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ABSTRACT

For polytopesP, @ ¢ R? we consider the intersectiod N Q; the
convex hull of the unionC’H(P U Q); and the Minkowski sum
P + Q. We prove that given rationat-polytopesP;, Pq, Q it
is impossible to verify in polynomial time wheth€} = P; + Pa,
unlessP = NP. In particular, this shows that there is no out-
put sensitive polynomial algorithm to compute the facetghef
Minkowski sum of two arbitraryH-polytopes even if we consider
only rational polytopes. Since the convex hull of the union ¢he
intersection of two polytopes relate naturally to the Miwisli sum
via the Cayley trick and polarity, similar hardness residli®w for
these operations as well.

Categories and Subject Descriptors:  F.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithmsda
Problems

General Terms: Algorithm, Theory

Keywords: Minkowski Addition, Extended Convex Hull, Polytope
intersection, Polytopes, coNP-hardness, Turing redac@ompu-
tational Geometry

1. INTRODUCTION

A convex polyhedromr simply polyhedronin d-dimensional eu-
clidean spac&? is the intersection of a finite number of halfs-
paces. A polyhedron is callgubintedif it does not contain any
affine line in its interior andboundedf it does not contain any ray.
A bounded polyhedron is also called a polytope. A very basalt

in the theory of polyhedra states that a polyhedron can beritbesl
both as the intersection of a finite number of halfspaces dsawe
the Minkowski sum otconv(V') 4 cone(Y'), whereV andY” are
finite sets of points iR?. For a thorough treatment of polytopes
Griinbaum [11] and Ziegler [16] are excellent sources.
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In this paper, we will talk mostly about polytopes and reettte
unbounded case only towards the end. We refer to the two a&quiv
lent representations &g-representation an¥-representation re-
spectively. Accordingly a polytope described by its vezsids
called aV-polytope and a polytope described by its facets is called
an H-polytope. Many operations that are easy to perform on one
description become difficult if the description is chang&d.give
a simple example, finding a point inside a polytope that mé&ém
the inner product with a given vector can be done triviallyhié
polytope is inV-representation but for thg{-representation this
amounts to Linear Programming for which only weak polyndmia
ity is known [14].

In this paper, we study three fundamental operations on-poly
topes and provide hardness results for them. For polytBp&sin
R?, the Minkowski addition® + Q, the convex hull of the union
CH (P U Q) and the intersectio® N Q are defined as:

P+Q = {z+ylzrePycQ}
CHPUQ) = {Ma+1-NylrePyecQ,0<A<1}
PNQ = {z|lr€Pandx € Q}

Throughout the papéP, Q refer to polytopes and denotes the di-
mension of the affine space in whigh Q live. Also, sizeof a poly-
tope refers to the number of vertices (facets resp.)-polytope
(H-polytope resp.) times the dimensidn

We are interested in the complexity of performing these -oper
ations and providing non-redundant description of the Itiesu
polytope in appropriate representation. Since the wors¢ cize
of the output for all the three operations can be exponeirtitie
size of input (see [12, 10]), it is natural to talk ofitput sensi-
tive algorithms. The complexity of an output sensitive algaritis
measured in terms of the size of both input and the output.s,Thu
a polynomial output sensitive algorithm is one whose rugrime
is polynomial in the size of input and output.

We consider only the case when the operand polytopes are in
the same representation as the resulting polytope. Fordmeq
resentations one has to implicitly perform representationver-
sion. The problem of converting one representation to therdtas
been well studied. The problem of convertitgrepresentation to
‘H-representation is the well known Convex Hull problem arel th
reverse is known as the Vertex Enumeration problem. No mslyn
mial output sensitive algorithm is known for this problencept
for some special cases (see [1, 4, 5, 15]).

It is easy to see that computing the non-redundant
V-representation oCH(PU Q) and P + Q is easy if P,Q
areV-polytopes and an oracle for LP is given. Similarly, comput-
ing theH-representation oP N Q is easy ifP, Q areH-polytopes
and an oracle for LP is given. So, we are interested in other



versions, namely the ones where the operandsCi&F(P U Q)
and P + Q are H-polytopes and the operands f@&t N Q are
V-polytopes. Before we proceed to the similarities betwéen t
three operations, a short description of polarity and thgleya
trick is in order.

1.1 Polarity

Let? = {x|Az < 1} be a full dimensional polytope iR? con-
taining the origin in its interior. Herel € R™*% and1 is anm x 1
column vector with all entries 1. The polar (also dual)7df de-
noted byP*, is obtained by treating the vectars € A as points in
dimensiond and taking the convex hull of all these points. For a de-
tailed treatment of this operation the reader is again redeo [11].
One interesting property of the polar operation is that {zoim the
interior of P are mapped to hyperplanes that don't intersett
Similarily points on the boundary @ are mapped to hyperplanes
that touchP* and points outsid® are mapped to hyperplanes that
intersect the interior oP™.

The convex hull of the union; and intersection operatiore ar
related via polar duality. More precisely, ®#, Q are two full di-
mensional polytopes ilR? both containing origin in the relative
interior, then N Q is the polar dual oCH (P* U Q).

1.2 TheCayley trick

The Cayley trick is a simple embedding bfd-dimensional poly-
topesP, - - - , P, into R“**~1, The embedding is obtained by ap-
pendinge;_1 to every point inP;, wheree, = 0 ande; is thei-th
unit vector ofR*~! and taking the convex hull of all the embedded
copies. Itis easy to see that the Minkowski sum of these ppbg
(up to a scaling) can be obtained from the Cayley embeddirig-by
tersecting the polytope obtained after the embedding vsthitable
d-flat. To illustrate this, consider the case whies: 2. The Cayley
embedding is obtained by putting a copy Bf in the hyperplane
x4+1 = 0 and a copy ofP: in the hyperplane:;11 = 1 and tak-
ing the convex hull of both embedded polytopes. The Minkawsk
sum (scaled by a factor half), then, is the intersect of tkalting
polytope with the hyperplane;;; = %

The rest of the paper is organized as follows. In the follgwin
section, we describe prior work related to performing theyser-
ations in appropriate representations and in Section 3 tedléesh
a hardness result that explains why no polynomial algorigxm
ists for performing these operations on arbitrary polytogieen in
arbitrary representation.

2. RELATED WORK

The problem of enumerating the facetsdf/ (P U Q), when both

P and Q are given by their facets, has been studied in [2] and
[8]. Balas [2] constructs polynomial algorithm for a spéakass

of polytopes while Fukuda, Liebling and Litolf [8] presertly
nomial algorithms with certain assumptions about the ppgs.

A closely related problem is to determine whether the unibk o
polytopes (in either representation) is convex. As noted®bm-
poradet. alin [3], the union is convex if and only if it coincides
with the convex hull of the union. They also present a polyiam
algorithm for the case when whén= 2.

Minkowski sums have been studied in much more detail com-
pared to convex hull of union. They frequently come up in camp
tational algebra [10], robotics and motion planning, gerimeon-
vexity, computer graphics and many other areas. Roughlgkspe
ing, Minkowski sums show up in two context - computing thestsc

(or vertices) of Minkowski sum of-polytopes given by their facets
(or vertices); and computing mixed volumeskopolytopes.

