NMAG403 - Combinatorics

October 13, 2023 - Hall's theorem

Homework

Deadline: November 13, 2023
Send to: honza@kam.mff.cuni.cz (in PDF)

1. (a) Does the system of all 3 -element subsets of $\{1,2,3,4\}$ have an SDR?
(b) Does the system of all 3-element subsets of $\{1,2,3,4,5\}$ have an SDR?
(c) Let $B_{n, k}$ be the bipartite incidence graph of the system of all k-element subsets of an n-element set. What is $\mu\left(B_{n, k}\right)$? (Give a closed formula and prove it.)
2. Prove that $\chi^{\prime}(G)=\Delta(G)$ holds true for every bipartite graph G. (Here $\Delta(G)$ denotes the maximum degree of a vertex of G and $\chi^{\prime}(G)$ denotes the edge chromatic number, aka chromatic index, of G.)
3. For which k is the following statement true? Every legal filling of the first k lines of a SUDOKU can be extended to a legal completion of the entire 9×9 table. Prove your answer.

In class problems

9. Prove or find a counterexample to the following statement: Let I and X be infinite sets and let $\mathcal{M}=\left\{M_{i}\right\}_{i \in I}$ be a set system such that $\bigcup \mathcal{M}=X$. If \mathcal{M} satisfies the Hall condition ($\forall J \subseteq I:\left|\bigcup_{j \in J} M_{j}\right| \geq|J|$), then \mathcal{M} has an SDR.
10. Let G be a bipartite graph with 42 vertices such that whenever you pick 31 vertices, they will contain at least one edge. Show that G has a matching with at least 12 edges.
11. Prove, for every integer k, that a graph has an orientation of maximum outdegree at most k if and only if each of its subgraphs H satisfies $|E(H)| \leq k \cdot|V(H)|$.
12. Dilworth's theorem says that if a finite poset (P, \prec) has the largest antichain of size r, then P can be decomposed into r chains. Prove that Dilworth's theorem implies the harder implication of Hall's theorem.
13. Prove Birkhoff's theorem which says that for every n, the set of all bistochastic matrices of order n is exactly the convex hull of the set of permutation matrices of the same order (matrices being viewed as points in n^{2}-dimensional Euclidean space).
