−2.

Since A is an H-matrix with positive diagonal, the values of D1, . . . , Dn are positive for
each A ∈ A (see, e.g., [19]). Hence the largest value of det(A) is attained at ai := ai

and bi, ci such that bici = bici. Analogously for the minimal value of det(A). Hence
we constructively proved the following proposition.

Proposition 8.19. Determinants of interval tridiagonal H-matrices are computable
in polynomial time.

Complexity of determinant computation for general tridiagonal matrices remains
an open problem, similarly as solving an interval system with tridiagonal matrix [112].
Nevertheless, not all problems regarding tridiagonal matrices are open or hard, e.g.,
deciding whether a tridiagonal matrix is regular can be done in polynomial time [11].

8.7 Comparison of methods
In this section some of the previously described methods are compared. First, we start
with general square matrices. Then we test on symmetric matrices. All the tests were
computed using the DESKTOP setup (see Section 3.11).

8.7.1 General case
For general matrices the following methods are compared:

• ge - interval Gaussian elimination,

• cram - our method based on Cramer’s rule with HBR method for solving square
interval systems,

• had - interval Hadamard’s inequality,

• gersch - interval Gerschgorin circles.

The suffix +inv is added when the preconditioning with midpoint inverse was applied
and the suffix +lu is added when the preconditioning based on LU decomposition was
used. We use the label hull to denote the exact interval determinant.
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Table 8.1: Enclosures of determinants from Example 8.20. Bounds of the enclosures
are rounded off to 3 decimal digits. Fixed radii of intervals are denoted by r.

method r = 0.2 r = 0.1 r = 0.01

hull [-0.6, 21.72] [4.06, 14.88] [8.465, 9.545]
ge [-29.25, 87.75] [3.000, 21.857] [8.275, 9.789]
ge+inv [−∞, ∞] [3.6, 18] [8.46, 9.56]
ge+lu [-99.45, 134.55] [1.44, 22.482] [8.244, 9.791]
cram [−∞, ∞] [3.01, 23.143] [8.326, 9.722]
cram+inv [−∞, ∞] [ 3.6, 17.067] [8.46, 9.56]
cram+lu [−∞, ∞] [1.44, 21.434] [8.244, 9.79]
had [-564.788, 564.788] [-526.712, 526.712] [-493.855, 493.855]
had+inv [-30.048, 30.048] [-16.801, 16.801] [-9.563, 9.563]
had+lu [-46.178, 46.178] [-35.052, 35.052] [-27.019, 27.019]
gersch [-3371.016, 11543.176] [-3132.927, 11089.567] [-2926.485, 10691.619]
gersch+inv [-81, 243] [0, 72] [6.561, 11.979]
gersch+lu [-11543.176, 6435.576] [-11089.567, 6116.667] [-10691.619, 5838.41]

Example 8.20. To obtain a general idea how the methods work, we can use the
following example. Let us take the midpoint matrix

Ac =

⎛⎜⎜⎝
1 2 3
4 6 7
5 9 8

⎞⎟⎟⎠ ,
and inflate it into an interval matrix using three fixed radii of intervals 0.2, 0.1 and
0.01 respectively and test all the mentioned methods. The resulting enclosures of the
determinants are shown in Table 8.1.

The previous example shows a case where the lu preconditioning gives better
results for ge than the inv preconditioning. However when testing for larger matrices
the determinant enclosure using the lu preconditioning tends to be infinite too. From
the above example we see that for a general matrix preconditioning is favorable. That
is why we later test only ge+inv, cram+inv, had+inv and gersch+inv methods.

We can perceive the method ge+inv used in [208] as the “state-of-the-art”
method. Therefore, every other method will be compared to it.

All methods are tested on randomly generated matrices of sizes n = 10, . . . , 60.
To generate an interval matrix a real midpoint matrix is randomly generated with
coefficients selected independently and uniformly from [−1, 1]. Then, such a matrix is
inflated into an interval matrix by wrapping the coefficients with intervals of a given
fixed radius. Here we choose the radii (r = 10−3 and r = 10−5). For each size and
radius we test on 100 matrices.

For each radius, size and method an average ratio of computed enclosures and
average computation time are computed. We compute the ratios according to the
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Table 8.2: Number of infinite enclosures returned by various method (out of 100) for
fixed radii r = 10−5 and r = 10−3 respectively. The sizes of matrices are denoted by
n.

n cram+inv ge+inv ge+inv cram+inv

10 0 0 4 2
20 0 0 15 15
30 0 0 10 10
40 0 0 34 31
50 0 0 38 38
60 2 2 54 51

r 10−5 10−3

formula (3.8). If the average ratio is < 1 it means a methods returned narrower
results than ge+inv. It can happen that an enclosure returned by a method is infinite.
Such case is omitted from the computation of the average. The occurrence of such a
phenomenon is captured in Table 8.2. We can see that for smaller radii it happens only
rarely. The methods had+inv and gersch+inv never returned an infinite enclosure.

Average ratios of widths are presented in Table 8.3. When the ratio is a number
less then 1000, it is displayed rounded off to 2 decimal digits. When it is greater,
only the approximation 10x is displayed. To accentuate the similarity of the results
returned by ge+inv and cram+inv, their ratio of enclosures is rounded off to 6 decimal
digits. With increasing size of a system (and also with increasing overestimation of
ge+inv and cram+inv) the ratio difference of had+inv becomes less apparent.

Average computation times for r = 10−5 are displayed in Table 8.4. Since the
methods are basically direct (except for verified inverse computation in HBR method),
the computation times for r = 10−3 are very similar. The method cram+inv is signif-
icantly faster than ge+inv. To more clearly see the difference in computation times
between the two most efficient methods ge+inv and cram+inv see Figure 8.6.

8.7.2 Symmetric matrices
We repeat the same test procedure for symmetric interval matrices. Symmetric ma-
trices are generated in a similar way as before, only they are shaped to be symmetric
(the lower triangle of a matrix is mirrored to the upper triangle). We again compare
the ge+inv, gersch+inv, had+inv and cram+inv. We add one new method eig that
is based on computation of enclosures of eigenvalues using the Rohn’s simple enclosure
(Proposition 8.14). The method ge+inv stays the reference method, i.e, we compare
all methods with respect to this method.

The ratios of enclosures widths for symmetric matrices are displayed in Table 8.5
and Table 8.6. We can see that as in the general case the results of cramer+inv are
very similar to ge+inv. When r = 10−3 the overestimation by had+inv becomes
smaller than on eig at a certain point (n = 40).
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Table 8.3: Average ratios of widths of enclosures returned by various methods for in-
terval matrices with fixed radii 10−5 and 10−3 respectively. The methods are compared
to ge+inv, the sizes of matrices are denoted by n.

n gersch+inv had+inv cram+inv gersch+inv had+inv cram+inv

10 35.34 103 1.000100 103 14.58 0.999974
20 50.16 103 1.000000 109 6.18 1.000911
30 109 257.45 1.000010 1018 3.78 1.006991
40 104 178.02 0.999999 1024 2.52 0.998934
50 1025 117.85 1.000049 1029 2.06 1.001731
60 1024 101.19 0.999980 1040 1.46 1.002089

r 10−5 10−3

Figure 8.6: Visual comparison of average computation times (in seconds) of ge+inv
and cram+inv for various matrix sizes n.

Table 8.4: Average computation times (in seconds) of various methods for fixed radii
10−5 and various sizes of matrices n.

n gersch+inv had+inv ge+inv cram+inv

10 0.04 0.01 0.39 0.36
20 0.06 0.01 1.58 0.90
30 0.09 0.02 3.56 1.64
40 0.12 0.02 6.34 2.59
50 0.15 0.04 9.95 3.80
60 0.19 0.05 14.37 5.32
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Table 8.5: Average ratios of widths of enclosures returned by various methods for
symmetric matrices with fixed radii r = 10−5. The reference method is ge+inv, the
sizes of matrices are denoted by n.

n gersch+inv had+inv cram+inv eig

10 18.50 103 1.000000 2.62
20 50.51 103 0.999999 3.07
30 108.66 103 1.000000 3.23
40 126.79 250.03 1.000000 3.59
50 109 166.60 1.000001 3.63
60 1011 117.62 0.999999 3.63

Table 8.6: Average ratios of widths of enclosures returned by various methods for
symmetric matrices with fixed radii r = 10−3. The reference method is ge+inv, the
sizes of matrices are denoted by n.

n gersch+inv had+inv cram+inv eig

10 242.93 19.48 1.000637 2.49
20 109 7.69 0.999870 2.88
30 1015 4.16 0.998364 2.96
40 1022 3.31 0.995946 3.56
50 1026 2.56 1.000100 4.18
60 1033 2.04 1.002171 4.99
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Table 8.7: Average computation times (in seconds) of various methods for symmetric
matrices with fixed radii 10−5. The sizes of matrices are denoted by n.

n gersch+inv had+inv ge+inv cram+inv eig

10 0.04 0.01 0.39 0.35 0.02
20 0.06 0.01 1.56 0.89 0.03
30 0.09 0.02 3.51 1.62 0.04
40 0.12 0.03 6.26 2.56 0.07
50 0.15 0.04 9.82 3.77 0.10
60 0.19 0.05 14.20 5.29 0.15

The average computation times are displayed in Table 8.7. We can see that
eig shows slightly higher computational demands than had. In case of r = 10−3 and
n ≥ 40 it pays off to use rather had+inv than eig. However, for r = 10−5 “reasonable”
overestimation in a fraction of cram+inv computation time is obtained. The method
eig was based on a simple enclosure. That explains the low computational time. Of
course, it is possible to use, e.g., filtering methods to obtain even tighter enclosures
of eigenvalues. However, they work well in specific cases [79] and the filtering is much
more time consuming.

8.7.3 Summary
It is always the question of the payoff between computation speed and quality of
enclosure. Based on the tests from the previous subsections, we recommend to use
cram+inv method, since it produces equivalent results to ge+inv in much less compu-
tational time.
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9 Application of intervals to
medical data

▶ Multiple breath washout test
▶ Finding breath ends
▶ Regression on interval data
▶ Interval regression with integer data matrix
▶ Application to medical data
▶ Hypotheses

This chapter is based on results from a joint research project of Department of
Applied mathematics, Faculty of Mathematics and Physics and Department of Paedi-
atrics, 2nd Faculty of Medicine at Charles University, Prague, especially, on collabo-
ration with Václav Koucký. The author of this work was the head researcher of this
project. First, we introduce the medical background of the project. Then, we discuss
interval regressions and how to improve them for the sake of our problem. The conclu-
sions from this project are still in a form of hypotheses that need to be further verified
or rejected. However, this work might contribute to the ongoing discussions related to
these topics. Some of our initial (rather too optimistic) ideas were published in [88].
More detailed results are contained in our unpublished work [90]. The algorithm for
finding breath ends is published in [89].

9.1 Multiple Breath Washout test
First works concerning multiple breath washout test (MBW) date back to 40s or
50s [28]. In those days the method faced crucial limits. The precision of sensors was
not satisfactory and also the computational power of digital computers was insufficient
to handle problems described with too many parameters (much of mathematical work
was still done manually). With increasing power of sensors and computers MBW
received its rebirth in 90s.

MBW is a very promising method since it does not require any specific breathing
maneuvers. The only necessity is the ability to breathe normally with regular pattern,
which makes it applicable to the variety of age scale. Small infants usually undergo
this procedure in artificial sleep.

In contrast to classical methods (e.g., spirometry, bodypletysmography) MBW is
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Figure 9.1: Schematic depiction of the washout phase.

able to evaluate even the most peripheral airway. The high sensitivity to the most pe-
ripheral airway changes has been shown in most of chronic lung diseases (e.g., bronchial
asthma, cystic fibrosis, primary cilliary dyskinesia, etc.) [33, 56, 121].

The test consists of two phases – the washin and washout. During the first
phase, lung is filled with an inert gas (sulphur hexafluoride SF6, helium He or nitrogen
N2), during the second phase, the inert gas is washed out by air or by 100% oxygen
(depending on the inert gas used). Concentration of the respective inert gas, volume of
exhaled gas and flow are measured online. The measurement is stopped after reaching
a certain concentration of innert gas within lung (usually 2.5%). The pattern of inert
gas concentration decrease gives information about the homogeneity of ventilation and
thus about the patency of airways. The washout phase is depicted in Figure 9.1.

In our work we focus on use of nitrogen (N2) as inert gas. Although, the SF6 has
been historically used for much longer in practice, use of nitrogen has many advanta-
geous properties:

• SF6 can potentially have narcotic effects,

• SF6 is not used in medicine, so it must be specially prefabricated, N2 is naturally
present in the surrounding air,

• N2 is naturally present in the surrounding air and also in lung, that is why there
is no need for washin phase,

• N2 is present also in poorly ventilated areas of lung.

A small draw back is that there are questions whether N2 is really an inert gas because
of its absorbance and ocurence in tissues. During a measurement, N2 returned back
from tissues can influence the real measured concentrations of N2, especially for infants.
That is why the method is recommended for patients older than 6 months.
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Figure 9.2: Nitrogen concentration (the top curve) and air flow (the bottom curve)
in time measured during the nitrogen washout process.

The main output of the measurement is depicted in Figure 9.5. There are two
main graphs – actual flow (the bottom curve) and decreasing nitrogen concentration
(the top curve) measured in each time-slice (here it is 5ms). These data are further
used for computing clinically significant indices (FRC, LCI, Scond, Sacin, etc.). Some
of them will be mentioned later. The sensibility of MBW can detect a pathology in
its early stages, which enables to start the cure early and with greater effect.

9.2 LCI and FRC
Currently, the most important indices calculated from MBW data are FRC and LCI. If
we omit the deadspace correction, the functional residual capacity (FRC) is calculated
as

FRC = Nout

Nstart − Nend

,

where Nout is the total volume of expired N2; Nstart and Nend are concentrations of
nitrogen at initial and terminal peak respectively. The FRC relates to the size of lung.
The lung clearance index (LCI) is calculated simply as

LCI = Vout

FRC ,

where Vout is the total volume of expired air. It is necessary to specify how we decide
the terminal breath. Usually, a measurement is stopped when the concentration of ni-
trogen in peaks decreases below 2.5% of the initial nitrogen concentration. This level
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is chosen historically. The terminal peak is defined to be the first of three consequent
peaks with concentration below 2.5% of the initial nitrogen concentration. The corre-
sponding LCI index is then marked LCI2.5. It states how many air volumes (equal to
FCR) exchanges are necessary to clean the lung from the inert gas (more specifically to
reach the level of 2.5% of initial inert gas concentration). LCI index seems to be very
useful to evaluate the homogeneity of lung ventilation (the most peripheral airways
included).

Completing the washout process up to 2.5% might be too time consuming, which
makes it difficult for uncooperative patients to finish the MBW test properly. That is
why there are being discussions about use of the level 5%.

9.3 Our data
We collected the data according to proper conditions for valid measurement defined
in [101]. The three necessary conditions are:

• a patient has sufficiently regular breathing pattern during measurement,

• there is no leakage during the measurement,

• washout phase is finished (nitrogen is washed out at least to a given level).

The measurements were approved by the ethical committee of Motol University
Hospital, Prague, Czech republic. Patients (or their parents in case of infants) were
informed about the measurement before the tests.

In all data files the peaks of the nitrogen concentrations have been identified
using our own algorithm described in the next section.

9.4 Finding breath ends
Breath detection (i.e., finding the spot where an expiration ends and an inspiration
starts) is a crucial step in pulmonary function testing (PFT). It is a starting point
for computing various clinically significant indices, performing regression analyses or
making predictions. With the increasing importance of PFT as a diagnostic tool, new
methods of PFT and approaches to data analysis are required especially in infants and
toddlers (i.e., uncooperative children). In this age category, precise raw data analysis
is of utmost importance, as the PFT is very prone to technical errors. Based on our
clinical experience, the current PFT algorithms suffer from severe imprecisions, which
may lead to difficult and time-consuming interpretation of results or even raw data
rejection.

Although breath detection is a relatively easy task for a physician as a human
being, automated detection by computer remains a challenge, especially in cases of
severely distorted data (e.g., as a result of patients’ insufficient cooperation, severe
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volume drift, etc.). An approach to the breath detection analysis is primarily deter-
mined by the signals being measured. Usually, a time-flow signal is captured. In this
situation, two basic algorithms for breath detection have been proposed – threshold
and smoothing approach, each with numerous modifications and extensions increas-
ing their reliability and accuracy [13]. The threshold approach outputs any breath
having parameters above a pre-set threshold. On the other hand, the smoothing ap-
proach smooths the signal to eliminate spurious breath endings. Despite the significant
progress done in this field, clinicians are still facing situations in which the measured
signal is too distorted to be automatically analyzed.

