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Abstract. We study several canonical decision problems that arise from
the most famous theorems from combinatorial geometry. We show that
these are W[1]-hard (and NP-hard) if the dimension is part of the input
by fpt-reductions (which are actually ptime-reductions) from the d-Sum
problem. Among others, we show that computing the minimum size of
a Caratheodory set and a Helly set and certain decision versions of the
Ham-Sandwich cut problem are W[1]-hard. Our reductions also imply
that the problems we consider cannot be solved in time no(d) (where n

is the size of the input), unless the Exponential-Time Hypothesis (ETH)
is false.
Our technique of embedding d-Sum into a geometric setting is conceptu-
ally much simpler than direct fpt-reductions from purely combinatorial
W[1]-hard problems (like the clique problem) and has great potential to
show (parameterized) hardness and (conditional) lower bounds for many
other problems.

Keywords: combinatorial geometry, ham-sandwich cuts, parameterized
complexity, geometric dimension, exponential-time hypothesis.

1 Introduction

Many theorems from combinatorial geometry are of the following type: Given n
objects that have a certain property, then there are already d + 1 of them that
have this property. Two examples of this are Caratheodory’s Theorem [6] and
Helly’s Theorem [19].

Caratheodory’s Theorem states, in one of its several formulations, that when-
ever a point p is contained in the convex hull of a point set in R

d, then it is already
contained in the convex hull of a subset of size at most d + 1. A minimal set
containing p in the convex hull is called a Caratheodory set for p. Here, we will
consider the corresponding decision problem:
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Definition 1. (d-Caratheodory-Set) Given a point set in R
d, are there d

points whose convex hull contains the origin?

Stated in a dual setting, this gives another well known theorem: If n convex
sets in R

d have an empty intersection, then by Helly’s Theorem there are already
d+1 whose intersection is empty. The decision problem can be stated as follows:

Definition 2. (d-Helly-Set) Given n convex sets P1, . . . , Pn in R
d, do any d

of them have an empty intersection?

The canonical decision versions of Caratheodory’s and Helly’s Theorem have
not explicitly been considered in the literature so far. This is quite surprising, as
they are interesting to people from computational as well as discrete geometry.
However, they have been studied in the context of Linear Programming as the
problem of finding the smallest minimal set of inequalities that is infeasible.

Definition 3. (d-Min-IIS) Given n inequalities in R
d, do any d of them have

an empty intersection?

The d-Min-IIS has been studied before, mainly because of its connection
to the NP-complete Maximum-Feasible-Subsystem problem, where one is
given an infeasible linear program and one has to find a feasible subsets of
constraints of maximum size. Amaldi et al. [2] show that d-Min-IIS is NP-
hard by a (transitive) reduction fromDominating-Set. However, the dimension
depends on the number of elements, so it does not reveal anything with respect
to this parameter d.

The Ham-Sandwich Theorem as a corollary of the Borsuk-Ulam Theorem
(see, e.g., Matoušek [24]) states that for any d finite point sets in R

d there is
a hyperplane that bisects all of the sets at once, i.e., has at most half of the
points on each side. Computing a ham-sandwich cut efficiently is an important
problem and has been studied extensively (see Edelsbrunner and Waupotitsch
[10], Matoušek et al. [25], Yu [31]). For general dimensional, the fastest known
algorithm [25] runs in time roughly O

(

nd−1
)

.

The Ham-Sandwich problem is not a decision problem, as, given an instance,
we know that there always exists a solution, but still it is not known how to
find it efficiently. Such problems are captured by the complexity class PPAD,
see Papadimitrou [28]. It is an important open question whether computing a
ham-sandwich cut is PPAD complete. In this paper we show that a natural ”in-
cremental” approach for computing the ham-sandwich cut will not work unless
W [1] = P.

One way to find a ham-sandwich cut incrementally could be to take any
point, decide whether there is some ham-sandwich cut through it, and perform
a dimension reduction until the hyperplane is determined. This gives rise to the
following decision problem:

Definition 4. (d-Ham-Sandwich) Given d sets P1, . . . , Pd in R
d and a point

a ∈ R
d, is there a Ham-Sandwich cut that passes through a?



