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ABSTRACT
For polytopesP ,Q ⊂ R

d we consider the intersectionP ∩Q; the
convex hull of the unionCH(P ∪Q); and the Minkowski sum
P + Q. We prove that given rationalH-polytopesP1,P2,Q it
is impossible to verify in polynomial time whetherQ = P1 + P2,
unlessP = NP . In particular, this shows that there is no out-
put sensitive polynomial algorithm to compute the facets ofthe
Minkowski sum of two arbitraryH-polytopes even if we consider
only rational polytopes. Since the convex hull of the union and the
intersection of two polytopes relate naturally to the Minkowski sum
via the Cayley trick and polarity, similar hardness resultsfollow for
these operations as well.

Categories and Subject Descriptors: F.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms and
Problems

General Terms: Algorithm, Theory

Keywords: Minkowski Addition, Extended Convex Hull, Polytope
intersection, Polytopes, coNP-hardness, Turing reduction, Compu-
tational Geometry

1. INTRODUCTION
A convex polyhedronor simply polyhedronin d-dimensional eu-
clidean spaceRd is the intersection of a finite number of halfs-
paces. A polyhedron is calledpointed if it does not contain any
affine line in its interior andboundedif it does not contain any ray.
A bounded polyhedron is also called a polytope. A very basic result
in the theory of polyhedra states that a polyhedron can be described
both as the intersection of a finite number of halfspaces as well as
the Minkowski sum ofconv(V ) + cone(Y ), whereV andY are
finite sets of points inRd. For a thorough treatment of polytopes
Grünbaum [11] and Ziegler [16] are excellent sources.
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In this paper, we will talk mostly about polytopes and refer to the
unbounded case only towards the end. We refer to the two equiva-
lent representations asH-representation andV-representation re-
spectively. Accordingly a polytope described by its vertices is
called aV-polytope and a polytope described by its facets is called
anH-polytope. Many operations that are easy to perform on one
description become difficult if the description is changed.To give
a simple example, finding a point inside a polytope that maximizes
the inner product with a given vector can be done trivially ifthe
polytope is inV-representation but for theH-representation this
amounts to Linear Programming for which only weak polynomial-
ity is known [14].

In this paper, we study three fundamental operations on poly-
topes and provide hardness results for them. For polytopesP ,Q in
R

d, the Minkowski additionP + Q, the convex hull of the union
CH(P ∪ Q) and the intersectionP ∩Q are defined as:

P + Q = {x + y|x ∈ P, y ∈ Q}

CH(P ∪Q) = {λx + (1 − λ)y|x ∈ P, y ∈ Q, 0 ≤ λ ≤ 1}

P ∩ Q = {x|x ∈ P and x ∈ Q}

Throughout the paperP ,Q refer to polytopes andd denotes the di-
mension of the affine space in whichP ,Q live. Also,sizeof a poly-
tope refers to the number of vertices (facets resp.) ofV-polytope
(H-polytope resp.) times the dimensiond.

We are interested in the complexity of performing these oper-
ations and providing non-redundant description of the resulting
polytope in appropriate representation. Since the worst case size
of the output for all the three operations can be exponentialin the
size of input (see [12, 10]), it is natural to talk ofoutput sensi-
tive algorithms. The complexity of an output sensitive algorithm is
measured in terms of the size of both input and the output. Thus,
a polynomial output sensitive algorithm is one whose running time
is polynomial in the size of input and output.

We consider only the case when the operand polytopes are in
the same representation as the resulting polytope. For mixed rep-
resentations one has to implicitly perform representationconver-
sion. The problem of converting one representation to the other has
been well studied. The problem of convertingV-representation to
H-representation is the well known Convex Hull problem and the
reverse is known as the Vertex Enumeration problem. No polyno-
mial output sensitive algorithm is known for this problem except
for some special cases (see [1, 4, 5, 15]).