In comparison with the “conventional” methods that are based solely on flow,
volume and pressure measurements and estimated primarily airway resistance (e.g.,
bodypletysmography, tidal breath analysis, etc.), MBW brings a new dimension to
raw data – the gas concentration signal (O2, CO2 , inert gas). A current commercial
software (Spiroware, Ecomedics, Duernten, Switzerland) uses concentrations only for
constructing washout curves. However, this information may be also used for breath
detection. The aim of our study [89] was to design and justify a new and robust
algorithm for breath detection using not only time-flow data but also gas concentration
signal. Such a breath detection algorithm can significantly outperform the current
threshold-based algorithms. Moreover, its key ideas have the potential to contribute
to the general design of the medical algorithms.

9.4.1 Our algorithm
Our algorithm (Alg-OUR) was programmed in the free software GNU Octave, version
4.0.0. and works in several steps, which are outlined below. A depiction of each step
can be found in Figure 9.3.
Algorithm 9.1 (Breath end detection (Alg-OUR)). The input is raw flow and CO2
concentration data in time. The algorithm outputs integer intervals containing num-
bers of zero-crossings corresponding to one breath end.

1. Load raw data.

2. Zero-crossings detection – a zero-crossing is defined as a time spot, where the
air flow changes its direction from minus to plus (see a comment on general
physiology of respiratory tract in Subsection 9.4.4). All the zero-crossings in
flow raw data are detected and numbered from 1 to N , where N is the total
number of zero-crossings. They form a set of potential breath ends.

3. For each −/+ zero-crossing at time T , the nearest peak of CO2 curve (i.e., local
maximum) is found and attributed to the time T .

4. The volume of each inhalation and exhalation (Vin, Vout) corresponding to the
time T is calculated by integration of the flow curve (using simple trapezoidal
rule, similarly as in Example 2.4).

5. The zero-crossings with corresponding CO2 peaks of insufficient concentration
(i.e., less than 2% – see a comment in Subsection 9.4.4) are discarded; the num-
bering of zero-crossings is preserved. Next, our goal is to discard zero-crossings
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that do not form a breath end or capture intervals of zero-crossings that belong
to the same breath. Initially, we view each zero-crossing to be a singleton interval
([b, b]). Next, the algorithm is going to discard or merge some of these intervals
(steps 6 to 8).

6. Two intervals of zero-crossings [a, b] and [c, d] are merged if the CO2 concentration
between b and c does not drop below 0.5%. Consequently, a new interval [a, d]
instead of the previous two is created. This process is repeated until there exists
no such a pair of intervals. Note that in an interval [a, b], a can be equal to b.

7. The two consecutive intervals of zero-crossings [a, b] and [c, d] where c = b + 1
are merged if the ratio of volumes Vin/Vout for zero-crossing b is greater than
5 (see the comment in section Discussion). This process is repeated until there
exists no such a pair of intervals.

8. The upper bounds of the remaining intervals (even tight ones - [a, a]) are marked
as the breath ends (i.e., from [a, b], it is b, from [a, a], it is a).

(!) Note that the order of the steps 5, 6 and 7 cannot be changed; otherwise the
algorithm produces incorrect results.

For the sake of comparison, the most commonly used flow threshold algorithm
(originally described in [216]) were implemented in our software. Two different thresh-
olds (Alg3-0.01 and Alg3-0.25) according to the age of the patient and an additional
plausibility check were used as specified in [13], [198] and [216].

9.4.2 Test data characteristics
To test the clinical usefulness and accuracy of our newly developed algorithm, we com-
pared it with representatives of the currently used algorithms on real patient data.
We intentionally selected severely distorted measurements, which are, in our experi-
ence, very difficult to be automatically analyzed by the current software. In total, 47
anonymized traces (A-files) coming from 19 patients were enrolled. Such an approach
was in general approved by the local ethics committee. Patients’ characteristics are
stated in Table 9.1. The rationale for intentional selection of severely distorted data
was the fact, that only severely distorted data offer the possibility to test the perfor-
mance of breath detection algorithms properly. Analysis of regular breathing is no
challenge for current breath detection approaches anymore.

9.4.3 Comparison of algorithms
The raw data were analysed in four different ways:

1. analysis performed by our algorithm described above (Alg-OUR),

2. analysis performed by the previously described algorithms (Alg3-0,01 and
Alg3-0,25) that are implemented in our software,
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Figure 9.3: Flow diagram and depiction of each step of our breath detection algo-
rithm (Alg-OUR).
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Table 9.1: Characterization of the patients. Their A-files were used for the sake of
the comparison of breath detection algorithms.

Number of patients (male) 19(9)
Number of A-files 47

General Age (mean ± SD) [years] 6.6 ± 5.6
information Weight (mean ± SD) [kg] 26.6 ± 19.0

Weight z-score (mean ± SD) 0.02 ± 1.2
Height (mean ± SD) [cm] 114.6 ± 33.2
Height z-score (mean ± SD) -0.4 ± 1.3

nonrespiratory problematic 4
cystic fibrosis 7

Diagnoses primary ciliary dyskinesia 2
repeated obstructive bronchitis 4
miscellaneous 2

3. analysis performed by the commercial package Spiroware 3.2.0 (Alg-Spi),

4. manual analysis performed by two specialists experienced in PFT.

After loading an A-file into our software, the number of breaths detected by
Alg-OUR, Alg3-0,01 and Alg3-0,25 were calculated. The A-file was also loaded into
Spiroware and the number of breaths was estimated using the functionality of this
commercial software. Afterwards, two PFT specialists inspected the data from each
A-file independently. The inspection was done in the interface of our software, created
for this purpose. It enables visualization of flow, volume and CO2 concentration, while
at the same time visualisation of breath ends found by the respective algorithms. Such
visualization enables both the estimation of the number of true breaths (reference num-
ber of breaths – RNB) and simultaneously the localization of falsely positive/negative
breaths as analyzed by different algorithms.

All the A-files included in our testing could be successfully analysed by all the
implemented algorithms. The analysis time was longer for Alg-OUR than for the thresh-
old algorithms (1.35 ± 0.23s vs. 0.12 ± 0.01s, p < 0.001). The manual analysis took
much longer; the average analysis time was roughly estimated to be between 100 and
180s.

The two specialists in PFT working independently detected the same number
of breaths in 35 out of 47 A-files (74%). In the remaining cases, differences were not
larger than two breaths. These cases were reanalyzed by the two specialists jointly in
order to reach consensus and the “reference number of breaths” (RNB) was assigned
to each A-file. Finally, 2861 true breaths in 47 A files were included.

The agreement between the algorithm Alg-OUR and RNB was in 70.2% files (33
out of 47 A-files), the maximal difference between the result of Alg-OUR and RNB was
7 breaths. The falsely positive breaths (i.e., zero-crossings misinterpreted as breath
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Figure 9.4: Number of false positive breaths detected in each A-file by Alg-OUR
and Alg-Spi. The dashed line displays number of false positive breaths for Alg-Spi,
the solid line displays the false positive breaths for Alg-OUR. The A-files are ordered
(numbered) according to the increasing amount of false positive breaths detected by
Alg-Spi.

ends) were the most prominent issue of this automated breath end detection. On
the other hand, its sensitivity was high enough not to miss any true breath (number
of falsely negative breath ends was equal to zero in the whole analysis). All other
algorithms were clearly less effective. The agreement between Alg-Spi and RNB was
only 17.0% files (8 A-files); the maximum difference in breaths detected was 26 breaths,
no falsely negative breath was detected. Alg3-0,01 suffered severely from the false
positive breath detection, even in the youngest age category (toddlers under 3 years).
Agreement between Alg3-0,01 and RNB was reached only in 4 cases (8.5% files), no
false negative breath was detected. On the other hand, Alg3-0,25 showed tendency
to miss true breaths (so called false negative breaths), especially in the youngest age
category. In adolescents older than 15 years, the agreement with RNB was much
higher (55.6% files).

In total, there was 2861 reference breaths. Our algorithm successfully detected
all of them (100%). It detected no false negative breaths (0%). Our algorithm returned
2876 breath ends, hence it returned 15 false positive breaths (0.52 %). Later, we are
going to use these numbers to compare our algorithm with other published methods
for finding breath ends, since it is a commonly used measure in most of the cited
papers.

Related to Alg-Spi, the higher effectiveness of Alg-OUR in comparison with
Alg-Spi is clearly demonstrated in Figure 9.4. Note that there was no A-file for which
the Alg-OUR was less effective than Alg-Spi. Additionally, the performance of the two
algorithms (Alg-OUR and Alg-Spi) was compared with RNB using the Wilcoxon paired
test. Alg-OUR did not detect significantly different numbers of breaths in comparison
with RNB (p = 0.789), while Alg-Spi did (p < 0.001).
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9.4.4 Final thoughts on our algorithm
We proposed an innovative algorithm for breath detection that has similar accuracy
to that of human experts. In comparison with the existing threshold-based algo-
rithms and commercial software algorithm, it exhibits significantly higher success rate
in recognition of true breaths, especially in severely distorted data. The algorithm
addresses both the problems of false negative and positive breath detection. We are
convinced that the higher performance is caused by a simultaneous use of more types
of information obtained from the measurement and by respecting the basic facts of res-
piratory tract physiology. The main characteristics taken into account when designing
our algorithm were:

1. The breath end corresponds to the time spot, when the inspiration starts and
expiration ends or vice versa. Consequently, the direction of flow must change.
This is the crucial presumption that we implemented it in step 2 of Algorithm
9.1.

2. During the expiration, carbon dioxide, which is being produced by body meta-
bolism, is eliminated from the alveoli. Consequently, CO2 concentration in ex-
haled air increases up to 6%. Its concentration during the expiration needs to
be at least 2%, otherwise CO2 will cumulate in the body, which will lead to
respiratory failure. This characteristic is reflected in step 5 of Algorithm 9.1. It
allows for the elimination of false breaths like breath (A) in Figure 9.5.

3. Carbon dioxide concentration in atmospheric (inhaled) air is approximately
0.04%. Consequently its concentration between two subsequent zero-crossings
that both correspond to the true breath ends must drop close to this level. The
level of 0.5% was chosen to safely allow for minor technical issues such as time
shift of signals. This characteristic is reflected in step 6 Algorithm 9.1. It discards
the zero-crossing (C) or earlier discarded zero-crossing (A) in Figure 9.5.

4. Volume of inhaled air must be approximately the same as the volume of exhaled
air. In case when these volumes differ by more than 5 times, severe hyperinflation
or detrimental changes to residual volume would occur. This is not attributable
to physiologic tidal breathing. This characteristic is reflected in step 7 of Algo-
rithm 9.1) and would discard the zero-crossing (E) in Figure 9.5.

These are the only theoretical assumptions used in our algorithm. No standalone
assumption is universal, i.e., it is not sufficient to eliminate all false breath ends.
However, appropriate combination and sequence of these conditions does the job very
well.

In comparison with the previously published algorithms [13], [216] and [198]
and with the threshold one implemented in Exhalyzer D, Alg-OUR introduced several
unique features:

• No preset thresholds – as the algorithm is based only on generally valid
assumptions from respiratory tract physiology, it does not require any pre-set
threshold or other patient specific limitations. Our algorithm is applicable in all
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Figure 9.5: Possible cases of the shape of flow and CO2 curves in real data. Vertical
bars correspond to zero-crossings. The zero-crossings B, D and F correspond to true
breath ends. The zero-crossings A, C and E form false breath ends and need to be
filtered out. In the top right corner, there is a zoom-in of part of the curve below. It
shows the ratios of volumes of exhaled and inhaled air.

types of respiratory diseases including restrictive, obstructive and mixed venti-
latory disorders. We were able to use it successfully in patients with variety of
obstructions (cystic fibrosis, primary ciliary dyskinesia, obstructive bronchitis,
etc.).

• Robustness – the algorithm is capable to detect breath ends even in severely
distorted data, there is no need of strict adherence to the tidal breathing.

• No false negatives – the algorithm was able to detect all breaths that human
experts detected.

• Simplicity – the algorithm is easy to describe and implement in software.

• Generalizability – the principles of our algorithm can be translated to other
types of gases (oxygen, nitrogen, sulphur hexafluoride, . . . ).

• Grouping of zero crossings – the algorithm groups together the zero-crossings
corresponding to one breath.

To the best of our knowledge, there exist only two previously published algo-
rithms using CO2 concentration signal to detect breath ends. An algorithm presented
by Brunner et al [23] was developed in the 1980s and was intended for patients from
intensive care units. In contrast to our algorithm, it does not include calculation
and comparison of tidal volume of the consecutive breaths to filter out false positive
breaths. Moreover, their algorithm does not use grouping of zero-crossings. Their vali-
dation was performed only on healthy subjects with intentionally introduced artefacts.
The validation in children and on severely distorted data was missing. They reported



134 Chapter 9. Application of intervals to medical data

there was no apparent algorithm failure during its clinical use on 100 patients, however
precise specification of the testing conditions are not transparent. They provide test
results from only one patient (150 breaths in total). Govindajaran and Prakash [55]
proposed an algorithm for breath detection during different modes of artificial ventila-
tion (volume and pressure controlled, patient triggered modes). They used mainly the
flow and airway pressure signals; CO2 data were only an additional input to confirm
a computed delineation of detected breaths. They did not report the accuracy of the
algorithm and no validation was performed. Because the algorithm is designed for
artificial ventilation, it is of limited applicability in lung function testing.

Besides the algorithms based on flow and gas concentration signal analysis, an-
other approaches to breath detection were proposed. Recently, Nguyen C. D. et al
developed a breath detection algorithm based on finding inflexion points in flow or
epiglottic pressure signal [142]. The validation was performed in healthy individuals
and in patients with sleep obstructive apnoea syndrome using continuous positive air-
way pressure therapy (CPAP). Their algorithm correctly identified 97.6% of reference
breaths. They do not mention false positives. If we assume there are no false nega-
tives it makes 2.4% false negative detections (for the sake of comparison, our algorithm
returned no false negatives and only 0.5% false positives). Moreover, their approach
needs pressure measurement during CPAP therapy and relies on tight face mask.

There is also an approach using neural networks [197] on respiratory volume
data. They tested it on three young healthy volunteers and six healthy infants. Their
algorithm shows similar or better results than other existing algorithms using volume
information [27] and [220]. The accuracy of the algorithm was 98% of the reference
number of breaths with 2% false negatives and 5% false positives.

Another approaches use body image processing techniques analyzing body posi-
tion and movements [10], [213] and photopletysmographic approach [120]. Neverthe-
less, such algorithms are more suitable for monitoring of vital functions rather than
for further clinical processing.

We acknowledge several limitations of our algorithm. Although it outperforms
the currently existing algorithms in their accuracy, it still suffers from false breath
detection on severely distorted data. This only proves the difficulty of the task of
automated processing. Even two independent human experts might not agree on
what is the proper breath identification for a given dataset. That explains the small
chance of having this problem fully solved by a computer. Moreover, in our study we
did not include a comparison of Alg-OUR to the breath detection algorithms based on
neural networks or sound analysis. However, we primarily focused on lung function
testing, which relies on flow and gas concentration signal. The other algorithms have
their application in other fields of medicine (e.g., sleep medicine). There also exist
various possibilities to extend our algorithm, which we did not investigate in greater
detail. One of the next steps might be creating a database of documented patterns of
breathing curve behavior and its combination with breath end detection.
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9.5 Nitrogen concentration at peaks
After localization of the breath ends the imprecision of machine sensors must be incor-
porated. We used machine Exhalyzer D, that does not measure nitrogen concentration
directly. It computes the nitrogen concentration (in %) according to the formula [101]

100 = N2% + O2% + CO2% + Ar%,

where Ar% = N2% × 0.0093/0.7881 and where the concentrations of nitrogen, oxygen,
carbon dioxide and argon in inspired and expired air are supposed to sum up to 100 %.
The argon concentration is fixed. Together it gives

N2% = 1
1.0118(100 − O2% − CO2%),

where all parameters are in percents.
According to the manufacturer, the O2 sensor has 0.3% accuracy and the CO2

sensor has 5% accuracy. From that we can derive a interval bounds for the nitrogen
concentration in each time slice ni

ni = 1
1.0118(100 − 1.003 ∗ O2% − 1.05 ∗ CO2%),

ni = 1
1.0118(100 − 0.997 ∗ O2% − 0.95 ∗ CO2%).

We subtracted the minimal possible value from 100 to obtain upper bound and
the maximal possible value from 100 to obtain lower bound. In the MBW procedure
there are many sources of errors:

• Imprecision of sensors

• Changing viscosity and humidity of air

• Time shift of signals

• Interaction with deadspace air

• Physiological noise (heart pulse, hick-ups, leaks)

• Irregular breathing pattern, apnea

• Computer and machine rounding errors

• etc.