We show that d-Ham-Sandwich is W [1]-hard and therefore most likely no
polynomial algorithm (FPT or otherwise) exists for this problem.

Our reductions use a new technique of embedding of d-Sum into the d-
dimensional space. Thereto, a d-Sum instance is encoded into sets of points
(or hyperplanes, respectively), and the property of d elements summing up to 0
is expressed by an equivalent geometric property of the point set, e.g., allowing
a ham-sandwich cut through the origin.

Overview. The main results of this paper are following:

In Sec. 3, 4 we prove the following:

Theorem 1. The problems d-Caratheodory-Set and d-Helly-Set are W[1]-
hard with respect to the parameter d and NP-hard.

All these proofs follow from slight modifications of the hardness proof for the
first problem (FIRST PROBLEM?) ¡— REMOVE?.

Using the same proof techniques we obtain following corollaries.

Corollary 1. The problem d-Min-IIS is W[1]-hard with respect to the dimen-
sion.

Observe that this problem becomes polynomial-time solvable if we ask for d +
1 halfspaces by first solving the corresponding linear program and afterwards
applying Helly’s Theorem.

Corollary 2. Deciding whether a point q is in general position4 with respect to
P is W[1]-hard with respect to d and NP-hard.

For the Ham-Sandwich problem, a little more work has to be done. The
resulting sets have to be balanced, such that ham-sandwich cuts through the
origin correspond to d elements summing up to 0. After this construction, we
are able to derive the following result:

Theorem 2. The d-Ham-Sandwich cut problem is W[1]-hard with respect to the
dimension and NP-hard.

Combining our reductions with a result of Pǎtraşcu and Williams [29], The-
orems 1 and 2 immediately gives:

Corollary 3. The problems d-Caratheodory-Set, d-Helly-Set and d-Ham-

Sandwich cannot be solved in time no(d) (where n is the size of the input), unless
the Exponential-Time Hypothesis (ETH) is false5.

4 No hyperplane that contains d points from P also contains q.
5 The Exponential Time Hypothesis [20] conjectures that n-variable 3-CNFSAT can-
not be solved in 2o(n)-time.



Related work. The study of computational variants of theorems from discrete
geometry is not new. Several problems that arise from theorems in discrete geom-
etry have received a lot of attention, most notably computation of (approximate)
center- and Tverberg points in the plane as well as in higher dimension. In the
plane, surprisingly one can compute a centerpoint in linear time [21], whereas for
higher dimension, no exact polynomial time algorithms are known. See Agarwal
et al. [1] and Miller and Sheehy [26] for recent progress. There too, like in the
present paper, the corresponding decision problem is considered, i.e., to decide
whether a given point is a center point. This problem has been shown to be
co-NP complete by Teng [30] if d is part of the input.

We have already discussed the previous studies about the computation of
ham-sandwich cuts. Perhaps surprisingly, the computation of smallest sets aris-
ing from Caratheodory’s and Helly’s theorem has not been explicitly studied
even though it has been studied under the guise of IIS in the context of Linear
Programming.

Even though the dimension of geometric problems is a natural parameter for
studying their parameterized complexity, only relatively few results of this type
are known: Langerman and Morin [22] gave fpt-algorithms for the problem of
covering points with hyperplanes, while the problem of computing the volume
of the union of axis parallel boxes has been shown to be W[1]-hard by Chan [7].
Cabello et al. [5, 4] have developed a technique that has been applied succesfully
to show W[1]-hardness for a number of problems from various application areas
like shape matching [3], clustering [4, 16], and discrepancy-computation [17]. We
refer to Giannopoulos et al. [18] for a survey on other parameterized complexity
results for geometric problems.

For a general introduction to combinatorial geometry, we recommend Ma-
toušek [23] and Ziegler [32].

Parameterized complexity. Parameterized complexity theory provides a frame-
work for the study of algorithmic problems by measuring their complexity in
terms of one or more parameters, explicitly or implicitly given by their underly-
ing structure, in addition to the problem input size. For an introduction to the
field of parameterized complexity theory, we refer to the textbooks of Flum and
Grohe [14], Niedermeier [27] and Downey and Fellows [9].