It is easy to see that computing the non-redundant
V-representation ofCH(P ∪Q) and P + Q is easy if P ,Q
areV-polytopes and an oracle for LP is given. Similarly, comput-
ing theH-representation ofP ∩Q is easy ifP ,Q areH-polytopes
and an oracle for LP is given. So, we are interested in other



versions, namely the ones where the operands forCH(P ∪Q)
and P + Q are H-polytopes and the operands forP ∩Q are
V-polytopes. Before we proceed to the similarities between the
three operations, a short description of polarity and the Cayley
trick is in order.

1.1 Polarity
Let P = {x|Ax ≤ 1} be a full dimensional polytope inRd con-
taining the origin in its interior. HereA ∈ R

m×d and1 is anm×1
column vector with all entries 1. The polar (also dual) ofP , de-
noted byP∗, is obtained by treating the vectorsai ∈ A as points in
dimensiond and taking the convex hull of all these points. For a de-
tailed treatment of this operation the reader is again referred to [11].
One interesting property of the polar operation is that points in the
interior of P are mapped to hyperplanes that don’t intersectP∗.
Similarily points on the boundary ofP are mapped to hyperplanes
that touchP∗ and points outsideP are mapped to hyperplanes that
intersect the interior ofP∗.

The convex hull of the union; and intersection operations are
related via polar duality. More precisely, ifP ,Q are two full di-
mensional polytopes inRd both containing origin in the relative
interior, thenP ∩Q is the polar dual ofCH(P∗ ∪Q∗).

1.2 The Cayley trick
The Cayley trick is a simple embedding ofk d-dimensional poly-
topesP1, · · · , Pk into R

d+k−1. The embedding is obtained by ap-
pendingei−1 to every point inPi, wheree0 = 0 andei is thei-th
unit vector ofRk−1 and taking the convex hull of all the embedded
copies. It is easy to see that the Minkowski sum of these polytopes
(up to a scaling) can be obtained from the Cayley embedding byin-
tersecting the polytope obtained after the embedding with asuitable
d-flat. To illustrate this, consider the case whenk = 2. The Cayley
embedding is obtained by putting a copy ofP1 in the hyperplane
xd+1 = 0 and a copy ofP2 in the hyperplanexd+1 = 1 and tak-
ing the convex hull of both embedded polytopes. The Minkowski
sum (scaled by a factor half), then, is the intersect of the resulting
polytope with the hyperplanexd+1 = 1
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The rest of the paper is organized as follows. In the following
section, we describe prior work related to performing theseoper-
ations in appropriate representations and in Section 3 we establish
a hardness result that explains why no polynomial algorithmex-
ists for performing these operations on arbitrary polytopes given in
arbitrary representation.

2. RELATED WORK
The problem of enumerating the facets ofCH(P ∪Q), when both
P andQ are given by their facets, has been studied in [2] and
[8]. Balas [2] constructs polynomial algorithm for a special class
of polytopes while Fukuda, Liebling and Lütolf [8] present poly-
nomial algorithms with certain assumptions about the polytopes.
A closely related problem is to determine whether the union of k
polytopes (in either representation) is convex. As noted byBem-
poradet. al in [3], the union is convex if and only if it coincides
with the convex hull of the union. They also present a polynomial
algorithm for the case when whenk = 2.

Minkowski sums have been studied in much more detail com-
pared to convex hull of union. They frequently come up in compu-
tational algebra [10], robotics and motion planning, geometric con-
vexity, computer graphics and many other areas. Roughly speak-
ing, Minkowski sums show up in two context - computing the facets

(or vertices) of Minkowski sum ofk-polytopes given by their facets
(or vertices); and computing mixed volumes ofk polytopes.

Gritzmann and Sturmfels [10] studied Minkowski sum in the
context of computational algebra and gave (exponential) bounds
on the number of faces of Minkowski sum. They also gave ex-
amples of cases where the bounds were tight. As noted before,
exponential lower bounds motivate one to look for output sensitive
algorithms for cases when the output is far from worst case. Fukuda
and Weibel [9, 7] propose polynomial algorithms for enumerating
faces of Minkowski sum ofk polytopes where each polytopes is
given by vertices. They explicitly avoid the case when the input
polytopes are described by facets and the facets of Minkowski sum
are to be enumerated. Fukuda and Weibel, in another work (see
[12]), study Minkowski sums of special polytopes that are “well
centered” and also provide better bounds on the number of faces.