Unknown distributions and interplay of the mentioned uncertain variables will result
in intervals with unknown distribution. Hence it is necessary to work with only lower
and upper bounds. Here the interval analysis can be viewed as a tool for dealing
with such uncertainties algebraically (using the means of interval linear algebra). We
further view the data as interval data as depicted in Figure 9.6.
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Figure 9.6: Illustration of decreasing concentration of nitrogen in peaks bounded
with intervals.

9.6 Questions we asked
After long discussions we stated a few questions that are interesting from both clinical
and mathematical point of view. The important and still discussed question is the
behavior of the nitrogen washout in time. There is an observable difference between
a healthy and diseased person, however the objective description is still missing. The
long duration of washout (especially in severely affected patients) limits the feasibil-
ity of the test especially in small children (toddlers and pre-schoolers). Currently, the
premature cessation of the washout (before reaching 2.5% of the starting nitrogen con-
centration) prevents us from analyzing the data. The possibility to derive substitute
indices computable from an incomplete washout curve would be of great benefit.

9.7 Regression on interval data
Various authors approached the topic of regression on interval data, e.g, [24, 34, 77,
211]. Behind an interval regression or interval estimation the following general defini-
tion can be seen.

Definition 9.2. A result of a multi-linear interval regression on (interval) data tuples

(xi
1,x

i
2, . . . ,x

i
n,y

i),

is generally
r(x1, x2, . . . , xn) = p1x1 + p2x2 + · · · + pnxn,

where p = (p1, . . . ,pn)T are interval parameters.
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Figure 9.7: An example of r = p1x + p2. The band actually forms an interval line,
which passes through each interval box.

The resulting r can be viewed as a multi-dimensional band. A two-dimensional
example can be found in Figure 9.7.

As it was explained, there are various types of interval regression. They vary in
computation of interval parameters p. For example, p could be computed in such a
way to force the band r to contain all the data tuples, or at least to cross all the interval
data. For our purpose the interval least squares approach is the most meaningful.

Definition 9.3. For a given data: an m × n interval matrix X, where its ith row is
the tuple

(xi
1,x

i
2, . . . ,x

i
n),

and an m-dimensional column vector y, where its coefficients are yi, the interval
parameters p of the interval least squares estimation are defined in the following way,

p = □{p : XTXp = XTy for some X ∈ X, y ∈ y}.

In Section 7.2.4 we addressed how to solve such a problem. We basically solved
the following system ⎛⎝ I X

X⊤ 0

⎞⎠⎛⎝p′
p

⎞⎠ =
⎛⎝y

0

⎞⎠ (9.1)

using the means of some method for solving square interval systems from Chapter 5.
The last n coefficients of the resulting enclosure give an enclosure on p.

When we take a look at (X,y) data obtained by MBW procedure in Figure 9.6
we realize that

• X = X is thin, it consist of integers only (numbers of breaths) – we use such a
form to avoid using intervals on the x-axis,

• intervals are only at the right-hand side y,
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• We want to use regression with nonlinear models that are linearizable, therefore
X⊤X is going to be small n × n, (n = 2, 3, 4), depending on the number of
parameters of the model used (see the table 9.4 in advance),

• X,y > 0 (component-wise).

Using these favorable properties, we hoped to design a method returning tighter
enclosures than (9.1). Unfortunately, we were not able to find such a method. We
believe that it is a really hard task since the mentioned properties are also in favor
of (9.1). However, we were able to rewrite the formulas to obtain algorithms that are
much faster.

9.7.1 Case 2 × 2
When the matrix X is of size m× 2 (the left column is consists of ones, and the right
one of numbers 1, . . . ,m), then XTX is of size 2 × 2. We can apply the state of the
art supersquare approach, however, in this case the “not recommended” approach of
solving the interval normal equation XTXp = XT y will pay off. This actually means
computing an enclosure of p as

p =
(︂
(XTX)−1XT

)︂
b. (9.2)

When computing an inverse matrix, fractions can occur and therefore so can machine
nonrepresentable numbers. That is why, we need to compute in a verified way with
intervals. Nevertheless, it is advantageous to postpone the interval computation as
far as possible, because the classical arithmetic is usually faster (e.g., in Octave or
Matlab). In this case we use the simple shape of the 2 × 2 matrix inverse

(XTX)−1 =
⎛⎝ a b

c d

⎞⎠−1

= 1
ad− bc

⎛⎝ d −b
−c a

⎞⎠ .
It is possible to compute XTX in floating point arithmetics since X contains only
integers; similarly for ad− bc.

When computing the expression (XTX)−1XT y, y is multiplied by an interval
matrix, this unfortunately causes large growth of interval radii. And then it is mul-
tiplied again with the matrix (XTX)−1 which causes another growth. More suitable
way is to rearrange the expression to multiply the integer parts (matrices) first and
then multiplying with the interval elements. Thus, the enclosure of p can be computed
as

(MXT )(qy),
where

M =
⎛⎝ d −b

−c a

⎞⎠ , q = □
(︃ 1
ad− bc

)︃
.

We tested the difference between (9.1), which was solved by HBR method (supsq)
and (9.2) solved directly by computing the verified inverse (normal), and the same
procedure but with postponing the interval operations (postponed). The differences
between approaches are clearly seen in the following example.
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Table 9.2: Average computation times (in seconds) for 2 × 2 systems (Example 9.4)
for the supersquare approach (supsq) and solving interval normal equations without
(normal) and with postponing the interval operations (postponed).

m supsq normal postponed

50 0.224 0.067 0.013
100 0.407 0.069 0.014
150 0.609 0.070 0.014
200 0.857 0.071 0.014
250 1.156 0.070 0.014

Example 9.4. The difference was tested on random systems for sizes up to m = 250,
which represents the ceiling for the maximum number of breaths generally occurring
during MBW testing. To generate a random right-hand side we first generated random
intervals with centers from [−10, 10] and fixed radii equal to 1 and then the intervals
were placed along a random line and then shifted by a random number in [−5, 5].
The testing was done using LAPTOP setting. For each size we tested on 100 random
systems. Both methods in all cases computed identical enclosures for p. However,
average computation times were different, they are displayed in the following Table
9.2.

9.7.2 Case 3 × 3 and larger
It would be more complicated to find similar inverse formula for a general square
matrix. This time we refrain from postponing interval computations.

Example 9.5. We again compare with the supersquare approach. The test data were
generated in a similar way to Example 9.4. The only difference is that the right-hand
side intervals were placed along a parabola. The obtained enclosures of p are again
identical and the average computation times are displayed in Table 9.3. The normal
method is still faster than supersquare approach.

9.8 In search for a model
Inspired by Figure 9.6, the main goal is to derive the following function

f(n), for n = 1, 2, . . .

where n is the number of a peak (or breath), where the initial peak has number 1.
The function f returns a nitrogen concentration at each peak n (it can be an interval
concentration) and should plausibly model the nitrogen concentration at each peak.
We call such a function f a nitrogen washout curve model. This goal was addressed
earlier in [187] using a simplified model of lungs. They were not able to compute with
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Table 9.3: Average computation times (in seconds) for 3 × 3 systems (Example 9.5)
for the supersquare approach (supsq) and solving interval normal equations with
(normal).

m supsq normal

50 0.26 0.07
100 0.42 0.07
150 0.67 0.07
200 0.92 0.07
250 1.19 0.07

models having more parameters due to the limited computational power (they handled
many calculations manually). Their approach could be described as “bottom-up”. A
similar approach but for a different goal can be seen, e.g., in [212].

Our approach is slightly different, we could call it “top-down”. Using a computer
we explore the most frequent mathematical models of decay and test their ability to
fit the measured medical data. Such a fitting might help to obtain more information
about the real behavior of the nitrogen washout process and such knowledge will help
to better predict the behavior of an incomplete measurement.

9.8.1 Center data
In the previous sections we showed how to derive interval data from a measured real
patient data. To have at least rough idea about the behavior of the nitrogen washout
process, classical least squares data fitting was applied on center data (for a while we
consider only midpoints from all intervals).1

We are interested in fitting curves for which the process of good fitting can be
transformed to solving a linear system of equations. The quality of fit was measured
by rMSE which is the square root of MSE (mean squared error). We fit the data
in least squares manner. If we evaluate the measurements visually, we could detect
“exponential”-like decay in all data. An example could be seen in Figure 9.6. Many
papers and books (also possibly the medical software shipped with the machine Exha-
lyzer D) describe this decay as an exponential function [32]. This is one of the classical
fitting models. When talking about classical fitting models we tried to find the most
suitable one among them. From the large collection of models [205] we selected the
following model candidates fulfilling the visual criteria first. They are summarized in
Table 9.4. For each model in the left column there is the abbreviation by which we
address the model, in the second column there is the mathematical description of the
model and in the third column there are the parameters that need to be computed to
fit a given dataset with this model. As already mentioned, all of these models can be
linearized. For a detailed description of this process for each model see [205].

1For this purpose we used a different data set to the one from Subsection 9.4.2. We selected
cleaner data to make them more suitable for regression.
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Table 9.4: Table of the fitting models used.

model function f(x) parameters

exp ae(bx) a, b

explin a + bx + cex a, b, c

pow axb a, b

exppow axbcx a, b, c

log a + b log(x) a, b

loglin a + bx + c log(x) a, b, c

explin a + bx + cex a, b, c

explog a + b log(x) + cex a, b, c

exploglin a + bx + c log(x) + dex a, b, c, d

For each dataset (one measurement) each model was fitted and rMSE computed.
As stated earlier, the 2.5% and 5% concentration level is significant for medical special-
ists. When we follow the nitrogen curve in time beyond the 2.5% level of concentration,
it can be seen that the concentration peaks can be interpolated with a nearly horizon-
tal line. It is difficult for all models to fit properly such slowly decreasing end. That is
why we also measured the quality of fit to a level where something is “still happening”
(the curve does not decrease so slowly) – up to 5%. The rMSE results can be seen in
Tables 9.5, 9.6, 9.7 and 9.8 at the end of this chapter.

From the perspective of rMSE measure the model loglin is the winner. The
rMSE penalizes heavily the large misfits. If we take a look at the loglin curve
it can fit the initial part of the washout curve pretty well. All other models are
penalized, except for the model exploglin. It sometimes seems to be better, however,
the coefficient in exponential member of the formula (d) is usually an extremely tiny
number (∼ 10−10). That is why this model is usually the same as loglin. From the
perspective of Occam’s principle we further consider only the loglin model. However,
the curve with the best rMSE fit does not have to be necessary the best for the sake of
prediction of the washout curve behaviour. Notice that the model exp, which is often
used in describing the nitrogen washout curve in medical literature, is not so accurate.

When data sets were shortened up to the point where the nitrogen concentration
decreases below 5% of its initial concentration, the model exppow works much better
on this initial phase; and its fitting error improved. Nevertheless, the best fitting
model is still loglin. We therefore have some candidates for interval fitting models.
We omit the model exploglin, since it is too complicated. We exclude the model log
since it is contained in loglin and does not have better results than loglin. We also
cast out models explin and explog due to a large error rate. We have four remaining
candidates – exp, pow, exppow, loglin – that we further use. None of the checked
model curves was able to accurately fit the data from the 5% to 2.5%. The level of
5% therefore seems to be a meaningful level that still enables possible plausible fitting
with one of the classical models. This could also be an important fact for current
discussions about advantages of LCI5 over LCI2.5. However, we must be careful not
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to reach the conclusions too quickly, because the part of the washout curve between
5% and 2.5% can possibly contain some important information about the quality of
patient airways. Tossing a terminal part of the data away might mean tossing away
an important information for further medical analysis.

9.8.2 Interval models
We took the four candidates on fitting curves – exp, pow, exppow, loglin – and pro-
vided the interval fitting of each model in the least squares manner. Each fitting of a
nonlinear model can be transformed to solving an interval linear system of equations
(the process is thoroughly described in [24]) and then solved by the means described
in Section 9.7. Unfortunately, the results were not encouraging – the resulting interval
washout curve models are too wide to yield any insight on the process of nitrogen
washout. Another reason for such an overestimation might be the fact that solving an
interval linear system exactly is difficult and we produced only an overestimated en-
closure. Also induced dependencies in the supersquare system may play an important
role (see 7.2.4). Shapes typical for each interval washout model are depicted in Figure
9.8. The exp function misses the initial and terminal part of the washout data. The
pow model misses the initial part. The exppow model is usually too wide, however, it
contains the data inside the interval curve. The loglin model usually tends to widen
in time; ruining any possibility of prediction. As shown in the next subsection, we
blame the accuracy of the sensors. Hence our result, although negative, might be a
serious contribution to the ongoing discussions on quality of sensors.

9.8.3 Hypothetical sensors
We showed that problem of quality of fitted interval models lies within precision of
current sensors (0.3% for O2 sensor and 5% for CO2 sensor of Exhalyzer D machine)
and also within the methods for solving interval systems of equations. One might
claim that the main flaw lies in the methods for solving interval systems and their
overestimation. To shed more light on this, let us assume we have sensors with a
better accuracy by one order, i.e, 0.03% for O2 sensor and 0.5% for CO2 sensor.

Let us repeat the same procedure as in Figure 9.8, this time for the hypothetical
sensors. The surprising results are displayed in Figure 9.9. We checked all the four
mentioned models manually by visual evaluation. We omitted the model pow, because
it gave poor fitting results in the initial parts. We also omitted the model exp.
Although, it gave very narrow curves it resulted in a poor fit. We checked the two
remaining models – exppow and loglin. The problems with loglin still persist.
Even for narrow intervals the curve tends to rise at its end. This gives us the winning
description model – exppow. If we take a look at Figure 9.9, we see that the behaviour
of exppow model does not fit the data well under the horizontal line (5% concentration
level). However, it seems to work well before it crosses the level . We further check its
properties in the next section.
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Figure 9.8: Interval curves fitting a real data with real measurement errors – typical
behavior. The tiny rectangles represent the interval data. The horizontal line rep-
resents the level of 5% of the initial nitrogen concentration. Notice that the y-scale
of each graph is different. The darker area corresponds to the interval least squares
fitting curves (interval washout models).
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Figure 9.9: Interval curves fitting a real data with hypothetical measurement errors
– typical behavior. The tiny rectangles represent the interval data. The horizontal
line represents the level of 5% of the initial nitrogen concentration. Notice that the
y-scale of each graph is different. The darker area corresponds to the interval least
squares fitting curves (interval washout models).

9.8.4 Prediction
As it was said the level of nitrogen concentration where we stop the measurement is
2.5% or 5%. This boundary was set historically. For young uncooperative patients
it might be difficult to prevent leaks and maintain calm and regular breathing for a
longer period of time. Sometimes the measurement must be aborted. In order to not
waste the so far good measurement we can try to predict the successive behavior of the
washout curve. Using the previously developed interval washout models we focus on
determination of the terminal breath of a measurement. To remind the definition, for
a given level of nitrogen concentration (20%, 10%, 5% or 2.5%), the terminal breath
for this concentration is defined to be the first one of the three consecutive breaths
with concentration below the respective level.

We limited our prediction to the part of the washout curve between 10% and 5%.
The goal was to predict an interval containing the terminal breath at 5% level and
compare it with the real terminal breath at the corresponding level. For the prediction
we used the hypothetical sensors only, the results are in Table 9.9 at the end of the
chapter.

In the case of hypothetical sensors, the prediction is not generally bad. However,
in some cases the prediction is completely wrong. We conclude that none of the
tested models is completely suitable for absolutely correct prediction. Nevertheless,
the quality of prediction brings us to the very important question we tackle more in
the following subsection.

9.8.5 An alternative clinical index?
The prediction of the washout curve in current software (Spiroware) is of poor qual-
ity. We could see that the prediction using verified interval regression is also not too
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Figure 9.10: Washout curves (real data) of all patients normalized to the same
length. The blue curves correspond to healthy persons, the red curves correspond to
patients with cystic fibrosis.

trustworthy. The problem lies in an unsatisfactory model of the nitrogen washout
process. We discussed many washout curve models, however none of them was plausi-
ble enough (for the purpose of prediction). Before starting to seek for better models,
it needs to be specified, why exactly do we need predictions and models of washout
process. One reason has been documented previously on an example of an interrupted
measurement because of patient’s weak cooperation. Indeed, the possibility to predict
washout process would be of a great clinical value. Unfortunately, our results indicate,
that predictions are not possible within the currently used approach to washout data
analysis.

Let us say we want to predict LCI from an incomplete measurement. To derive
the LCI, the FRC is also needed. For FRC derivation we need to compute Vout (as an
integration of flow), therefore we need to know the missing flow data whose prediction
is nearly impossible (too jagged shape of the flow curve). In conclusion, even if we
had a good prediction of nitrogen washout behavior, there is no way to compute a
meaningful LCI with this prediction.