The dimension d of geometric problems in R
d is a natural parameter for

studying their parameterized complexity. In terms of parameterized complexity
theory the question is whether these problems are fixed-parameter tractable with
respect to d. Proving a problem to be W[1]-hard with respect to d, gives a strong
evidence that an fpt-algorithm (i.e., an algorithm that runs in time O (f(d) · nc)
for some fixed c and an arbitrary function f) does not exist. W[1]-hardness is
often established by fpt-reductions from the clique problem in general graphs,
which is known to be W[1]-complete [9]. Below we use a different approach by
giving conceptually much simpler fpt-reductions from the d-Sum problem [15,
12]:



Definition 5. (d-Sum) Given n integers, are there d (not necessarily distinct)
numbers that sum up to 0?

This problem is NP-hard [12] and can be solved in (roughly) O(nd/2) time.
It can be shown to be W[1]-hard with respect to d from a simple reduction
from the subset-sum problem which was shown to be W[1]-hard by Downey
and Koblitz [13]. Recently it has been shown [29] (without using parameterized
complexity explicitly) that, unless the ETH fails, d-Sum cannot be solved in
time no(d).

Reductions from 3-Sum seem somewhat more “natural” for computational
geometers: Gajentaan and Overmars [15] introduced the 3-Sum problem for the
purpose of arguing that certain problems in planar geometry “should” takeΩ(n2)
time; showing 3-Sum-hardness for such problems is considered a routine task
today. Surprisingly this approach apparently has not been used to show W[1]-
hardness of geometric problems in R

d until now.

Basic notation. For a hyperplane h and a point set P , let h+
P denote the set of

points of P that lie strictly on the positive side of h, and analogously h−
P . For a

point p, by (p)i we denote the i–th coordinate of p. Finally, for a number x as
usual let

sign(x) :=

{

1 x ≥ 0

−1 x < 0.

2 Affine Containment

We start with a problem for which we think the hardness proof is the most
straightforward. This proof will subsequently be modified to show the main
theorems.

Definition 6. (d-Affine-Containment) Given a set of points P in R
d, is the

origin contained in the affine hull of any d points?

Recall that x ∈ affHull ({p1, . . . , pj}) iff there exist αi, 1 ≤ i ≤ j such that
∑

αi = 1 and
∑

αipi = x.
For a given set S = {s1, . . . , sn}, we will create a point-set in R

d+1 in which
d+1 points span an affine plane through the origin if and only d of these numbers
sum up to 0.

Let ei denote the i–th unit vector. Set

pji :=
1

si
· ej + ed+1 =

(

0, . . . ,
1

si
, . . . , 0, . . . , 1

)T

and q := −
∑d

i=1 ei.

The set P consists of all points pji , 1 ≤ j ≤ d, 1 ≤ i ≤ n and the point q. The
size of the point set is thus n · d+ 1.



Lemma 1. There are d elements that sum up to 0 iff there are d+ 1 points in
P whose affine hull contains the origin6.

Proof. ⇒: Let
∑d

j=1 sij = 0. We choose points xj = pjij , 1 ≤ j ≤ d and xd+1 = q.
Let αj = sij and αd+1 = 1. Then

d+1
∑

j=1

αjxj =
d

∑

j=1

sijp
j
ij
+ q =

d
∑

j=1

ej +





d
∑

j=1

sij



 ed+1 −
d

∑

j=1

ej = 0

and
d+1
∑

j=1

αj =

d
∑

j=1

sij + αd+1 = 1.

That means that 0 is in affHull
({

p1i1 , . . . p
d
id
, q
})

.

⇐: Let 0 ∈ affHull ({x1, . . . , xd}), i.e., let
∑d+1

j=1 αjxj = 0 and
∑

αj = 1. As
all points but q lie on the hyperplane xd+1 = 1, one of the points, without loss of
generality xd+1, must be q. Because of (q)d+1 = 0, and (x)d+1 = 1 for all x 6= q,
by computing the (d+ 1)-st coordinate we get

0 =
d

∑

j=1

(αjxj)d+1 =
d

∑

j=1

αj(xj)d+1 =
d

∑

j=1

αj (1)

and thus αd+1 = 1−
∑d

j=1 αj = 1.

