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Given two point sets A,B ⊂ R2 of n points each, the Minkowski sum A + B has
a quadratic number of points in general. How large can a subset S ⊆ A+B be if S
is required to be convex? We prove that when A and B are both convex then S can
have only O(n log n) points. This complements the existing results that are known
when A and B are not in convex position or when B = A and A is convex.

1 Introduction and Related Work

Let A,B be two sets of n points each in R2. The Minkowski sum A + B is defined as the set of
sums obtained from any point in A with any other point in B. That is,

A + B = {a + b | a ∈ A, b ∈ B}

Clearly, the size of A + B will be quadratic in general. We call a point set S convexly
independent if any of the points cannot be represented as a convex combination of the other
points in S. Suppose we want to pick a subset of points from A+B such that the points are in
convex position, that is, convexly independent. How large can such a subset be picked? Halman,
Onn, and Rothblum [3] raised this question in connection with a class of convex combinatorial
optimization problems [4].

Note that when the sets A and B are allowed to be arbitrary then one can just look at the
case when A and B are the same set. Simply consider the set X = A ∪ B. Any asymptotic
bound for convex subsets of X +X then applies for convex subsets of A+B and vice versa. In
fact, Halman et al. [3] asked the question for the case when the two sets are the same. They
proved that for a convex set X of points in the plane at most 5n− 6 points of X +X can be in
convex position. They asked whether for general point sets a subquadratic upper bound exists.
Note, however, that for convex point sets the case when A = B is distinct from the case when
A 6= B.

Eisenbrand et al. [2] answered the question of Halman et al. in affirmative by showing that

for general point sets, no convex subset of the Minkowski sum can be larger than O(n
4
3 ).

Later Buchin et al. [1] showed that for general point sets this bound was optimal by giving a

construction where a subset of size Ω(n
4
3 ) can be picked from the Minkowski sum of two point

sets of size n.
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Therefore, for general point sets the question has been completely answered. However, as
proved by Halman et al. for convex point sets this bound is never achieved. We look at the case
when the two sets A,B are both in convex position but not necessarily the same. As remarked
earlier, this case is distinct from the case when A and B are the same convex point sets. For
the case when A and B are convex but not necessarily the same, we prove the following:

Theorem 1. Let A and B be two planar convex point sets with |A| = m, |B| = n. For any
convexly independent subset S ⊆ A + B, we have |S| = O((m + n) log(m + n)).

The original motivation of Halman et al. [3] for studying this problem arises from the notion
of the convex dimension of a graph. The convex dimension of a graph is defined as the smallest
dimension in which the graph can be embedded such that midpoints of all the edges lie in convex
position. The strong convex dimension of a graph is defined to be the smallest dimension in
which the graph can be embedded such that the vertices are in convex position as well as the
midpoints of all the edges are in convex position.

Haltman et al. were interested in studying the extremal properties, such as the maximum
number of edges, of graphs that have convex dimension (strong or otherwise) two. Their result
was a linear upper bound on the number of edges of graphs with strong convex dimension two,
whereas the result of Eisenbrand et al. gives an upper bound on the number of edges of a graph
whose convex dimension is two.

Our result does not fit immediately into the framework of convex dimensions as such, but
one can possibly generalize the notion of convex dimension in the following way. Instead of
requiring that either all the vertices lie in convex position in the embedding (the case of strong
convex dimension, or equivalently the case of the Minkowski sum of a convex set with itself) or
dropping this requirement altogether (the case of convex dimension or the Minkowski sum of
a general point set with itself), one can require that the embedding be such that the point set
can be decomposed into k convex subsets, with k some parameter. Our result would imply an
upper bound of O(n log n) for the case k = 2.

2 Proof of Theorem 1

A point set in R2 in convex position is said to define a monotone chain if both the x and the
y coordinates are monotone. It is easy to see that any point set in convex position can be
decomposed into at most four subsets such that each subset defines a monotone chain. See
figure 1 for example.

Therefore, we can consider each of the convex chains separately and bound the size of a
convexly independent subset from each pair of these chains from A and B.

Observation 1. For any two point sets A,B, translating either set by a fixed vector does not
change the number of points of the Minkowski sum A + B that are convexly independent.

To see this note that upon adding a vector c to every point in, say, set A every point p of the
Minkowski sum A + B moves to p + c. Thus, whether a subset is convexly independent or not
is not affected.

A monotone chain can be one of four types depending on whether the x and the y coordinates
are non-decreasing or non-increasing. If we consider two convex chains of different types then
it is easy to see that one of the sets can be translated so that all points of both the sets
taken together still lie in convex position. It follows from the result of [3] that in this case the
largest convexly independent subset of the Minkowski sum of the two sets can not be more than
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Figure 1: Each quadrant contains a subset of points lying on a monotone chain.

O(mi +nj), where mi is the size of the monotone chain from A of i-th type and nj is the size of
the monotone chain from B of j-th type. Hence, the total size of a convexly independent subset
of A+B that arises only from the sums of points in A and B that lie on chains of different type
is bounded by O(m + n).

Now, consider the pairing of same type of monotone chains from A and B of lengths mi and
ni respectively. Without loss of generality, we can assume that both the chains have x and y
coordinates non-decreasing. Consider the mi +ni−2 different slopes in each of these two chains
and consider the median slope. Let pa be the right end point of the segment in A and pb be
the right end point of the segment in B whose slopes are the largest in their chains below the
median slope (See Figure 2).

upper

upper

lower

lower

Figure 2: Partition of each chain into an upper and a lower subchain wrt the median slope.

These points break each chain into a lower and an upper subchain. It is clear that the
lower subchain from one set can be translated so that together with the upper subchain of the
other set it produces a convex chain. Therefore, we can have only a linear number of convexly
independent points from these pairings.

The lower (reps. upper) subchain of one can however still produce more points from the
interaction with the lower (upper resp.) subchain of the other chain. Let f(m,n) count the
maximum size of any convexly independent subset of two convex point sets of similar type with
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number of edges in the respective chains m and n, then we get the following recursion:

f(m,n) ≤ O(m + n) + f(mu, nu) + f(mb, nb),

where mu + nu ≤ bm+n
2 c, and mb + nb ≤ dm+n

2 e. Therefore,

f(m,n) = O((m + n) log(m + n)).

Since subchains of similar type can produce only a linear number of convexly independent
subsets in the Minkowski sum the bound on f(m,n) applies for the entire point set A and B.
This concludes the proof of Theorem 1.

3 Concluding Remarks

The proof of Theorem 1 seems to be very generous with counting which points of the Minkowski
sum may be selected to be convexly independent. We do not know whether this is really the
case and the upper bound can be improved by more careful argument. The only lower bound
that we are aware of, for the specific case discussed here, is the trivial linear bound. We leave
this disparity between the upper and the lower bounds as an open problem.
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