With that a new question arises – can LCI be replaced by another index de-
scribing ventilation inhomogeneity and being more suitable to for prediction (and also
robust enough to overcome some inaccuracy of prediction)? Our initial hypothesis was
to use the information of curvature of the washout curve. However when the curves
were normalized to stretch over the same time window, we obtained Figure 9.10. It
shows that the patients cannot be simply separated as healthy or as having cystic
fibrosis according to the curvature of the washout curve. Hence finding a new clinical
index enabling prediction still remains a challenge.
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9.9 Results relevant for medicine
We summarize the results that might be relevant to the ongoing medical discussions
in the form of the following list:

• We demonstrated that the models that are usually used in literature for descrip-
tion of the behavior of the nitrogen washout process are not plausible.

• We showed that if we consider the classical fitting models, the best model (but
still not ideal) for the washout curve description is exppow.

• Fitting the data with classical models up to 5% is much more achievable than
the attempts to fit the data up to 2.5%.

• We gave an argument using interval analysis that current accuracy of Exha-
lyzer D sensors seems to be insufficient for interval data estimation and making
reasonable predictions.

• If we had sensors with better accuracy just by one order the verified fitting would
work.

• It is impossible to predict the future value of LCI based on an interrupted mea-
surement due to properties of LCI.

• New clinical indices should be developed to suit prediction.

• Healthy persons and patients with cystic fibrosis cannot be simply distinguished
by curvature of the washout curve.

In our work numerous ways of future research emerged – finding better models
of the washout process, combination of the top-down and bottom-up approach in
washout modeling, search for new clinical indices that will enable better prediction. It
would be also interesting to combine the algebraic approach to uncertainty with the
statistical one.
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Table 9.9: Prediction from 10% to 5% – hypothetical sensors; the intervals are
predictions of the terminal breath number by various interval models, len – number of
total breaths in file, real – number of real breath end at 5% level, H – healthy person,
CF – patient with cystic fibrosis. Prediction intervals [a, a] containing the true value
of breath end having |a − a| ≤ 2 are depicted in boldface.

No. len real exp pow exppow loglin H/CF

1 49 23 [22, 22] [49, 49] [22, 23] [18, 19] H
2 39 23 [20, 20] [39, 39] [20, 21] [17, 18] H
3 25 14 [12, 12] [22, 22] [12, 13] [11, 12] H
4 23 13 [11, 11] [20, 20] [12, 12] [11, 23] H
5 25 14 [11, 11] [19, 20] [12, 12] [12, 25] H
6 35 21 [17, 18] [35, 35] [18, 19] [16, 17] H
7 51 51 [21, 21] [49, 51] [22, 23] [19, 22] H
8 32 22 [19, 19] [32, 32] [19, 20] [16, 17] H
9 32 22 [19, 19] [32, 32] [20, 21] [17, 19] H
10 51 40 [35, 35] [51, 51] [35, 36] [27, 29] H
11 51 35 [33, 34] [51, 51] [34, 35] [27, 28] H
12 50 34 [32, 32] [50, 50] [32, 33] [26, 28] H
13 51 37 [36, 37] [51, 51] [37, 38] [30, 31] H
14 36 21 [19, 19] [36, 36] [20, 21] [17, 18] H
15 63 26 [19, 19] [37, 38] [21, 22] [22, 63] H

1 28 12 [11, 11] [17, 17] [11, 12] [28, 28] CF
2 98 24 [16, 16] [31, 32] [17, 18] [98, 98] CF
3 80 21 [16, 16] [30, 30] [17, 18] [80, 80] CF
4 20 8 [8, 8] [12, 12] [8, 8] [20, 20] CF
5 48 22 [16, 16] [31, 32] [17, 18] [15, 18] CF
6 115 61 [37, 37] [85, 89] [45, 49] [115, 115] CF
7 23 10 [8, 8] [12, 13] [9, 9] [23, 23] CF
8 32 18 [15, 15] [32, 32] [15, 16] [13, 13] CF
9 40 19 [16, 17] [34, 35] [17, 18] [15, 17] CF
10 44 19 [18, 18] [38, 39] [19, 20] [16, 18] CF
11 26 16 [15, 15] [26, 26] [15, 15] [13, 14] CF
12 31 15 [13, 13] [24, 25] [13, 14] [12, 13] CF
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10 A linear approach to CSP

▶ Linear relaxation
▶ Linear programming approach
▶ Vertex selection for relaxation
▶ Inner point selection for relaxation
▶ Properties of the obtained relaxation

In this chapter we introduce one particular approach to solving constraint satis-
faction problems over interval boxes. We extend and generalize the work [8] by Araya,
Trombettoni and Neveu. We introduce their concept of linear relaxation of a constraint
satisfaction problem over a box, which results in a system of real inequalities. The
box is then contracted with use of linear programming. To perform the linearization
they need to select a vertex point (or a couple of them) of the box. We show that it is
possible to select not only vertex points but also any point contained in the contracted
box. We show some difficult examples for contractors and consistency techniques, that
can be further improved by using the inner point choice. We prove that the proposed
linearization is always at least as tight as Jaulin’s linearization using two parallel affine
functions [97, 99]. The whole chapter is a slightly reworked version of our paper [80].
The aim of this chapter is not to discuss the topic of nonlinear systems at large detail.
There are many interesting books and works devoted to this topic, we will mention
some of them at the end of this chapter.

10.1 The aim
In this chapter we deal with the constraint satisfaction problem (CSP). More specifi-
cally, we have a set of equality and inequality constraints

fi(x) = 0, i = 1, . . . , k, (10.1)
gj(x) ≤ 0, j = 1, . . . , l, (10.2)

where fi, gj : Rn ↦→ R are real-valued functions. In compact form, it can be rewritten
as

f(x) = 0,
g(x) ≤ 0,
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where f(x) = (f1(x), . . . , fk(x)) and g(x) = (g1(x), . . . , gl(x)). In global optimization
we additionally have a function φ(x) and search for the global minimum of the function
φ(x) subject to these constraints. Such a problem can be transformed to the constraint
satisfaction problem (see the next section).

We start with some initial intervals bounding the values of variables x1, . . . , xn.
The bounding intervals x = (x1,x2, . . . ,xn) actually form an n-dimensional initial
box x1 × . . .× xn, where we begin the search for solution (or minimum/maximum of
φ(x)).

A common approach is to linearize nonlinear equalities and inequalities first.
Such a procedure is called linear relaxation. Linear relaxations were also studied in,
e.g., [6, 8, 26, 118, 217].

After linear relaxation a system of interval linear inequalities is obtained and
linear programming can be used. The result is a box containing the solution that
will be hopefully tighter than the initial one. If the box gets tighter, we can iterate
this procedure. If the box cannot be tightened, we combine this technique with a
branch and bound approach – the current box is split into halves and the procedure is
repeated for both parts separately. We can recursively go on with splitting until the
size of the box is small enough.

10.2 Global optimization as CSP
The problem of global optimization can be transformed to a constraint satisfaction
problem and hence the previously mentioned techniques can be used. Let us have a
global optimization problem

min φ(x),
f1(x) = 0, . . . , fk(x) = 0, (10.3)
g1(x) ≤ 0, . . . , gl(x) ≤ 0, (10.4)

and an initial box x. We would like to get a rigorous bounds for minφ(x) for x ∈ x.
First by solving the CSP problem defined by (10.3) and (10.4) we get some box x∗

where the solution is located. Then we evaluate the φ(x) on this box and take the
minimum φ(x∗), this provides a safe lower bound for the global minimum. To obtain
an upper bound on the global minimum, we can take any feasible solution x′ from
x∗ and its value φ(x′). A feasible solution can be found, for example, by local search
techniques. As in the previous section, this approach can be combined with a branch
and bound approach. That is why in the rest of the chapter we are going to deal with
the constraint satisfaction problem only.

10.3 Interval linear programming approach
Our approach is based on linearization of constraints (10.1) and (10.2) by means of
interval linear equations and inequalities. Then by using interval linear programming
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techniques [68] we construct a polyhedral enclosure to the solution set of (10.1) and
(10.2) and contract the initial box x. The process can be iterated, resulting in a nested
sequence of boxes enclosing the solution set.

Let us have a function h : Rn ↦→ R and some interval vector x ∈ IRn. Then

h(x) = {h(x) | x ∈ x}.

However, for some more complex functions this is can hardly be computed. We usually
compute some enclosure of h(x).

First let us choose some point x0 ∈ x which will be called a center of linearization.
Suppose that a vector function h : Rn ↦→ R can be enclosed by a linear enclosure

h(x) ⊆ Sh(x, x0)(x− x0) + h(x0), for ∀x ∈ x, (10.5)

for suitable interval-valued function Sh : IRn × Rn ↦→ IRn This is usually calculated
by the mean value form as explained in Chapter 3 or [139].

For more efficiency, successive mean value approach ([8]) or slopes ([59, 139])
can be employed. Alternatively, in some situations, a relaxation can be established by
analyzing the structure of h(x) – for example, quadratic terms can be relaxed as shown
in [118]. After applying such a linearization to all functions f1, . . . , fk and g1, . . . , gl

we obtain an interval linear system of equations and inequalities:

Sf (x, x0)(x− x0) + f(x0) = 0, (10.6)
Sg(x, x0)(x− x0) + g(x0) ≤ 0. (10.7)

We can briefly denote it as

A(x− x0) = −f(x0), (10.8)
B(x− x0) ≤ −g(x0). (10.9)

Theoretically, we do not need to choose the same x0 for f ’s and g’s. However, we
choose the same x0 for both of them. As the linearization depends on x0 ∈ x, the
question is how to choose x0.

10.4 Selecting vertices
First, let us take a look at the system (10.8). Using the Oettli–Prager theorem (The-
orem 5.4) we can rewrite

A(x− x0) = −f(x0),
as

|Ac(x− x0) + f(x0)| ≤ A∆|x− x0|.
Note that f(x0) is actually a real number. Now we proceed as in Section 5.2. We can
get rid of the first absolute value by rewriting it into the two cases:

Ac(x− x0) + f(x0) ≤ A∆|x− x0|,
−Ac(x− x0) − f(x0) ≤ A∆|x− x0|.
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We can get rid of the second absolute value by using knowledge of the sign of each
coefficient of the vector in absolute value

Ac(x− x0) + f(x0) ≤ A∆Dsign(x−x0)(x− x0),
−Ac(x− x0) − f(x0) ≤ A∆Dsign(x−x0)(x− x0).

Now selection of x0 should imply knowledge of sign(x− x0). The very first idea
that can come to our mind is to take x0 as some corner of the initial box x [8]. If we
take, for example, x0 = x, we immediately know that (x− x0) is nonnegative and get
the linearization

Ax ≤ Ax− f(x), Ax ≥ Ax− f(x).

A similar technique can be applied to the system of inequalities (10.9). We
can use the following Gerlach’s characterization of all solutions to Ax ≤ b [53] (cf.
[40, 70]).

Theorem 10.1 (Gerlach). A vector x is a solution of Ax ≤ b if and only if it satisfies

Acx− A∆|x| ≤ b.

By applying the theorem to (10.9) we obtain

Bc(x− x0) ≤ B∆|x− x0| − g(x0).

And using the same trick as before we rewrite the absolute value as

Bc(x− x0) ≤ B∆Dsign(x−x0)(x− x0) − g(x0).

Again, if we set, for example, x0 = x, we get the linearization

Bx ≤ Bx− g(x).

The question is, which corner to choose? In [8] it was proved that choosing
the corner that gives the tightest linearization is an NP-hard problem. Even if the
best corner for linearization was known, it would not guarantee significant contraction
gain. However, this gives an insight, how difficult the problem is. Therefore, some
heuristics need to be used. According to numerical tests in [8], they propose choosing
two opposite corners of x and gathering linear inequalities from both linearizations as
the input to a linear program. Which pair of opposite corners is the best choice is an
open problem, a random selection seems to do well.

10.5 New possibility: selecting an inner point
Now we are able to linearize according to any corner of the initial box x. What about
the other points x0 ∈ x? In the following part we show that also an inner point can
be used. Thus we provide an extension of [8].
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Once again, for any x0 the solution set to (10.8) and (10.9) is described by

|Ac(x− x0) + f(x0)| ≤ A∆|x− x0|,
Bc(x− x0) ≤ B∆|x− x0| − g(x0),

which is a nonlinear system due to the absolute values. Fortunately, we can bound
them using a theorem by Beaumont [14].

Theorem 10.2 (Beaumont). Let y ∈ IR, then for every y ∈ y

|y| ≤ αy + β,

where
α =

|y| − |y|
y − y

, β =
y|y| − y|y|
y − y

.

Moreover, if y ≥ 0 or y ≤ 0 then the equality holds.

Now, the following proposition can be proved.

Proposition 10.3 (Hlad́ık, Horáček [80]). The linearization of (10.8) and (10.9) for
an arbitrary x0 ∈ x is

(Ac − A∆Dα)x ≤ Acx0 + A∆v − f(x0), (10.10)
(−Ac − A∆Dα)x ≤ −Acx0 + A∆v + f(x0), (10.11)

(Bc −B∆Dα)x ≤ Bcx0 +B∆v − g(x0), (10.12)

where α and v are vectors with coefficients

αi = 1
x∆

i

(xc
i − x0

i ),

vi = 1
x∆

i

(xc
ix

0
i − xixi).

Proof. First we show the relaxation for (10.9). Using Theorem 10.2

Bc(x− x0) ≤ B∆|x− x0| − g(x0) ≤ B∆(Dα(x− x0) + β) − g(x0),

where

αi = 1
2x∆

i

(︂
|xi − x0

i | − |xi − x0
i |
)︂

= 1
2x∆

i

(︂
xi − x0

i − (x0
i − xi)

)︂
=

= 1
x∆

i

(︄
(xi − xi)

2 − x0
i

)︄
= 1
x∆

i

(︂
xc

i − x0
i

)︂
,
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βi = 1
2x∆

i

(︂
(xi − x0

i )|xi − x0
i | − (xi − x0

i )|xi − x0
i |
)︂

=

= 1
2x∆

i

(︂
(xi − x0

i )(x0
i − xi) − (xi − x0

i )(xi − x0
i )
)︂

=

= 1
x∆

i

(xi − x0
i )(x0

i − xi).

The inequality then takes the form

(Bc −B∆Dα)x ≤ Bcx0 +B∆(−Dαx
0 + β) − g(x0).

Herein,

(−Dαx
0 + β)i = −αix

0
i + βi = 1

x∆
i

(︂
−(xc

i − x0
i )x0

i + (xi − x0
i )(x0

i − xi)
)︂

=

= 1
x∆

i

(−xc
ix

0
i + xix

0
i − xixi + x0

ixi) =

= 1
x∆

i

(−xc
ix

0
i − xixi + xix

0
i + xix

0
i ) =

= 1
x∆

i

(−xc
ix

0
i − xixi + 2xc

ix
0
i ) =

= 1
x∆

i

(xc
ix

0
i − xixi) = vi.

Regarding (10.8) it is relaxed by Theorem 10.2 as

|Ac(x− x0) + f(x0)| ≤ A∆|x− x0| ≤ A∆(Dα(x− x0) + β)),

which is just rewritten as the two cases

(Ac − A∆Dα)x ≤ Acx0 + A∆(−Dαx
0 + β) − f(x0),

(−Ac − A∆Dα)x ≤ −Acx0 + A∆(−Dαx
0 + β) + f(x0).

The Proposition 10.3 enables us to linearize according to any point from the
initial box.

10.6 Two parallel affine functions
In [97, 99] Jaulin proposed a linearization using two parallel affine functions as a
simple but efficient technique for enclosing nonlinear functions. In what follows, we
show that for the purpose of polyhedral enclosure of a solution set of nonlinear systems,
our approach is never worse than Jaulin’s linearization estimate.

In accordance with (10.5) let us assume that a vector function h : Rn ↦→ Rs has
the following interval linear enclosure:

h(x) ⊆ A(x− x0) + b, ∀x ∈ x, (10.13)
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for a suitable matrix A ∈ IRn×s and x0 ∈ x, where b = h(x0). Using subdistributivity,
for A ∈ A (see Section 3.7) we get

A(x− x0) + b ⊆ A(x− x0) + b+ (A − A)(x− x0).

Bounding the formula on the right-hand side from above and from below by two
parallel affine functions gives

h(x) ≤ A(x− x0) + b+ (A − A)(x − x0),
h(x) ≥ A(x− x0) + b+ (A − A)(x − x0).

For A = Ac, x
0 = xc we particularly get

h(x) ≤ A(x− xc) + b+ A∆x∆,

h(x) ≥ A(x− xc) + b− A∆x∆.

Theorem 10.4 (Hlad́ık, Horáček [80]). For any selection of x0 ∈ x and A ∈ A, the
linearization using the Beaumont theorem yields at least as tight enclosures as Jaulin’s
linearization using two parallel affine functions.

