NMAG403 - Combinatorics

November 10, 2023 - Chromatic number and Chooseability II

In class problems

31. Let $G=(A \cup B, E)$ be a bipartitie graph with A and B being its classes of bipartition. Let Δ be a positive integer such that $\Delta(G) \leq \Delta$. Fix a proper edgecoloring $\varphi: E \rightarrow\{1, \ldots, \Delta\}$ (we know from homework 1.2 that such an edgecoloring always exists). Consider the line graph $L(G)$ of G and define an orientation \rightarrow as follows: If edges $e, f \in E$ share a vertex u, then the edge $e f$ of the line graph $L(G)$ is oriented from e to f if $\varphi(e)<\varphi(f)$ and $u \in A$, or if $\varphi(e)>\varphi(f)$ and $u \in B$.
(a) Show that for every subgraph H of G, the line graph $L(H)$ of H has a kernel with respect to the orientation induced on $L(H)$ by the orientation \rightarrow.
(b) Observe that the outdegree of any vertex of $\overrightarrow{L(G))}$ does not exceed $\Delta-1$.
(c) Deduce from these that $\operatorname{ch}(L(G))=\Delta(G)$.
32. Denote by $g(G)$ the smallest Euler genus g of a surface S_{g} that allows a noncrossing embedding of G in S_{g}.
(a) Show that $g\left(K_{7}\right)=1$.
(b) Determine $g\left(K_{8}\right)$.
33. With the help of the Four Color Theorem, prove that every bridgeless planar 3 -regular graph is edge-3-colorable.
34. Show that for every (orientable) surface, there are only finitely many mutually non-isomorphic connected 7-regular graphs which allow a non-crossing drawing on that surface.
35. Prove that for every $g>0$, every graph of genus at most g is $H(g)$-choosable (here $H(g)=\left\lfloor\frac{7+\sqrt{1+48 g}}{2}\right\rfloor$ is the Heawood number).