Further, as
∑d+1

j=1 αjxj = 0, the other points must satisfy

d
∑

j=1

αjxj = −αd+1q =

d
∑

j=1

ej.

Any xj is nonzero for only one other coordinate except the (d + 1)-st, and
as (q)j = −1 for all j < d + 1, for each j there must be at least one point
that is nonzero at coordinate j (in particular, also αj 6= 0). Thus, there are
exactly d such points. Without loss of generality assume that xj is the point
that is nonzero in coordinate j, so (xj)j = 1

sij
for some ij . This means that

αj
1
sij

− 1 = 0, and thus αj = sij ∈ S, which implies (Eqn. 1) that we have d

elements in S summing up to 0. ⊓⊔

Theorem 3. d-Affine-Containment is W[1]-hard with respect to the dimen-
sion and NP-hard.

6 Recall that the dimension is also d+ 1.



3 Caratheodory sets

In order to use the previous construction to prove the first part of Theorem 1,
we have to modify it such that all coefficients can be chosen positive. Observe
that 0 ∈ conv(P ) iff 0 =

∑

p∈P αpp for any αp ≥ 0,
∑

αp > 0 (proof: divide by
∑

αp). To this end we now define

pji =
1

|si|
· ej + sign(si) · ed+1

and q as above. The set P again consists of all the points pji , 1 ≤ j ≤ d, 1 ≤ i ≤ n
and q.

Lemma 2. There are d elements in S that sum up to 0 iff the origin lies in the
convex hull of d+ 1 points of P .

Proof. ⇒: Let
∑d

j=1 sij = 0. Setting αj = |sij | > 0, xj = pjij for 1 ≤ j ≤ d and
αd+1 = 1, xd+1 = q again yields

d+1
∑

j=1

αjxj =

d
∑

j=1

|sij |p
j
ij
+ q =

d
∑

j=1

ej +





d
∑

j=1

sign(sij )|sij |



 ed+1 −
d

∑

j=1

ej = 0.

⇐: Let
∑d+1

j=1 αjxj = 0, αj ≥ 0. As all points lie in the positive halfspace
∑d e∗jx > 0, q must be one of the points of the convex combination. We can
assume xd+1 = q and αd+1 = 1. Further, by the same argument as in Lemma
1, there must be at least d other points for the total sum to become 0. Again,
without loss of generality let (xj)j 6= 0. As (q)j = −1 for all 1 ≤ j ≤ d, this
means that αj

1
|sij |

= 1 for some ij, and thus αj = |sij |. Further, because of the

(d+ 1)-st coordinate, we get

0 =
d

∑

j=1

αjsign(sij ) =
d

∑

j=1

sign(sij ) ·
∣

∣sij
∣

∣ =
d

∑

j=1

sij

and thus we have d elements summing up to 0. ⊓⊔

Thereby we have shown the first part of Theorem 1.

Remark. Observe that if we project all points onto the unit sphere, all the above
properties still hold: Clearly, 0 ∈ conv(P ) iff 0 ∈ conv (πSd−1(P )). Thus, we
can even assume all points to lie in convex position and thereby get a slightly
stronger result:

Theorem 4. The following problem is W[1]-hard and NP-hard: Given a V-
polytope in R

d, is the origin contained in the convex hull of any d vertices?



4 Helly sets

Starting from the result in the previous section, we will now show how to prove
the hardness for the d-Helly-Set problem. Using a duality transform, for a
given set P in R

d, we will construct a set of convex sets (that are actually half-
spaces) such that d have an empty intersection if and only if there are d points
in P that contain the origin in their convex hull. A similar construction (which
is used to prove Caratheodory’s Theorem from Helly’s Theorem) can be found
in Eggleston [11, Chapter 2.3].

Consider a set P of points p1, · · · , pn ∈ R
d whose convex hull contains the

origin. For each point p ∈ P set consider the halfspace

p∗ =
{

x | pTx ≥ 1
}

.

Define P ∗ to be the set of all these halfspaces corresponding to the points in P .
We show that any Caratheodory set of P (for the origin) corresponds to a Helly
set (a set of halfspaces with empty intersection) of P ∗ of the same size. Since
checking if the minimum Caratheodory set has cardinality at most d is W[1]-
hard, it then follows that checking if the minimum Helly set is of cardinality at
most d is also W [1]-hard.