Proof. We are going to prove the theorem for the estimation from above, the proof
for the estimation from below can be done similarly. Using properties (3.1)–(3.5) the
function h(x) from (10.13) can be for x ∈ x bounded from above by

h(x) ≤ Ac(x− x0) + A∆|x− x0| + b.

(This includes the vertex selection of x0, too.) Then, the absolute value |x − x0| is
linearized by means of Beaumont’s theorem to

|x− x0| ≤ Dα(x− x0) + β,

for some α, β ∈ Rn. The goal is to show that the interval linear programming upper
bound

h(x) ≤ Ac(x− x0) + A∆(Dα(x− x0) + β) + b

is included in estimation using two parallel affine functions, that is

Ac(x− x0) + A∆(Dα(x− x0) + β) + b ∈ A(x− x0) + (A − A)(x − x0) + b,

or equivalently,

(Ac − A)(x− x0) + A∆(Dα(x− x0) + β) ∈ (A − A)(x − x0),

The ith row of this inclusion reads
n∑︂

j=1
(ac

ij − aij)(xj − x0
j) +

n∑︂
j=1

a∆
ij(αj(xj − x0

j) + βj) ∈
n∑︂

j=1
(aij − aij)(xj − x0

j).
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We prove a stronger statement claiming that for any i, j it holds that

(ac
ij − aij)(xj − x0

j) + a∆
ij(αj(xj − x0

j) + βj) ∈ (aij − aij)(xj − x0
j).

By substituting for αj and βj the left-hand side draws

(ac
ij − aij)(xj − x0

j) + a∆
ij

(︄
|xj − x0

j | − |xj − x0
j |

2x∆
j

(xj − x0
j) +

+
(xj − x0

j)|xj − x0
j | − (xj − x0

j)|xj − x0
j |

2x∆
j

)︄
. (10.14)

This is a linear function in xj, hence it is sufficient to show inclusion only for both
endpoints of xj. By putting xj = xj the formula (10.14) simplifies to

(ac
ij − aij)(xj − x0

j) + a∆
ij |xj − x0

j |

∈ (aij − aij)(xj − x0
j) ⊆ (aij − aij)(xj − x0

j).
For xj = xj the proof is done analogously.

10.7 Combination of centers of linearization
To obtain as tight polyhedral enclosure as possible it is convenient to simultaneously
consider several centers for linearization. If we have no extra information, we rec-
ommend to relax according to two opposite corners of x (in agreement with [8]) and
according to the midpoint x0 = xc. Putting all resulting inequalities together, we
obtain a system of 3(2k + l) inequalities with respect to n variables. This system
represents a convex polyhedron P and its intersection with x gives a new, hopefully
tighter, enclosure of the solution set. Illustration of potential advantages of this process
can be found in Figure 10.1.

When we calculate minima and maxima in each coordinate by calling linear
programming, we get a new box x′ ⊆ x. Rigorous bounds on the optimal values in
linear programming problems were discussed in [95, 141]. The optimal values of the
linear programs are attained in at most 2n vertices of P , which lie on the boundary of
x′. It is tempting to use some of these points as a center x0 for the linearization process
in the next iteration. Some numerical experiments have to be carried out to show how
effective this idea is. Another possibility is to linearize according to these points in
the current iteration and append the resulting inequalities to the description of P . By
re-optimizing the linear programs we hopefully get a tighter enclosing box x′. Notice
that the re-optimizing can be implemented in a cheap way. If we employ the dual
simplex method to solve the linear programs and use the previous optimal solutions
as starting points, then the appending of new constraints is done easily and the new
optimum is found in a few steps. We append only the constraints corresponding to
the current optimal solution. Thus, for each of that 2n linear programs, we append
after its termination a system of (2k + l) inequalities and re-optimize.

In global optimization, a lower bound of ϕ(x) on P is computed, which updates
the lower bound on the optimal value if lying in x. Let x∗ be a point of P in which
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Figure 10.1: Illustration of relaxations obtained by selecting different centers of
linearizations. The darker area is a linearized enclosure. The curve represents a set
described by the constraints (10.1), (10.2)

.
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the lower bound of ϕ(x) on P is attained. Then it is promising to use x∗ as a center
for linearization in the next iteration. Depending on a specific method for bounding of
ϕ(x) from below, it may be desirable to append to P the inequalities (10.10)–(10.12)
arising from x0 = x∗, and to re-compute the lower bound of ϕ(x) on the updated
polyhedron.

10.8 Convex case
If the constraint functions are of certain shape, then there is no need to use relaxation
according to inner point, it is enough to linearize according to certain vertices (at
most n + 1) of x. In the proposition below, an inequality is called a consequence
of a set of inequalities if it can be expressed as a nonnegative linear combination of
these inequalities. In other words, it is a redundant constraint if added to the set of
inequalities.

Proposition 10.5 (Hlad́ık, Horáček [80]). Let x0 ∈ x be a nonvertex point of x.
Suppose that A and B do not depend on a selection of x0 .

1. If fi(x), i = 1, . . . , k are convex, then the inequality (10.10) is a consequence of
the corresponding inequalities derived by vertices of x.

2. If fi(x), i = 1, . . . , k are concave, then the inequality (10.11) is a consequence of
the corresponding inequalities derived by vertices of x.

3. If gj(x), j = 1, . . . , l are convex, then the inequality (10.12) is a consequence of
the corresponding inequalities derived by vertices of x.

Proof. We prove the case 3; the other cases are proved analogously. Let x1, x2 ∈ x
and consider a convex combination x0 := λx1 + (1 − λ)x2 for any λ ∈ [0, 1]. It suffices
to show that the inequality derived from x0 is a convex combination of those derived
from x1 and x2. For x1 and x2 the associated systems (10.12) read respectively

(Bc −B∆Dα1)x ≤ Bcx1 +B∆v1 − g(x1), (10.15)
(Bc −B∆Dα2)x ≤ Bcx2 +B∆v2 − g(x2), (10.16)

where α1
i = 1

x∆
i

(xc
i − x1

i ), α2
i = 1

x∆
i

(xc
i − x2

i ), v1
i = 1

x∆
i

(xc
ix

1
i − xixi) and v2

i = 1
x∆

i
(xc

ix
2
i −

xixi). Multiplying (10.15) by λ and (10.16) by (1 − λ), and summing up, we get

(Bc −B∆Dα)x ≤ Bcx0 +B∆v0 − λg(x1) − (1 − λ)g(x2),

where αi = 1
x∆

i
(xc

i − x0
i ) and v0

i = 1
x∆

i
(xc

ix
0
i − xixi). Convexity of g implies

(Bc −B∆Dα)x ≤ Bcx0 +B∆v0 − g(x0),

which is inequality (10.12) corresponding to x0.
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The functions fi(x),−fi(x) or gj(x) need not be convex (and mostly they are
not). However, if it is the case, Proposition 10.3 is fruitful only when x0 is a vertex
of x; otherwise the resulting inequalities are redundant. Notice that this may not be
the case for the original interval inequalities (10.9). When fi(x),−fi(x) or gj(x) are
not convex, nonvertex selection of x0 ∈ x may be convenient. Informally speaking,
the more nonconvex the functions are the more desirable a selection of an interior x0

might be.

10.9 Examples
First, we start with an example that can be viewed as a “hard” instance for the
classical techniques because the initial box is so called 2B-consistent (the domains of
variables cannot be reduced if we consider the constraints separately) [59]. Also the
recommended preconditioning of the system by the inverse of the Jacobian matrix for
the midpoint values [59] makes almost no progress.

Example 10.6. Let us have the nonlinear system

y − sin(x) = 0, (10.17)
y − cos(x+ π/2) = 0. (10.18)

for x ∈ x = [−π
2 ,

π
2 ] and y ∈ y = [−1, 1]. When using linearization by the mean value

form, A is the Jacobian evaluated for the initial box x × y.⎛⎝ − cos(x) 1
cos(x) 1

⎞⎠ .
Figure 10.2 bellow illustrates the linearization for diverse centers of linearization.

Since in this example linearization does not depend on x0
2, we set this second coordinate

to 0.
The decreasing curve corresponds to condition (10.17) the increasing curve to

(10.18). The darker convex areas depict the linearization of the corresponding curves
on given interval [−π

2 ,
π
2 ]. By taking the hull of the intersection of the convex areas we

obtain the new enclosure

x′ = [−0.5708, 0.5708], y′ = [−0.7854, 0.7854],

which is depicted in Figure 10.4 a). For this system application of slopes gives the
same contracted box.

Example 10.7. Let us have the nonlinear system

π2y − 4x2 sin(x) = 0, (10.19)
y − cos(x+ π/2) = 0. (10.20)
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Figure 10.2: Four different linearizations depending on x0 selection. The decreasing
curve corresponds to constraint y − sin(x) = 0 and the increasing curve to constraint
y − cos(x + π/2) = 0. The darker areas depicts the corresponding linearizations using
the mean value form.
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for x ∈ x = [−π
2 ,

π
2 ], y ∈ y = [−1, 1]. When using linearization by the mean value

form, A is the Jacobian evaluated for the initial box x × y⎛⎝ −8x sin(x) − 4x2 cos(x) π2

cos(x) 1

⎞⎠ .
Using this as an interval extension does not give narrow bounds (see Section 3.8).
Hence, the initial enclosure can be reduced only by one dimension to

x′ = [−0.9597, 0.9597], y′ = [−1, 1].

In this example, the use of slopes helps. The linearization is depicted in Figure 10.3
and the resulting box is

x′′ = [−0.9597, 0.9597], y′′ = [−0.6110, 0.6110],

which is depicted in Figure 10.4 b).

10.10 Other reading
Many books address intervals in constraint satisfaction problems and global optimiza-
tion, see, e.g., [59, 99, 105]. Various consistency techniques are introduced in, e.g.
[17, 92]. Other techniques are, e.g., [25, 54]. For Jaulin’s set inversion approach see
[100]. For using intervals in quantified constraints [156] and for application of intervals
to hybrid systems, see [65, 157].
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Figure 10.3: Four different linearizations depending on x0 selection. The decreasing
curve corresponds to constraint π2y − 4x2 sin(x) = 0 and the increasing curve to con-
straint y −cos(x+π/2) = 0. The darker areas depicts the corresponding linearizations
using slopes.
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Figure 10.4: The resulting contracted boxes from the above examples; a) Example
10.6, b) Example 10.7.
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11 Complexity of selected interval
problems

▶ Brief introduction to computational complexity
▶ Complexity of various interval problems
▶ Polynomial cases and classes are characterized
▶ Sufficient conditions are pointed out

In the previous chapters we mentioned computational complexity issues of var-
ious problems. In this chapter we summarize more thoroughly the relation of com-
putational complexity and interval analysis. Next, we gather the complexity results
mentioned earlier in this work and we add some new topics of classical linear alge-
bra – checking singularity, computing matrix inverse, bounding eigenvalues, checking
positive (semi)definiteness or stability and some others.

Some questions may arise, when reading the previous works. Among all, it is
the question about the equivalence of the notions NP-hardness and coNP-hardness.
Some authors use these notions as synonyms, some authors distinguish between them.
Another questions that may arise touches the representation and reducibility of interval
problems in a given computational model. To shed more light (not only) on these issues
we published a survey paper [85], which forms the basis of this chapter.

Nearly all problems become intractable when intervals are incorporated into ma-
trices and vectors. However, there are many subclasses of problems that can be solved
in a reasonable computational work.

For more complexity results or more depth we recommend, e.g., [40, 112, 173].

11.1 Complexity theory background
First, we present a brief introduction to computational complexity. Then, we return
to interval linear algebra and introduce some well-known problems from the viewpoint
of computational complexity.

11.1.1 Binary encoding and size of an instance
For a theoretic complexity classification of problems, it is a standard to use the Tu-
ring computation model. We assume that an instance of a computational problem
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is encoded in binary encoding, i.e., as a finite 0-1 sequence. Thus we cannot work
with real-valued instances; instead we usually restrict ourselves to rational numbers
expressed as fractions ± q

r
with q, r ∈ N written down in binary and in the coprime

form. Then, the size of a rational number ± q
r

is understood as the number of bits
necessary to represent the sign and both q and r (to be precise, one should also
take care of delimiters). If an instance of a problem consists of multiple rational
numbers A = (a1, . . . , an) (e.g., when the input is a vector or a matrix), we define
size(A) = ∑︁n

i=1 size(ai).
In interval problems, inputs of algorithms are usually interval numbers, vectors

or matrices. When we say that an algorithm is to process an m×n interval matrix A,
we understand that the algorithm is given the pair (A ∈ Qm×n, A ∈ Qm×n) and that
the size of the input is L := size(A) + size(A). Whenever we speak about complexity
of such algorithm, we mean a function ϕ(L) counting the number of steps of the
corresponding Turing machine as a function of the bit size L of the input (A,A).

Although the literature focuses mainly on the Turing model (and here we also do
so), it is challenging to investigate the behavior of interval problems in other computa-
tional models, such as the Blum-Shub-Smale (BSS) model for real-valued computing
[21] or the quantum model [9].

11.1.2 Function problems and decision problems
There are usually two kinds of problems:

• A function problem F is a total function F : {0, 1}∗ → {0, 1}∗,

• A decision problem D is a total function D : {0, 1}∗ → {0, 1},

A function is total when it is defined for each input and {0, 1}∗ is the set of all finite
bit-strings.

Example 11.1 (Function problem). Given a binary encoding for rational interval
matrices and vectors define F as

F(A, b) = x, where x is the hull of Ax = b.

Example 11.2 (Decision problem). Given a binary encoding for rational interval
matrices and vectors define D as

D(A) = 1 ⇐⇒ A is regular.

If for a problem A (either decision or functional) there exists a Turing machine
computing A(x) for every x ∈ {0, 1}∗, we say that A is recursive.

It is well known that many decision problems in mathematics are nonrecursive;
e.g., deciding whether a given formula is provable in Zermelo-Fraenkel Set Theory
is nonrecursive by the famous Gödel incompleteness theorem. Fortunately, a ma-
jority of decision problems in interval linear algebra are recursive. Such problems can
usually be written down as arithmetic formulas (i.e., quantified formulas containing



11.1. Complexity theory background 171

natural number constants, arithmetical operations +,×, relations =,≤ and proposi-
tional connectives). Such formulas are decidable (over the reals) by Tarski’s quantifier
elimination method (see [159, 160, 161]).

Example 11.3. Each matrix A ∈ A is nonsingular if and only if (∀A)[A ≤ A ≤ A ⇒
det(A) ̸= 0]. This formula is arithmetical since det(·) is a polynomial, and thus it is
expressible in terms of +,×.

Example 11.4. Is a given λ ∈ Q the largest eigenvalue of some symmetric A ∈ A?
This question can be written down as (∃A)[A = AT & A ≤ A ≤ A & (∃x ̸= 0)[Ax =
λx] & (∀λ′){(∃x′ ̸= 0)[Ax′ = λ′x′] ⇒ λ′ ≤ λ}].

Although the quantifier elimination proves recursivity, it is a highly inefficient
method from the practical viewpoint (the computation time can be doubly exponential
in general). In spite of this, for many problems, reduction to the quantifier elimination
is the only (and thus “the best”) known algorithmic result.

11.1.3 Weak and strong polynomiality
Recursivity does not guarantee efficient solving of a problem. Usually, a problem A
is said to be “efficiently” solvable if it is solvable in polynomial time, i.e., in at most
p(L) steps of the corresponding Turing machine, where p is a polynomial and L is the
bit size of the input. The class of such problems is denoted by P.

Taking a more detailed viewpoint, this is a definition of polynomial-time sol-
vability in the weak sense. In our context, we are usually processing a family a1, . . . , an

of rational numbers, where L = ∑︁n
i=1 size(ai), performing arithmetical operations

+,−,×,÷,≤ on them. A weakly polynomial algorithm can perform at most p1(L)
arithmetical operations with numbers of size at most p2(L) during its computation,
where p1, p2 are polynomials.

If a polynomial-time algorithm satisfies the stronger property – that is, it per-
forms at most p1(n) arithmetical operations with numbers of size at most p2(L) during
its computation, we say that it is strongly polynomial. Simply said, the number of
arithmetic operations of a strongly polynomial algorithm does not depend on the bit
sizes of the inputs.

Example 11.5. Given a rational A and b, the question (∃x)(Ax = b) can be decided in
strongly polynomial time (although it is not trivial to implement Gaussian elimination
to yield a strongly polynomial algorithm, see [37]).

Example 11.6. On the contrary, the question (∃x)(Ax ≤ b) (which is a form of linear
programming) is known to be solvable in weakly polynomial time only and it is a
major open question whether a strongly polynomial algorithm exists (this is Smales’s
Ninth Millenium Problem, see [207]).

Hence, whenever an interval-algebraic problem is solvable in polynomial time and
requires linear programming (which is a frequent case), it is only a weakly polynomial
result. This is why the cases, when interval-algebraic problems are solvable in strongly
polynomial time, are of special interest.
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11.1.4 NP and coNP
The class NP is the class of decision problems A with the following property: there
is a polynomial p and a decision problem B(x, y), solvable in time polynomial in
size(x) + size(y), such that, for any instance x ∈ {0, 1}∗,

A(x) = 1 ⇐⇒ ∃y ∈ {0, 1}p(size(x)) B(x, y) = 1. (11.1)
where {0, 1}p(·) means that the size of the resulting 0-1 string is limited by a given
polynomial. The string y is called a witness for the fact that A(x) = 1. The algorithm
for B(x, y) is called a verifier. Notice that such a verifier works in a polynomial time,
however the algorithm for deciding A(x) does not have to do so. It is, in fact, still
an open question whether P = NP. Philosophically, it goes with the intuition that
coming up with the solution of the problem might be harder than just verifying that
the solution is correct. Solving of such problems in NP is usually exponential with
respect to the input size L.
Example 11.7. A lot of well-known problems are in NP: “Is a given graph colorable
with 3 colors?”, “Does a given boolean formula have a satisfying assignment?”, “Does
a given system Ay ≤ b have an integral solution y?” For more problems see, e.g.,
[9, 43, 147].

The class coNP is characterized by replacement of the existential quantifier in
(11.1):

A(x) = 1 ⇐⇒ ∀y ∈ {0, 1}p(size(x)) B(x, y) = 1.
It is easily seen that the class coNP is formed of complements of NP problems, and vice
versa. (Recall that a decision problem A is a 0-1 function; its complement is defined
as coA = 1 − A.)
Example 11.8. A well-known coNP problem is deciding whether a given boolean
formula is a tautology.

It is easy to see that deciding a coNP-question can take exponential time since the
∀-quantifier ranges over a set exponentially large in the input size L. A lot of interval-
based problems are in NP or coNP. Anyway, we should approach these problems with
care.
Example 11.9 (Interval problem in NP). Consider the problem of deciding whether
an interval matrix is singular. More formally, let us have A ∈ Qn×n. We look for
A ∈ A that is singular. A not completely correct statement would be that this
problem belongs to NP, because a particular singular rational matrix A0 ∈ A serves
as a witness of singularity. To make it complete we need to prove that size(A0) is
of polynomial size with respect to size of A (i.e., L = size(A) + size(A)). Such a
proof may be highly uncomfortable. We prefer to choose a different way. Using the
Oettli–Prager theorem (Theorem 5.4) we have:

∃A ∈ A such that A is singular,
⇔ ∃A ∈ A, ∃x ̸= 0: Ax = 0,
⇔ ∃x ̸= 0: − A∆|x| ≤ Acx ≤ A∆|x|,
⇔ ∃s ∈ {±1}n ∃x : − A∆Dsx ≤ Acx ≤ A∆Dsx, Dsx ≥ 0, eTDsx ≥ 1.⏞ ⏟⏟ ⏞

(∗)

(11.2)
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Given an s ∈ {±1}n, the relation (∗) can be checked in polynomial time by linear
programming. Thus, we can define the verifier B(A, s) as the algorithm checking
the validity of (∗). In fact, we have reformulated the ∃-question “is there a singular
A ∈ A?”, into an equivalent ∃-question, “is there a sign vector s ∈ {±1}n (orthant)
such that (∗) holds true?”, and now size(s) ≤ L is obvious.

The method of (11.2) is known as orthant decomposition since it reduces the
problem to inspection of orthants Dsx ≥ 0, for every s ∈ {±1}n, and the work in each
orthant is “easy” (here, the work in an orthant amounts to a single linear program).
Many properties of interval data are described by sufficient and necessary conditions
that use orthant decomposition. We have already met it in Section 5.2.

Example 11.10 (Interval problem in coNP). Checking regularity is a complementary
problem to checking singularity. Hence we immediately get that checking regularity
of a general interval matrix is in coNP.

11.1.5 Decision problems: NP-, coNP-completeness
A decision problem A is reducible to a decision problem B (denoted A ≤ B) if there
exists a polynomial-time computable function g : {0, 1}∗ → {0, 1}∗, called reduction,
such that for every x ∈ {0, 1}∗ we have

A(x) = B(g(x)). (11.3)

Informally said, any algorithm for B can also be used for solving A – given an instance
x of A, we can efficiently “translate” it into an instance g(x) of the problem B and
run the method deciding B(g(x)), yielding the correct answer to A(x). Thus, any
decision method for B is also a valid method for A, if we neglect a polynomial time
for computation of the reduction g. In this sense we can say that if A ≤ B, then B is
“as hard as A, or harder”. If both A ≤ B and B ≤ A, then problems A,B are called
polynomially equivalent.

The relation ≤ induces a partial ordering on classes of polynomially equivalent
problems in NP and this ordering can be shown to have a maximum element. The
problems in the maximum class are called NP-complete problems. And similarly, coNP
has a class of coNP-complete problems. The classes are complementary – a problem
A is NP-complete if and only if its complement is coNP-complete.

Let X ∈ {NP, coNP}. If a problem B is X -complete, any method for it can be
understood as a universal method for any problem A ∈ X (if we neglect a polynomial
time needed for computing the reduction). Indeed, since B is the maximum element,
we have A ≤ B for any A ∈ X . It is generally believed that X contains problems that
are not efficiently decidable. In NP, boolean satisfiability is a prominent example; in
coNP, it is the tautology problem. Then, by ≤-maximality, no X -complete problem
is efficiently decidable. This shows why a proof of X -completeness of a newly studied
problem is often understood as proof of its computational intractability.

From a practical perspective, a proof of X tells us that “nothing better than a
superpolynomial-time algorithm can be expected”. But formally we must distinguish
between NP- and coNP-completeness because it is believed that NP-complete problems
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are not polynomially equivalent with coNP-complete problems (equivalence of these
two classes is an open problem).

The usual way to prove the X -completeness of a problem C is using the knowledge
of some problem B being X -complete and proving that 1) B ≤ C and 2) C ∈ X . This
is the method behind all X -completeness proofs in this chapter.

11.1.6 Decision problems: NP- and coNP-hardness
Here we restrict ourselves to NP-hard problems as the reasoning for coNP-hard prob-
lems is analogous. In the previous section we spoke about NP-complete problems as
the ≤-maximum elements in NP.

We say that a decision problem H, not necessarily in NP, satisfying C ≤ H for
an NP-complete problem C, is NP-hard. Clearly, NP-complete problems are exactly
those NP-hard problems which are in NP. But we might encounter a problem H for
which we do not have a proof for H ∈ NP, but still it might be possible to prove
C ≤ H. This also means a bad news for practical computing; the problem H is
computationally intractable (but we might possibly need even worse computation time
than for problems in NP).

Proving that a decision problem is NP-hard is a weaker theoretical result than a
proof that a decision problem is NP-complete. It is followed by an inspection why it is
difficult to prove the presence in NP. If we are unsuccessful in placing the problem in
NP or coNP, being unable to write down the ∃- or ∀-definition, it might be appropriate
to place the problem H into higher levels of the Polynomial Time Hierarchy, or even
higher, such as the PSPACE-level; for details see, e.g., [9, 147].

11.1.7 Functional problems: efficient solvability and NP-hardness
Functional problems are problems of computing values of general functions, in contrast
to decision problems where we expect only a YES/NO answers. We also want to
classify functional problems from the complexity-theoretic perspective, whether they
are “efficiently solvable”, or “intractable”, as we did with decision problems. Efficient
solvability of a functional problem is again generally understood as polynomial-time
computability. To define NP-hardness, we need the following notion of reduction: a
decision problem D is reducible to a functional problem F, if there exist functions
g : {0, 1}∗ → {0, 1}∗ and h : {0, 1}∗ → {0, 1}, both computable in polynomial time,
such that

D(x) = h(F(g(x))) for every x ∈ {0, 1}∗. (11.4)
The role of g is analogous to (11.3): it translates an instance x of D into an instance
g(x) of F. What is new here is the function h. Since F is a functional problem, the
value F(g(x)) can be an arbitrary bit string (say, a binary representation of a rational
number); then we need another efficiently computable function h translating the value
F(g(x)) into a 1-0 value giving the YES/NO answer to D(x).

Example 11.11. Let D be a problem of deciding whether a square rational matrix A
is regular. It is reducible to the functional problem F of computing the rank r of A.
It suffices to define g(A) = A and h(r) = 1 − min{n− r, 1}.
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Now, a functional problem F is NP-hard if there is an NP-hard decision problem
reducible to F. For example, the functional problem of counting the number of ones
in the truth-table of a given boolean formula is NP-hard since this information allows
us to decide whether or not the formula is satisfiable.

We could also try to define coNP-hardness of a functional problem G in terms of
reducibility of a coNP-hard decision problem C to G via (11.4). But this is superfluous
because here NP-hardness and coNP-hardness would coincide. Indeed, if we can reduce
a coNP-hard problem C to a functional problem G via (g, h), then we can also reduce
the NP-hard problem coC to G via (g, 1 −h). Thus, in case of functional problems, we
speak about NP-hardness only.

11.1.8 Decision problems: NP-hardness vs. coNP-hardness
In literature, the notions of NP-hardness and coNP-hardness are sometimes used quite
freely even for decision problems. Sometimes we can read that a decision problem is
“NP-hard”, even if it would qualify as a coNP-hard problem under our definition based
on the reduction (11.3). This is nothing serious as far as we are aware. It depends on
how the authors understands the notion of a reduction between two decision problems.
We have used the many-one reduction (11.3), known also as Karp reduction, between
two decision problems. This is a standard in complexity-theoretic literature.

However, one could use a more general reduction between two decision problems
A,B. For example, taking inspiration from (11.4), we could define

A ≤′ B ⇐⇒ A(x) = h(B(g(x)))
for some polynomial-time computable functions g, h. Then the notions of ≤′-NP-
hardness and ≤′-coNP-hardness coincide and need not be distinguished. Observe that
h must be a function from {0, 1} to {0, 1} and there are only two such nonconstant
functions: h1(ξ) = ξ and h2(ξ) = 1 − ξ. If we admit only h1, we get the many-one
reduction; if we admit also the negation h2, we have a generalized reduction under
which a problem is NP-hard if and only if it is coNP-hard. Thus, the notions of
NP-hardness and coNP-hardness based on many-one reductions do not coincide just
because many-one reductions do not admit the negation of the output of B(g(x)).

To be fully precise, one should always say “a problem A is X -hard with respect
to a particular reduction ⪯”. For example, in the previous sections we spoke about X -
hard problems for X ∈ {NP, coNP} with respect to the many-one reduction (11.3). If
another author uses X -hardness with respect to ≤′ (e.g., because she/he considers the
ban of negation as too restrictive in her/his context), then she/he need not distinguish
between NP-hardness and coNP-hardness.

For discussion on more types of reductions with respect to NP-hardness and
coNP-hardness see, e.g., [85].

11.1.9 A reduction-free definition of hardness
For practical purposes, when we do not want to care too much about properties of
particular reductions, we can define the notion of a “hard” problem H (either decision
or functional) intuitively as a problem fulfilling this implication:
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if H is decidable/solvable in polynomial time, then P = NP.

This is usually satisfactory for the practical understanding of the notion of computa-
tional hardness. (Under this definition: if P = NP, then every decision problem is hard;
and if P ̸= NP, then the class of hard decision problems is exactly the class of deci-
sion problems not decidable in polynomial time, including all NP-hard and coNP-hard
decision problems.)

Even if we accept this definition and do not speak about reductions explicitly,
all hardness proofs (at least implicitly) contain some kinds of reductions of previously
known hard problems to the newly studied ones.

11.2 Interval linear algebra
In the following sections we will deal with various problems from the area of inter-
val linear algebra. There are many interesting topics that are unfortunately beyond
the scope of this work. We have met some of them in the previous chapters and we
are going to remind them. Moreover, we add another basic topics from introduc-
tory courses to linear algebra – matrix inverse, eigenvalues and eigenvectors, positive
(semi)definiteness and stability – the topics we touched only slightly. The rest of this
chapter will offer a great disappointment and also a great challenge since introducing
intervals into a classical linear algebra makes solving most of the problems intractable.
That is why we look for solving relaxed problems, special feasible subclasses of prob-
lems or for sufficient conditions checkable in polynomial time. Interval linear algebra
still offers many open problems and thus open space for further research. At the end
of each section we present a summary of problems and their complexity. If we only
know that a problem is weakly polynomial yet, we just write that it belongs to the
class P. When complexity of a problem is not known to our best knowledge (or it is
an open problem), we mark it with a question mark.

11.3 Regularity and singularity
Deciding regularity and singularity is a key task in interval linear algebra. It forms an
initial step of many algorithms. We tackled this topic in Section 4.1.

Checking singularity is NP-hard [173]. In the Example 11.9 we saw a construction
of a polynomial witness s ∈ {±1}n certifying that an interval matrix is singular. Hence,
we get that checking singularity of a general interval matrix is NP-complete. Clearly,
checking regularity as the complementary problem to singularity is coNP-complete.

The sufficient and necessary conditions for checking regularity are of exponential
nature. In [179] you can see 40 of them.

Fortunately, there are some sufficient conditions that are computable in polyno-
mial time. Some of them were mentioned in Section 4.1. It is advantageous to have
more conditions, because some of them may suit better to a certain class of matrices
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or limits of our software tools. Here we present two more sufficient conditions for
checking regularity and four sufficient conditions for checking singularity.

Theorem 11.12 (Sufficient conditions for regularity). An interval matrix A is regular
if at least one of the following conditions holds:

1. λmax(AT
∆A∆) < λmin(AT

c Ac) [193] ,

2. AT
c Ac −∥AT

∆A∆∥I is positive definite for some consistent matrix norm ∥·∥ [164].

Theorem 11.13 (Sufficient conditions for singularity). An interval matrix A is sin-
gular if at least one of the following conditions holds:

1. λmax(AT
c Ac) ≤ λmin(AT

∆A∆) [164],

2. maxj(|A−1
c |A∆)jj ≥ 1 [166],

3. (A∆ − |Ac|)−1 ≥ 0 [173],

4. AT
∆A∆ − AT

c Ac is positive semidefinite [164].

In Section 4.1 we have already met some classes of interval matrices that are
regular (strictly diagonally dominant matrices, M-matrices and H-matrices). Checking
that a matrix belongs to these classes can be done in strongly polynomial time.

11.3.1 Summary

Problem Complexity

Is A regular? coNP-complete
Is A singular? NP-complete

11.4 Full column rank
Checking full column rank was addressed in Section 7.3. Deciding whether an interval
matrix has full column rank is connected to checking regularity. If an interval matrix
A of size m × n, m ≥ n, contains a regular interval sub-matrix of size n, then ob-
viously A has full column rank. What is surprising is that the implication does not
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hold conversely (in contrast to real matrices). The following interval matrix by Irene
Sharaya (see [204]) serves as a counterexample.

Example 11.14. The matrix

A =

⎛⎜⎜⎝
1 [0, 1]

−1 [0, 1]
[−1, 1] 1

⎞⎟⎟⎠ ,
has full column rank, but contains no regular submatrix of size 2.

For square matrices, checking regularity can can be polynomially reduced to
checking full column rank (we just check whether A has full column rank). Therefore,
checking full column rank is coNP-hard. Finding a polynomial certificate for an interval
matrix not having full column rank can be done by orthant decomposition similarly
as in the case of singularity. That is why, checking full column rank is coNP-complete.

Again, fortunately, we have some sufficient conditions that are computable in
polynomial time. In Section 7.3 we mentioned several polynomially checkable condi-
tions for an interval matrix having full column rank.

11.4.1 Summary

Problem Complexity

Does A have full column rank? coNP-complete

11.5 Solving a system of linear equations
Solving of interval linear systems was the main topic of Chapter 5 and 6. We have the
following theorem by Rohn [171].

Theorem 11.15. Computing an enclosure of the solution set of Ax = b when it is
bounded, and otherwise returning an error message, is NP-hard.

If such an algorithm existed, it could be used to decide regularity of an interval
matrix, since regularity of A implies bounded solution set of Ax = b for arbitrary b
[171].

Computing the optimal bounds (the hull) on the solution set is also NP-hard
[184]. The problem stays NP-hard even if we limit widths of intervals of the system
matrix with some δ > 0, or allow the bounds to consist of 0 or 1 only [112]. Un-
fortunately, even computing various ε-approximations of the hull components is an
NP-hard problem [112].
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Theorem 11.16. Let ε > 0, then computing the relative and absolute ε-approximation
of the hull (its components) of Ax = b are both NP-hard problems.

Fortunately, in Chapter 5 we saw various methods and special conditions on A, b
under which the hull can be computed in polynomial time.

11.5.1 Overdetermined systems
In Chapter 6 we defined overdetermined systems. The problem of computing the
interval hull of Σlsq is NP-hard, since when A is square and regular, then Σlsq = Σ.

11.5.2 Restricted interval coefficients
We can try to identify some classes of systems with exact hull computation algorithms
that run in polynomial time. If we restrict the right hand side b to contain only
degenerate intervals, we have Ax = b. Such a problem is still NP-hard [112]. If we,
however, restrict the matrix to be consisting only of degenerate intervals A and we have
a system Ax = b, then, computing the exact bounds of the solution set is polynomial,
since it can be rewritten as a pair of linear programs

max(min) eT
i x, Ax ≥ b, Ax ≤ b,

for each variable xi.

11.5.3 Structured systems
We can also explore band and sparse matrices.

Definition 11.17. A matrix A is a w-band matrix if aij = 0 for |i− j| ≥ w.

Band matrices with d = 1 are diagonal and computing the hull is clearly strongly
polynomial. For d = 2 (tridiagonal matrix) it is an open problem. And for d ≥ 3 it is
already NP-hard [111]. We can also get strong polynomial time in case of bidiagonal
systems.

Proposition 11.18 (Horáček et al., [85]). For a bidiagonal matrix (the matrix with
only the main diagonal and an arbitrary neighboring diagonal) computing the exact
hull of Ax = b is strongly polynomial.

Proof. Without the loss of generality let us suppose that a matrix A consists of the
main diagonal and the one below it. By the forward substitution, we have x1 = b1

a11
and

xi = bi − ai,i−1xi−1

aii

, i = 2, . . . , n.

By induction, xi−1 is optimally computed with no use of interval coefficients of the
ith equation. Since an evaluation in interval arithmetic is optimal when there are no
multiple occurrences of variables (Theorem 3.13), xi is optimal as well.
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Definition 11.19. A matrix A is d-sparse if in each row i at most d elements aij ̸= 0.

For sparse matrices with d = 1 computing the hull is clearly strongly polynomial.
For d ≥ 2 it is again NP-hard [112]. Nevertheless, if we combine w-band matrix with
system coefficient bounds coming from a given finite set of rational numbers, then we
have a polynomial algorithm for computing the hull [112].

11.5.4 Parametric systems
A natural generalization of an interval linear system is by incorporating linear depen-
dencies of coefficients. That is, we have a family of linear systems

A(p)x = b(p), p ∈ p, (11.5)

where A(p) = ∑︁K
k=1 A

kpk, b(p) = ∑︁K
k=1 b

kpk and K is number of parameters. Here,
p is a vector of parameters varying in p. Since this concept generalizes the standard
interval systems, many related problems are intractable [206]. The reason is that an
interval system Ax = b can be considered as a parametric system A(p)x = b(p) with
n2 + n interval parameters.

Nevertheless, we point out one particular efficiently solvable problem. Given
x ∈ Rn, deciding whether it is a solution of a standard interval system Ax = b
is strongly polynomial. For systems with linear dependencies, the problem still stays
polynomial (just by checking if x satisfies the Oettli–Prager theorem), but we can show
weak polynomiality only; this is achieved by rewriting (11.5) as a linear program. For
more information on parametric systems see, e.g., [67, 151, 206].
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11.5.5 Summary

Problem Complexity

Is x a solution of Ax = b? strongly P
Computing the hull of Ax = b NP-hard
Computing the hull of Ax = b NP-hard
Computing the hull of Ax = b P
Computing the hull of Ax = b, where A is regular NP-hard
Computing the hull of Ax = b, where A is an M-matrix strongly P
Computing the hull of Ax = b, where A is diagonal strongly P
Computing the hull of Ax = b, where A is bidiagonal strongly P
Computing the hull of Ax = b, where A is tridiagonal ?
Computing the hull of Ax = b, where A is 3-band NP-hard
Computing the hull of Ax = b, where A is 1-sparse strongly P
Computing the hull of Ax = b, where A is 2-sparse NP-hard
Computing the exact least squares hull of Ax = b NP-hard
Is Σ bounded? coNP-complete
Computing the hull of A(p)x = b(p) NP-hard
Is x a solution of A(p)x = b(p)? P

11.6 Matrix inverse
Interval inverse matrix was defined in Section 4.2. For a square interval matrix A it
can be computed using knowledge of inverses of 22n−1 matrices in the form

Ayz = Ac −DyA∆Dz,

where y, z are n-dimensional vectors from Yn; [169].

Theorem 11.20. Let A be regular. Then its inverse A−1 = [B, B] is described by

Bij = min
y, z∈Yn

{(A−1
yz )ij},

Bij = max
y, z∈Yn

{(A−1
yz )ij},

for i, j = 1, . . . , n.

Since ith column of the matrix inverse of A is equivalently computed as the hull
of Ax = ei, the problem is NP-hard (for another reasoning see [30]).
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However, when Ac = I, we can compute the exact inverse in polynomial time
according to the next theorem from [180].

Theorem 11.21. Let A be a regular interval matrix with Ac = I. Let M = (I−A∆)−1.
Then its inverse A−1 = [B, B] is described by

B = −M +Dv,

B = M,

where vj = 2m2
jj

2mjj−1 for j = 1, . . . , n, with mjj being the main diagonal elements of M .

When an interval matrix is of uniform width, i.e., A = [Ac − αE,Ac + αE], for
a sufficiently small α > 0 the inverse can be also expressed explicitly [183].

If we wish to only compute an enclosure B of the matrix inverse we can use any
method for computing enclosures of interval linear systems. We get the ith column of
B by solving the systems Ax = ei.

Not all interval matrix classes imply intractability. In Section 4.2 we showed
that checking inverse nonnegativity and also computing the exact interval inverse of
an inverse nonnegative matrix are strongly polynomial tasks (see Theorem 4.13).

11.6.1 Summary

Problem Complexity

Computing the exact inverse of A NP-hard
Computing the exact inverse of A, Ac = I strongly P
Computing the exact inverse of A, A∆ = αE, α suff. small strongly P
Is A inverse nonnegative? strongly P
Computing the exact inverse of inverse nonnegative A strongly P

11.7 Solvability of a linear system
In Chapter 7 we distinguished between weak and strong solvability. Checking whether
an interval linear system is solvable is an NP-hard problem [112]. The sign coordi-
nates of the orthant containing the solution can serve as a polynomial witness and
existence of a solution can be verified by linear programming, hence this problem is
NP-complete. Checking unsolvability as its complement is coNP-complete. The prob-
lem of deciding strong solvability is also coNP-complete. It can be reformulated as
checking unsolvability of a certain linear system using the well known Farkas lemma,
see [178].
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Sometimes, we look only for a nonnegative solution (i.e., nonnegative solvabil-
ity). Checking whether an interval linear system has a nonnegative solution is weakly
polynomial. We know the orthant in which the solution should lie (the positive one).
Therefore, we can get rid of the absolute values in the Oettli–Prager theorem and ap-
ply linear programming. However, checking whether a system is nonnengative strongly
solvable is still coNP-complete [40]. We summarize the results in the following table.

Theorem 11.22. Checking various types of solvability of Ax = b is of the following
complexity:

weak strong

solvability NP-complete coNP-complete
nonnegative solvability P coNP-complete

In Chapter 7 we introduced several methods for detecting solvability and unsolv-
ability that work in polynomial time.

11.7.1 Linear inequalities
Just for comparison, considering systems of interval linear inequalities, the problems
of checking various types of solvability become much easier. The results from [40] are
summarized in the following table.

Theorem 11.23. Checking various types of solvability of Ax ≤ b is of the following
complexity.

weak strong

solvability NP-complete P
nonnegative solvability P P

We also would like to mention an interesting nontrivial property of strong solv-
ability of systems of interval linear inequalities. When a system Ax ≤ b is strongly
solvable (i.e., every Ax ≤ b has a solution), then there exists a solution x satisfying
Ax ≤ b for every A ∈ A and b ∈ b [40].
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11.7.2 ∀∃-solutions.
Let us return to interval linear systems. The concept of a weak solution employs exi-
stential quantifiers: x is a solution if ∃A ∈ A, ∃b ∈ b : Ax = b. Nevertheless, in some
applications, another quantification makes sense. In particular, ∀∃ quantification was
deeply studied [203]. For illustration of complexity of such solution, we will focus on
two concepts of solutions – tolerance [40] and control solution [40, 200].

Definition 11.24. A vector x is a tolerance solution of Ax = b if

∀A ∈ A,∃b ∈ b, Ax = b.

A vector x is a control solution of Ax = b if

∀b ∈ b,∃A ∈ A, Ax = b.

Notice that a tolerance solution can equivalently be characterized as {Ax | A ∈
A} ⊆ b and a control solution as b ⊆ {Ax | A ∈ A}.

Both solutions can be described by a slight modification of the Oettli–Prager
theorem (one sign change in the Oettli–Prager formula) [40].

Theorem 11.25. Let us have a system Ax = b, then x is

• a tolerance solution if it satisfies |Acx− bc| ≤ −A∆|x| + δ,

• a control solution if it satisfies |Acx− bc| ≤ A∆|x| − δ.

In case of tolerance solution this change makes checking whether a systems has
this kind of solution decidable in weakly polynomial time. In the case of control solu-
tion the decision problem stays NP-complete [112].
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11.7.3 Summary

Problem Complexity

Is Ax = b solvable? NP-complete
Is Ax = b strongly solvable? coNP-complete
Is Ax = b nonnegative solvable? P
Is Ax = b nonnegative strongly solvable? coNP-complete
Is Ax ≤ b solvable? NP-complete
Is Ax ≤ b strongly solvable? P
Is Ax ≤ b nonnegative solvable? P
Is Ax ≤ b nonnegative strongly solvable? P
Is x a tolerance solution of Ax = b? strongly P
Is x a control solution of Ax = b? strongly P
Does Ax = b have a tolerance solution? P
Does Ax = b have a control solution? NP-complete

11.8 Determinant
Determinants of interval matrices were studied in Chapter 8. Several result about
complexity of such a problem were stated there. Here we summarize the results in the
following table.

11.8.1 Summary

Problem Complexity

Computing det(A) NP-hard
Computing det(A) NP-hard
Computing relative ε-approximation of det(A) for 0 < ε < 1 NP-hard
Computing absolute ε-approximation of det(A) for 0 < ε NP-hard
Computing det(AS) for positive definite AS P
Computing det(A), where A is a tridiagonal H-matrix strongly P
Computing det(A), where A is a tridiagonal H-matrix strongly P
Computing det(A) for A regular with Ac = I strongly P
Computing det(A) for A regular with Ac = I ?
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11.9 Eigenvalues
We briefly start with general matrices, then we continue with the symmetric case.
Checking singularity of A can be polynomially reduced to checking whether 0 is an
eigenvalue of some matrix A ∈ A. Using the reasoning from Section 11.1.7, checking
whether λ is an eigenvalue of some matrix A ∈ A is NP-hard. Surprisingly, checking
an eigenvector is strongly polynomial [168].

How it is with the Perron theory? An interval matrix A ∈ IRn×n is nonnegative
irreducible if every A ∈ A is nonnegative irreducible (a definition can be found in [91]).
For Perron vectors (positive vectors corresponding to the dominant eigenvalues), we
have the following result [177].

Theorem 11.26. Let A be nonnegative irreducible. Then the problem of deciding
whether x is the Perron eigenvector of some matrix A ∈ A is strongly polynomial.

For the sake of simplicity we mentioned only some results considering eigenvalues
of a general matrix A. We will go into more detail with symmetric matrices, which
have real eigenvalues. In Chapter 8 we defined a symmetric interval matrix as a subset
of all symmetric matrices in A, that is,

AS := {A ∈ A | A = AT }.

For a symmetric A ∈ Rn×n, we denote its smallest and largest eigenvalue by λmin(A)
and λmax(A) respectively. For a symmetric interval matrix AS, we define the smallest
and largest eigenvalue as

λmin(AS) := min{λmin(A) | A ∈ AS},
λmax(AS) := max{λmax(A) | A ∈ AS}.

Even if we consider the symmetric case, some problems remain NP-hard [112, 173].

Theorem 11.27. Let Ac ∈ Qn×n be a symmetric positive definite and entry-wise
nonnegative matrix, and A∆ = E. Then

• checking whether 0 is an eigenvalue of some matrix A ∈ AS is NP-hard,

• checking λmax(AS) ∈ (a, a) for a given open interval (a, a) is coNP-hard.

However, there are some known subclasses for which the eigenvalue range or at
least one of the extremal eigenvalues can be determined efficiently [72]:

• If Ac is essentially nonnegative, i.e., (Ac)ij ≥ 0 ∀i ̸= j, then λmax(AS) = λmax(A).
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• If A∆ is diagonal, then λmin(AS) = λmin(A) and λmax(AS) = λmax(A).

In contrast to the extremal eigenvalues λmin(AS) and λmax(AS), the largest of
the minimal eigenvalues and the smallest of the largest eigenvalues,

max{λmin(A) | A ∈ AS},
min{λmax(A) | A ∈ AS},

can be computed with an arbitrary precision in polynomial time by semidefinite pro-
gramming [98]. As in the general case, checking whether a given vector 0 ̸= x ∈ Rn

is an eigenvector of some matrix in AS is a polynomial time problem. Nevertheless,
strong polynomiality has not been proved yet.

We already know that computing exact bounds on many problems with interval
data is intractable. Since we can do no better, we can inspect the hardness of various
approximations of their solutions. The terms absolute and relative approximation
are meant in the same way as in Section 8.3. While doing this we use the following
assumption: Throughout this section, we consider a computational model, in which
the exact eigenvalues of rational symmetric matrices are polynomially computable. The
table below from [72] summarizes the main results. We use the symbol ∞ in case there
is no finite approximation factor with polynomial complexity.

Theorem 11.28. Approximating the extremal eigenvalues of AS is of the following
complexity.

abs. error rel. error

NP-hard with error any < 1
polynomial with error ∞ 1

The table below, also from [72], gives analogous results for the specific case of
approximating λmax(AS) when Ac is positive semidefinite.

Theorem 11.29. Approximating the extremal eigenvalues of AS with Ac rational
positive semidefinite is of the following complexity.

abs. error rel. error

NP-hard with error any 1/(32n4)
polynomial with error ∞ 1/3
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The tables sums up the generalized idea behind several theorems on computing
extremal eigenvalues. For more information and formal details see [72].

At the end of this section we mention spectral radius.

Definition 11.30. Let A ∈ IRn×n, we define the range of spectral radius naturally as

ϱ(A) = {ϱ(A) : A ∈ A}.

Notice that ϱ(A) is a compact real interval due to continuity of eigenvalues. We
define spectral radius for AS similarly.

Complexity of computing ϱ(A) is an open problem (as Schur stability is; see
Section 11.11), and, to the best of our knowledge, complexity of computing ϱ(A) has
not been investigated yet.

Clearly, we have the two following polynomially solvable subclasses:

• If A ≥ 0, then ϱ(A) = [ϱ(A), ϱ(A)] (follows from the Perron–Frobenius theory).

• If A is diagonal, then ϱ(A) = [maxi mig(aii), maxi mag(aii)].

11.9.1 Summary

Problem Complexity

Is λ eigenvalue of some A ∈ A? NP-hard
Is x eigenvector of some A ∈ A? strongly P
Is x Perron vector of nonnegative irreducible A? strongly P
Is 0 eigenvalue of some A ∈ AS? NP-hard
Is x eigenvector of some A ∈ AS? P
Does λmax(AS) belong to a given open interval? coNP-hard
Computing ϱ(A) ?
Computing ϱ(A) ?
Computing exact bounds on ϱ(A) with A nonnegative strongly P
Computing exact bounds on ϱ(A) with A diagonal strongly P

11.10 Positive definitness and semidefiniteness
We should not leave out positive definiteness and semidefiniteness. Here without the
loss of the generality symmetric matrices are of the only interest. We distinguish
between weak and strong definiteness.

Definition 11.31. A symmetric interval matrix AS is weakly positive (semi)definite
if some A ∈ AS is positive (semi)definite.

Definition 11.32. A symmetric interval matrix AS is strongly positive (semi)definite
if every A ∈ AS is positive (semi)definite.
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Checking strong positive definiteness [170] and strong positive semidefiniteness
[136] are both coNP-hard. Considering positive definiteness, there are some sufficient
conditions that can be checked polynomially [172].

Theorem 11.33. An interval matrix AS is strongly positive definite if at least one of
the following condition holds:

• λmin(Ac) > ϱ(A∆),

• Ac is positive definite and ϱ(|A−1
c |A∆) < 1.

The second condition can be reformulated as AS being regular and Ac positive
definite. If the first condition holds with ≥, then AS is strongly positive semidefinite.

In contrast to checking strong positive definiteness, weak positive definiteness
can be checked in polynomial time by semidefinite programming [98]; this polynomial
result holds also for a more general class of symmetric interval matrices with linear de-
pendencies [76]. For positive semidefiniteness it need not be the case since semidefinite
programming methods work only with some given accuracy.

11.10.1 Summary

Problem Complexity

Is AS strongly positive definite? coNP-hard
Is AS strongly positive semidefinite? coNP-hard
Is AS weakly positive definite? P
Is AS weakly positive semidefinite? ?

11.11 Stability
The last section is dedicated to an important and more practical problem – deciding
a stability of a matrix. There are many types of stability. For illustration, we chose
two of them – Hurwitz and Schur.

Definition 11.34. An interval matrix A is Hurwitz stable if every A ∈ A is Hurwitz
stable (i.e., all eigenvalues have negative real parts).

Similarly, we define Hurwitz stability for symmetric interval matrices. Due to
their relation to positive definiteness (AS is Hurwitz stable if −AS is positive definite),
we could presume that the problem is coNP-hard [170]. The problem remains coNP-
hard even if we limit the number of interval coefficients in our matrix [136].
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Theorem 11.35. Checking Hurwitz stability of A is coNP-hard on a class of interval
matrices with intervals in the last row and column only.

Likewise, as for checking regularity, also checking Hurwitz stability of A cannot
be done by checking stability of matrices of type Ayz (see, e.g., [102]). On the other
hand, it can be checked in this way for AS. For more discussion and historical context
see [112] or [176]. As sufficient conditions we can use conditions for positive definiteness
applied to −A. For more sufficient conditions see, e.g., [122].

Definition 11.36. An interval matrix A is Schur stable if every A ∈ A is Schur stable
(i.e., ϱ(A) < 1).

In a similar way, we define Schur stability for symmetric interval matrices. For
general interval matrices, complexity of checking Schur stability is an open problem,
however, for the symmetric case the problem is coNP-hard [170].

11.11.1 Summary

Problem Complexity

Is A Hurwitz stable? coNP-hard
Is AS Hurwitz stable? coNP-hard
Is A Schur stable? ?
Is AS Schur stable? coNP-hard

11.12 Further topics
We conclude the section about complexity with three particular problems:

• Matrix power. For an interval matrix A computing the exact bounds on A2 is
strongly polynomial (just by evaluating by interval arithmetic), but computing
the cube A3 turns out to be NP-hard [109].

• Matrix norm. Computing the range of ∥A∥ when A ∈ A is a trivial task for
vector ℓp-norms applied on matrices (including Frobenius norm or maximum
norm) or for induced 1- and ∞-norms. On the other hand, determining the
largest value of the spectral norm ∥A∥2 (the largest singular value) subject to
A ∈ A is NP-hard [136].

• Membership in matrix classes. Based on Chapter 4 we can state the following
results. Checking whether a matrix is nonnegative invertible, strictly diagonally
dominant, Z-matrix, M-matrix or H-matrix can be done in strongly polynomial
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time. Checking whether a matrix A is a P-matrix is coNP-complete [29]. Strong
regularity is according to Theorem 4.33 equivalent to checking whether A−1

c A is
an H-matrix. Therefore, it is strongly polynomial.

11.12.1 Summary

Problem Complexity

Compute A2 strongly P
Compute A3 NP-hard
Compute ∥A∥1 strongly P
Compute ∥A∥∞ strongly P
Compute ∥A∥F strongly P
Compute ∥A∥2 NP-hard
Is A a Z-matrix? strongly P
Is A an M-matrix? strongly P
Is A an H-matrix? strongly P
Is A an strictly diagonally dominant? strongly P
Is A a P-matrix? coNP-complete
Is A strongly regular? strongly P
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12 LIME2: interval toolbox

▶ History of LIME
▶ Features and goals
▶ Structure and packages
▶ Installation and use

In the last chapter we introduce our interval toolbox LIME (Library of Interval
MEthods). It is not a direct part of this work, however it is strongly connected to it.
Most of the methods mentioned in the previous chapters are implemented in LIME and
the implementations are used for comparison of the methods. In this brief chapter we
describe its history, background, goals and purpose. The overall structure and selected
methods are discussed. At the end we mention installation, use and extension of LIME.

12.1 History
During our research there was a need to compare various algorithms solving a given
task (e.g., computing determinants of interval matrices, computing enclosures of inter-
val linear systems, etc.). LIME occurred as a by-product to keep all the implemented
methods at one place.

LIME (it could be also called LIME1) was originally a part of the master’s thesis
[82]. It was implemented for Matlab and Intlab [188]. It mostly contained methods
related to solving square and overdetermined interval linear systems.

After Intlab became commercial, LIME was moved under Octave and its Interval
package by Oliver Heimlich [62]. Since then new packages of LIME have appeared and
methods have been rewritten many times with effort to make the code more efficient
and clear. We sometimes refer to it as LIME2. The last LIME logo is in Figure 12.1.

12.2 Features and goals
Most of the methods tested in this work are implemented in LIME. Many additional
useful methods are also implemented. LIME has also instruments to produce graphical
outputs. All graphical outputs are produced by LIME or Octave (however, most of
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Figure 12.1: LIME2 logo.

them were stored in an .svg file and further enhanced in Inkscape).
There are several goals of LIME:

• It is free for noncommercial use.

• It contains various methods solving one problem.

• The methods should be easy to use.

• It should be easy to develop and add new parts.

• It should be easily usable for interval educational purposes.

• The code should be clear and extensively documented (input and output param-
eters are described, implementation details are described, theorems on which the
algorithms are based are cited, history of changes and known errors and future
to do’s are listed).

• It does not compete with existing interval toolboxes since their purpose is dif-
ferent.

• Packages are accompanied with examples or at least they are prepared for easy
adding of new ones.

Most of the code is written solely by the author of this work. Some functions
were implemented by other people (the author of the source code is referenced in
each .m file). Unfortunately, there is still a lot of work to do (testing all the possible
input cases for methods, correct handling of flags, adding more verification to some
methods, etc.). Nevertheless the current state of LIME should allow other users to
orient themselves quickly an to easily extend existing methods and functionality. The
main goal of LIME is rather to share the code and be prepared for possible extension
by others.

12.2.1 Verification and errors
Since LIME is a work of a few people it still might contain errors, even though we tried
hard to catch most of the flaws. Some known errors are pointed out in .Todo. section
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Figure 12.2: LIME structure.

of each .m file. There is an effort to make all the methods return verified results. In
some cases it is not possible. In some cases verification is omitted to spare compu-
tational time. Such situations are documented in .m files if necessary. Most of the
current code is implemented by the author of this work. Some functions were originally
implemented by students supervised by David Hartman, Milan Hlad́ık and Jaroslav
Horáček (eigenvalues, matrix powers, interval estimations, interval determinants, etc.).
Many more methods were written for Matlab and are waiting to be transfered to LIME
(parametric interval systems, evaluation of polynomials, nonlinear solver, etc.)

12.3 Structure
For a better logical structure LIME is divided into several parts, we call them packages.
They are depicted in Figure 12.2.

Here we list the packages with a brief description:

• imat – functions related to interval matrices,

• ils – methods connected to (square) interval linear systems,

• oils – methods connected to overdetermined interval linear systems,

• idet – methods for computing determinants of interval matrices,

• iest – interval data estimations and regressions,

• ieig – eigenvalues of (symmetric) interval matrices,

• iviz – methods for visualizations of intervals,
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• useful – various methods that can be helpful,

• ocdoc – our minimalistic HTML documentation system.

Further we describe each package in bigger detail.

12.4 Packages
Each package is contained in a unique folder. It further contains three subfolders. The
first is doc which contains the .html documentation of the package (every package
has standalone documentation). The second folder is test that can contain examples
corresponding to the package. For example in package ils, the folder test contains a
function returning the example of interval linear system according to a given keyword.
The origin of examples is referenced. The third is develop which contains functions
under development.

12.4.1 imat
This package contains various methods working on interval matrices. Moreover, it
contains methods for generating random matrices.

Function Description

ifcr full column rank test
isregular regularity test
issingular singularity test
ismmatrix M-matrix test
ishmatrix H-matrix test
imatnorm various matrix norms
imatinv inverse interval matrix
vinv verified inverse of a real matrix
imatpow power of an interval matrix

12.4.2 ils
Various methods connected to square interval linear systems are implemented here.
Some methods work also for overdetermined interval systems (e.g., solvability and
unsolvability testing, hull computation etc.).
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Function Description

ilsenc general function for solving interval lin. systems
ilsjacobienc enclosure based on the Jacobi method
ilsgsenc enclosure based on the Gauss–Seidel method
ilsgeenc enclosure based on Gaussian elimination
ilskrawczykenc enclosure based on Krawczyk’s method
ilshbrenc the Hansen–Bliek–Rohn enclosure
ilshullver verified hull
ilshull unverified hull (faster)
ige Gaussian elimination
ibacksubst backward substitution
ilsprecondinv preconditioning
vsol verified solution of a real linear system
isuns unsolvability test
issolvable solvability test

12.4.3 oils
This package defines methods for overdetermined interval linear systems.

Function Description

oilsenc enclosure of an overdetermined int. lin. system
oilshull same as ilshull
oilsgeenc enclosure based on Gaussian elimination
oilsrohnenc enclosure based on Rohn’s method
oilssubsqenc enclosure by subsquares method
oilsmultijacenc the multi-Jacobi method
oilslsqenc enclosure of the least squares

12.4.4 idet
The package is devoted to determinants of interval matrices. Some of the functions
were written by Josef Matějka.
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Function Description

idet main function for computing an int. determinant
idethull hull of determinant
idethad determinant enclosure by Hadamard’s inequality
idetcram determinant enclosure by Cramer’s rule
idetgauss determinant enclosure by Gaussian elimination
idetgersch determinant enclosure by Gerschgorin discs
idetencsym determinant enclosure for symmetric matrices

12.4.5 iest
This package covers various interval data regressions and estimations. Most of the
functions in this package were implemented by Petra Pelikánová.

Function Description

iestlsq the least squares regression
iest outer estimation
iesttol tolerance interval regression

12.4.6 ieig
This package contains a few methods regarding eigenvalues. They are usually needed
by other methods.

Function Description

eigsymdirect direct method for computing eigenvalues of a sym. matrix
eigsymrohn fast outer enclosure of eigenvalues of a sym. matrix
ieigbauerfike eigenvalues enclosure based on Bauer–Fike theorem
igersch interval Gerschgorin discs
vereigsym verified eigenvalues of a real sym. matrix
l1upperb upper bound on the largest eigenvalue

12.4.7 useful
This package contains useful methods that do not fit into other packages.
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Function Description

area computes a generalized volume of an interval vector
compareenc compares two interval enclosures
generateyn generates all Yn vectors
latextablesimple prints a LATEXtable from data
radfi uniformly random number from an interval
randfim uniformly random matrix from an interval matrix
randseln selects n random elements from a list

12.4.8 iviz
LIME contains also various methods enabling display of interval results.

Function Description

plotboxes plotting interval boxes
plotilssol plot solution set of an interval linear system

12.4.9 ocdoc
OcDoc is our own light-weight documentation system. To generate an .html docu-
mentation, go to a desired folder using the command cd in the Octave command
line. Then simply call ocdoc. The function searches the current folder for .m files
and for each such a file it generates an .html file containing documentation. It also
generates a common .html index file for the whole folder. This way each package can
be documented separately. To make OcDoc work it is necessary to keep the prescribed
format of documentation in each .m file. A template .m file with the documentation
structure is attached in the doc package. An example of an automatically generated
documentation can be seen in Figure 12.3.

Even though, it is demanding to fully keep the structure of the file, it is favorable
to do so, at least for the sake of future users. The documentation comments contain
the following blocks:

• .Author. – name of the author(s),

• .Input parameters. – description of input parameters,

• .Output parameters. – description of output parameters,

• .Implementation details. – explanation of tricky details with references to
papers and literature,

• .History. – history of changes,

• .Todo. – known mistakes, errors, future to do’s and improvements.
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Figure 12.3: Example of OcDoc text documentation structure within an .m file (left)
and the resulting .html page (right).

12.5 Access, installation, use

12.5.1 Installation
LIME is accessible online at

https://kam.mff.cuni.cz/˜horacek/lime1

To install it run install.m file. The only action it executes is adding the LIME
directories into Octave PATH variable.

To make LIME work, one needs to have Octave Interval package installed. De-
tailed information, how to do that is provided at

https://octave.sourceforge.io/interval/package_doc/index.html2

12.5.2 User modifications
For the sake of modifying the existing code of LIME we give some recommendations
that can contribute to preserving the overall structure of the toolbox.

To get a basic idea how each file is structured, there are prepared empty template
files in the folder ocdoc.

LIME is divided into packages. Each package has its distinct functionality. Al-
though, for some functions it might be arguable where they should be placed. If
new functions are of common special functionality are designed, then a new package

1Accessed on March 22nd, 2019.
2Accessed on March 22nd, 2019.

https://kam.mff.cuni.cz/~horacek/lime
https://octave.sourceforge.io/interval/package_doc/index.html
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(folder) is recommended to be created. Remember, that the OcDoc documentation
tool creates an .html documentation for each file in a given folder.

Functions have a simple naming convention – the name is composed using lower
case abbreviations to describe its functionality. No upper case, no dashes, no hyphens
are used. The first part of a function name usually consists of the name of the package
the function comes from – ilsgeenc (comes from the package ils), imatinv (comes
from the package imat). Then the rest of the function name is composed of function-
ality specification (e.g., norm for a function computing a norm, hull for a function
computing the hull) – imatnorm, idethull. Also the specification of implementation
of a function is usually added – ilsjacobienc, ilshbrenc.

We remind again, that in order to make the automatic documentation work, the
structure of the file must be kept.

Here we add some more recommendations:

• Methods do not always succeed. To indicate the state of the result we use the
output variable state. We use short (mostly three-letter) string flags. The
most common flags are ’vec’ – a finite vector or scalar is returned, ’sin’ –
possible singularity occurred, ’zer’ – zero division occurred or pivot contains
zero, ’inf’ – infinite result returned, ’exc’ – maximum number of iterations
exceeded, ’empty’ – empty solution returned. For flags that can be returned by
a given method see its .m file or documentation.

• Methods do not always return verified results. We use the output variable ver
to indicate verified result. The value 1 means verification, the value 0 means the
opposite.

• To indicate that a variable is an interval variable we use the prefix i. Hence ix
(iA) is an interval vector (matrix).

• Most of the interval methods work only for interval input, when they are to be
used for a real input, it must be intervalized first. It is a responsibility of a user
to properly handle that (simply calling the Octave Interval function infsupdec
on a real input might not be sufficient).

• If a method is implemented that has similar functionality to some existing
method, first see its input and return parameters to make it consistent for other
methods that can possibly use this method too.

Here is an example of a function definition satisfying the above recommendations:

[ix, state, it] = ilskrawczykenc(iA, ib, e, maxit, ioldx)

12.5.3 LIME uder Matlab
The new version LIME2 has not been migrated back to Matlab. Even though, we tried
to keep the things similar. In LIME some Intlab names of interval functions can be
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used. Such mirror functions are contained in folder octave. Some of the methods cause
problems and cannot be simply renamed (it is mainly the case of intval, isnan).

For the case when there is a need to migrate LIME methods to Matlab and Intlab
we could provide a few hints:

1. First it may be favorable to rename or delete the folder octave.

2. Some methods that have different names in Intlab and Octave may cause prob-
lems (for the list of such methods see Octave WIKI (https://wiki.octave.
org/Interval_package).3

3. We use Octave way of constructing intervals with flavors (infsupdec function),
earlier versions of Intlab did not have such a method. However, if we can do
without flavors, we can replace it with infsup.

4. There are some Matlab functions that are not currently implemented in Octave
yet4.

3Accessed on March 22nd, 2019.
4See https://www.gnu.org/software/octave/missing.html, Accessed on March 22nd, 2019.

https://wiki.octave.org/Interval_package
https://wiki.octave.org/Interval_package
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[85] J. Horáček, M. Hlad́ık, and M. Černý. Interval linear algebra and computational
complexity. In N. Bebiano, editor, International Conference on Matrix Analysis and
its Applications, pages 37–66. Springer, 2015.
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editors, Parallel Processing and Applied Mathematics, volume 8385 of Lecture
Notes in Computer Science, pages 573–581. Springer, 2014.
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[148] P. Pelikánová. Estimating data with use of interval analysis (in czech). Bachelor’s
thesis, Charles University, Faculty of Mathematics and Physics, Prague, Czech
Republic, 2017.

[149] K. B. Petersen, M. S. Pedersen, et al. The matrix cookbook. Technical University
of Denmark, 7(15):510, 2008.

[150] R. J. Plemmons. M-matrix characterizations. I – nonsingular M-matrices. Linear
Algebra and its Applications, 18(2):175–188, 1977.
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