In the next section, we prove that unlessP = NP , there is
no output sensitive polynomial algorithm that computes thefacets
of the Minkowski sum of twoH-polytopes. It follows, from the
Cayley trick and polarity, that enumerating the facets of the convex
hull of the union of twoH-polytopes; or enumerating the vertices
of the intersection of twoV-polytopes is hard as well.

3. HARDNESS OF MINKOWSKI
ADDITION

In this section we establish the hardness of enumerating thefacets
of the Minkowski sum of twoH-polytopes. We prove this by
proving a possibly stronger statement. Consider the following
decision version of the enumeration problem

PROBLEM M INKOWSKIVERIFY

INPUT: H-PolytopesP1,P2,Q.
OUTPUT: Yes, ifQ = P1 + P2. No, otherwise.

THEOREM 1. There is no algorithm solvingM INKOWSKIVER-
IFY in polynomial time, unlessP = NP .

We prove this by providing a polynomial-time Turing reduction
from a coNP-Hard problem to this problem. A problemA is said
to be polynomial-time Turing reducible to problemB if, one can
construct an algorithm for problemA from an algorithm forB by
using the latter as a subroutine and invoking it polynomially many
times. The more common Karp reduction allows only one call to
the oracle and that too at the end.

It was shown by Khachiyanet. al[13] that it is coNP-Hard to
enumerate all vertices of a polyhedron given by its facets. The
following theorem restates the result of [13].

THEOREM 2. Given a polyhedronP in H-representation and
a setV of vertices ofP , it is coNP -complete to decide whetherV
is the complete vertex set ofP .

Now, we prove that if we have an algorithm for deciding
M INKOWSKIVERIFY for two arbitrary polytopes, then we can in-
voke the oracle polynomial number of times and decide for some
set of verticesV and and anH-polytopeP , whetherV = vert(P).
Note that a very important fact for the Theorem 2 is that a polyhe-
dron can have many more extreme rays than the number of vertices.
For polyhedra that don’t have too many extreme rays, the problem
of enumerating vertices is effectively the same as the problem of
enumerating all vertices of a polytope. The complexity status of
the latter is unknown.



Our reduction works in the following way. LetP = {x|Ax ≤ b}
be a polyhedron inRd andV be a subset of verticesvert(P ). We
assume that no two vertices have the samexd-coordinate. We also
assume thatP ∩ {xd ≥ −c} is bounded for sufficiently largec.
The first assumption ensures a unique ordering on the vertices of
the polyhedron and the second assumption ensures that the polyhe-
dron that are generated to be passed onto the MINKOWSKIVERIFY

oracle are indeed polytopesi.e. bounded.

To see that the above assumptions can indeed be satisfied
by a polynomial preprocessing, recall that a polyhedron hasa
unique representation as the minkowski sum of a polytope anda
cone. Also, the cone of the polyhedronP = {x|Ax ≤ b} is just
cone(P) = {x|Ax ≤ 0} with some inequalities possibly redun-
dant. To satisfy the second assumption, we need to pick a vector c
such thatcone(P)∩{c ·x ≤ 1} is bounded; and align the negative
xd-axis alongc. Picking a vectorc from cone(A)1 does the trick.

Now, if c is picked uniformly at random fromcone(A) then
the probability of any two vertices of the polyhedronP having the
samexd-coordinate is 0 and so the first assumption is satisfied too.
Random sampling from such convex objects can be done in time
polynomial in the dimension using an algorithm of Dyer, Frieze
and Kannan [6].

Now for our reduction, consider the verticesvi of V in the order
of theirxd-coordinate. That is, ifed is the unit vector(0, · · · , 0, 1)
in R

d anded is considered asup then the vertices are considered
in the order of increasing height. Now, consider somevi andvi+1

and define three polytopes in the following way:

P−1 = P ∩ {xd = vi · ed}

P1 = P ∩ {xd = vi+1 · ed}

P0 = P ∩
n

xd =
vi · ed + vi+1 · ed
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where the dot productvi ·ed is nothing but thexd-coordinate ofvi.