Let Q ⊆ P and let V be a d × |Q| matrix whose columns represent the
vectors in Q. Further, let cone(V ) denote the conic hull of the vectors, i.e., the

set
{

∑

q∈Q αqq | αq ≥ 0
}

.

Using the fact that cone(V ) is pointed if and only if V Tx ≤ 0 is a full-
dimensional cone, we can now show the main lemma of this section, which is a
variant of Gordan’s Theorem, see e.g. Dantzig and Thapa [8, Theorem. 2.13]:

Lemma 3. Let Q ⊆ P and let V be a d × |Q| matrix whose columns represent
the vectors in Q. Then 0 ∈ conv(V ) if and only if the system of inequalities
V Tx ≥ 1 is infeasible.

Proof. ⇒: Suppose that V Tx ≥ 1 is feasible. Then there exists a vector α ∈ R
d

such that V Tα ≤ −1. That is, V Tα < 0 and thus V Tx ≤ 0 is a full-dimensional
cone. Therefore, cone(V ) is pointed. But this means that 0 /∈ conv(V ).

⇐: Now suppose 0 /∈ conv(V ), then cone(V ) is pointed and therefore V Tx ≤
0 is a full-dimensional cone. Thus, there exists α ∈ R

d such that V Tα < 0, and
so for a large enough λ > 0, V T (−λα) > 1 and hence V Tx ≥ 1 is feasible. ⊓⊔

Thus, any set Q ⊆ P of points whose convex hull contains the origin corre-
sponds to a set Q∗ ⊆ P ∗ of convex set (inequalities) of the same size that has
an empty intersection, and vice versa. This finishes the proof of the second part
of Thm. 1.

As the convex sets in this case are even halfspaces, we can derive the stronger
result of Corollary 1.



5 Ham-Sandwich

Using the construction from Sec. 2, we will now prove that the decision version
for the Ham-Sandwich is W[1]-hard.

A hyperplane h is said to bisect a set Q if |h+
Q| ≤

⌊

|Q|
2

⌋

and |h−
Q| ≤

⌊

|Q|
2

⌋

.

A Ham-Sandwich cut of d point sets P1, . . . , Pd in R
d is a hyperplane h that

bisects each of the sets. In particular, if the number of points in each set is odd,
the hyperplane has to pass through at least one of the points from each set.

Def. 4 asks whether there is a cut that goes through a given point q. Via
translation we can obviously assume q to be the origin. This will be called a
linear Ham-Sandwich cut.

In order to show Theorem 2 we will create d + 1 sets P1, . . . , Pd+1. The set

Pd+1 will consist of the single point q =
∑d

j=1 ej (which is −q in the above
notion). The sets Pj will be the union of the two set Rj and Bj . Rj contains all

points of the form pji , defined exactly as in Sec. 2, i.e.,

Rj :=
{

pji | 1 ≤ i ≤ n
}

.

for pji = 1
si
ej + ed+1. If we choose a linear hyperplane through one of these

points, the number of points on each side will (most likely) not be the same. So
in addition to these, for each of these sets we need n − 1 balancing points Bj

to ensure that any linear hyperplane passing through any of these points has
equally many points of Pj on both sides (c.f. Figure 1). Thus, the set P =

⋃

Pj

is of size d (2n− 1) + 1.

Construction of the Balancing-set The idea is to add a point set similar to the
mirror image of the original set Rj . This way any hyperplane that has many of
the original points on, say, the positive side, will contain few of the mirrored
points on the positive side, and vice versa.

By making the total number of points in each set Pj odd, we will ensure that
any Ham-Sandwich cut must pass through one of the points from Pj . Further, by
the construction of the balancing set, it will not be possible to choose a linear cut
through q that also goes through any of these balancing points, thereby getting
the correspondence between subsets of S and linear cuts through q.

For this, we will choose the mirror-image of a set of n − 1 points that lie
between two successive points in Rj (recall that all points from Rj lie on a line;
this is why we use the construction from Sec. 2). Thereto, let S be in ascending
order with respect to si ