NMAG403 - Combinatorics

October 27, 2023 - Matchings in graphs

In class problems

22. Prove the Tutte theorem with defect: For a positive integer d, a graph G contains a matching that misses at most d vertices if and only if for every set A of vertices of G, it holds true that

$$
c_{o d d}(G-A) \leq|A|+d
$$

(Hint: First prove the theorem for the case when d and $|V(G)|$ are of the same parity.)
23. Prove the Edmonds Blossom Lemma: Let M be a matching in a graph $G=$ (V, E) and let $C \subseteq G$ be a cycle of length $2 k+1$ in G which contains k edges of M and one free vertex (with respect to M). Let \widetilde{G} be the graph obtained from G by contracting the cycle into one vertex, and let $\widetilde{M}=M \backslash E(C)$. Then M is a maximum matching in G if and only if \widetilde{M} is a maximum matching in \widetilde{G}.
24. Design a polynomial time algorithm for constructing an Edmonds forest in an input graph.
25. The b-FACTOR problem is the problem to decide if an input graph G has a spanning subgraph H such that $\operatorname{deg}_{H} u=b(u)$ for every vertex $u \in V(G)$, where $b: V(G) \rightarrow$ $\{0,1,2, \ldots\}$ is a function also given as part of the input. Show that b-FACTOR is polynomial time solvable.
26. Let Bounded-DEGREE-SUBGRAPH denote the problem which asks whether an input graph G has a spanning subgraph H such that $a(u) \leq \operatorname{deg}_{H} u \leq b(u)$ for every vertex $u \in V(G)$, where $a, b: V(G) \rightarrow\{0,1,2, \ldots\}$ are functions also given as part of the input. Decide if Bounded-DEGREE-SUBGRAPH is also polynomial time solvable, or NP-complete.