The following lemma provides the necessary tool for using
the oracle for MINKOWSKIVERIFY as a subroutine for verifying
whether a set of vertices of an arbitrary polyhedron defines its ver-
tex set completely.

LEMMA 1. 2P0 6= P−1 + P1 if and only if there exists some
v ∈ vert(P) that is not inV andvi · ed < v · ed < vi+1.ed.

PROOF. We prove the non-trivial direction only. Suppose some
vertexv ∈ vert(P) is not inV andvi · ed < v · ed < vi+1.ed for
somei. Without loss of generality we can assume thatv lies above
the hyperplane containingP0. If so, there is anu ∈ vert(P−1)
such that−→uv lies on some edge ofP . Clearly,−→uv intersectsP0, say
atw. We claim that2w /∈ P−1 + P1.

Assume for the sake of contradiction that2w ∈ P−1+P1. Then
there arex ∈ P−1 andy ∈ P1 such that2w = x + y. Since, any
point on an edge of a polytope can beuniquelyrepresented as the
convex combination of the vertices defining the edge, it follows
thatx = u andy is a vertex ofP1. This implies thatv is a convex
combination ofx, y as well and hence,v can not be a vertex ofP ,
a contradiction.

Lemma 1 gives us a way to use the algorithm for Minkowski
sum computation for deciding whether some vertex betweenvi and
vi+1 is missing. So by invoking the Minkowski sum algorithm|V |
times we can decide whether or notV = vert(P). This gives us
the following corollary to Theorem 1:

1This is the polar dual ofcone(P).

COROLLARY 1. Given twoH-polytopesP ,Q ∈ R
d, there

is no output sensitive polynomial algorithm that enumerates the
facets ofP + Q unlessP = NP .

Similarly, if we defineP0 as:

P0 = P ∩ {xd ≥ vi · ed, xd ≤ vi+1 · ed}

then it is easy to see thatP0 6= CH(P−1 ∪ P1) if and
only if there exists somev ∈ vert(P) that is not inV and
vi · ed < v · ed < vi+1.ed. The proof is analogous to the proof of
Lemma 1 and so we omit it. Thus, we have the following theorem:

THEOREM 3. Given H-polytopesP1,P2,Q ∈ R
d, there

is no algorithm that verifies in polynomial time whether
CH(P1 ∪ P2) = Q unlessP = NP .

Note that, the operand polytopes here are not full dimensional.
However, this can easily be fixed by taking a pointp in the interior
of P0 and constructing a pyramid overP−1 andP1 with p as the
apex. Again, arguing as earlier, we have the following corollary:

COROLLARY 2. Given twoH-polytopesP ,Q ∈ R
d, there

is no polynomial output sensitive polynomial that enumerates the
facets ofCH(P ∪Q) unlessP = NP .

And lastly because of polar duality, we have the following corol-
lary:

COROLLARY 3. Given twoV-polytopesP ,Q ∈ R
d, there is

no polynomial output sensitive polynomial that enumeratesthe ver-
tices ofP ∩ Q unlessP = NP .

4. CONCLUDING REMARKS
In this paper we proved that unlessP = NP , there does not exist
a polynomial output sensitive algorithm for

• enumerating all facets of the Minkowski sum of two
H-polytopes,

• enumerating all vertices of the intersection of two
V-polytopes or

• enumerating all facets of the convex hull of the union of two
H-polytopes.

In all the three cases, the input and the output polytopes have
same representation. An interesting case is when the input and out-
put representations are not same. Effectively these “mixedrepre-
sentation" versions need to efficiently solve the problem ofconvert-
ing H-representation toV-representation (Vertex Enumeration) or
the other way round (Convex Hull). For this mixed version neither
any polynomial time output sensitive algorithms are known nor any
hardness results, analogous to the ones presented here, areknown.
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