Gritzmann and Sturmfels [10] studied Minkowski sum in the
context of computational algebra and gave (exponentialints
on the number of faces of Minkowski sum. They also gave ex-
amples of cases where the bounds were tight. As noted before,
exponential lower bounds motivate one to look for outpusgam
algorithms for cases when the output is far from worst cagkuéia
and Weibel [9, 7] propose polynomial algorithms for enurtiata
faces of Minkowski sum ok polytopes where each polytopes is
given by vertices. They explicitly avoid the case when thguin
polytopes are described by facets and the facets of Minkicsusk
are to be enumerated. Fukuda and Weibel, in another work (see
[12]), study Minkowski sums of special polytopes that aresliw
centered” and also provide better bounds on the number e§fac

In the next section, we prove that unleBs = NP, there is
no output sensitive polynomial algorithm that computesfduoets
of the Minkowski sum of twaH-polytopes. It follows, from the
Cayley trick and polarity, that enumerating the facets efd¢bnvex
hull of the union of twol-polytopes; or enumerating the vertices
of the intersection of twd’-polytopes is hard as well.

3. HARDNESS OF MINKOWSKI
ADDITION

In this section we establish the hardness of enumeratintatets
of the Minkowski sum of two-polytopes. We prove this by
proving a possibly stronger statement. Consider the fatigw
decision version of the enumeration problem

PROBLEM MINKOWSKIVERIFY
INPUT: H-PolytopesP;, P, Q.
OuUTPUT: Yes, if @ = P; + P». No, otherwise.

THEOREM 1. There is no algorithm solviniyl INKOWSKIV ER-
IFY in polynomial time, unles® = N P.

We prove this by providing a polynomial-time Turing redocti
from a coNP-Hard problem to this problem. A problefnis said
to be polynomial-time Turing reducible to probleif, one can
construct an algorithm for problerd from an algorithm for3 by
using the latter as a subroutine and invoking it polynomiedany
times. The more common Karp reduction allows only one call to
the oracle and that too at the end.

It was shown by Khachiyaet. a[13] that it is coNP-Hard to
enumerate all vertices of a polyhedron given by its facetee T
following theorem restates the result of [13].

THEOREM 2. Given a polyhedrorP in H-representation and
a setV of vertices ofP, it is coN P-complete to decide wheth®Y
is the complete vertex setBf

Now, we prove that if we have an algorithm for deciding
MINKOWSKIVERIFY for two arbitrary polytopes, then we can in-
voke the oracle polynomial number of times and decide foresom
set of verticed” and and ari-polytopeP, whetherV = vert(P).
Note that a very important fact for the Theorem 2 is that a lpely
dron can have many more extreme rays than the number ofe®rtic
For polyhedra that don’t have too many extreme rays, thel@nob
of enumerating vertices is effectively the same as the probbf
enumerating all vertices of a polytope. The complexity ustaif
the latter is unknown.



Our reduction works in the following way. L&t = {z|Ax < b}
be a polyhedron iR andV be a subset of verticagrt(P). We
assume that no two vertices have the sampeoordinate. We also
assume thaP N {x4 > —c} is bounded for sufficiently large.
The first assumption ensures a unique ordering on the verite
the polyhedron and the second assumption ensures thatltepo
dron that are generated to be passed onto the<®wsKIVERIFY
oracle are indeed polytopés. bounded.

COROLLARY 1. Given twoH-polytopesP, Q € R?, there
is no output sensitive polynomial algorithm that enumesatee
facets ofP + Q unlessP = N P.

Similarly, if we defineP, as:
Po=PN{zs > vi eq,xq < Vit1-€q}

then it is easy to see tha®Py, # CH(P-1 U P1) if and

To see that the above assumptions can indeed be satisfiecPnly if there exists some € vert(P) that is not inV" and

by a polynomial preprocessing, recall that a polyhedron &as
unique representation as the minkowski sum of a polytopeaand
cone. Also, the cone of the polyhedréh= {z|Az < b} is just
cone(P) = {z|Az < 0} with some inequalities possibly redun-
dant. To satisfy the second assumption, we need to pick anect
such thatone(P)N{c-z < 1} is bounded; and align the negative
zq4-axis alonge. Picking a vector: from cone(A)* does the trick.
Now, if ¢ is picked uniformly at random fromone(A) then

the probability of any two vertices of the polyhedr&hhaving the
samez4-coordinate is 0 and so the first assumption is satisfied too.

Random sampling from such convex objects can be done in time

polynomial in the dimension using an algorithm of Dyer, Ede
and Kannan [6].

Now for our reduction, consider the verticesof V' in the order
of theirz4-coordinate. That is, i&4 is the unit vectof0, - - - ,0, 1)
in R andey is considered aap then the vertices are considered
in the order of increasing height. Now, consider samandwv;1
and define three polytopes in the following way:

P = PN {md = v; * ed}
P = PN {md = Vj41 - ed}
_ _ Vi-eqd+Vif1-€q
Po = Pﬂ{xdf—2 }

where the dot produat; - e is nothing but the: ;-coordinate ofv;.

The following lemma provides the necessary tool for using
the oracle for MNKOWSKIVERIFY as a subroutine for verifying
whether a set of vertices of an arbitrary polyhedron defitsegear-
tex set completely.

LEMMA 1. 2Py # P—1 + P4 if and only if there exists some
v € vert(P) thatis notinV andv; - eq < v - eq < vit1.€q.

PROOF We prove the non-trivial direction only. Suppose some
vertexv € vert(P)isnotinV andv; - eq < v-eq < vit1.€q for
somei. Without loss of generality we can assume théies above
the hyperplane containing,. If so, there is anu € vert(P-1)
such thafu lies on some edge @®. Clearly,uv intersectsP,, say
atw. We claim thaw ¢ P_1 + P1.

Assume for the sake of contradiction tRat € P_, +P:. Then
there arer € P_, andy € P: such thalw = z + y. Since, any
point on an edge of a polytope can beiquelyrepresented as the
convex combination of the vertices defining the edge, itofed
thatx = w andy is a vertex ofP;. This implies thaw is a convex
combination ofr, y as well and hence; can not be a vertex P,

a contradiction. [l

Lemma 1 gives us a way to use the algorithm for Minkowski
sum computation for deciding whether some vertex betweand
vi4+1 IS missing. So by invoking the Minkowski sum algorithii|
times we can decide whether or fidt= vert(P). This gives us
the following corollary to Theorem 1:

1This is the polar dual ofone(P).

v; -eq < v -eq < viti.eq4. The proof is analogous to the proof of
Lemma 1 and so we omit it. Thus, we have the following theorem:

THEOREM 3. Given H-polytopes P1, P2, Q € RY, there
is no algorithm that verifies in polynomial time whether
CH(P1UP2) = QunlessP = NP.

Note that, the operand polytopes here are not full dime@asion
However, this can easily be fixed by taking a pairit the interior
of Py and constructing a pyramid ovér_; andP; with p as the
apex. Again, arguing as earlier, we have the following dargl

COROLLARY 2. Given twoH-polytopesP, Q € R¢, there
is no polynomial output sensitive polynomial that enumesahe
facets ofCH (P U Q) unlessP = NP.

And lastly because of polar duality, we have the followingoto
lary:

COROLLARY 3. Given twoV-polytopesP, Q € R?, there is
no polynomial output sensitive polynomial that enumerttiever-
tices ofP N Q unlessP = N P.

4. CONCLUDING REMARKS

In this paper we proved that unlegs= N P, there does not exist
a polynomial output sensitive algorithm for

e enumerating all facets of the Minkowski sum of two
‘H-polytopes,

e enumerating all vertices of the intersection of two

V-polytopes or

e enumerating all facets of the convex hull of the union of two
‘H-polytopes.

In all the three cases, the input and the output polytopee hav
same representation. An interesting case is when the implubat-
put representations are not same. Effectively these “mirpde-
sentation” versions need to efficiently solve the problewoof/ert-
ing H-representation t&’-representation (Vertex Enumeration) or
the other way round (Convex Hull). For this mixed versiortimei
any polynomial time output sensitive algorithms are knownany
hardness results, analogous to the ones presented hekapane.
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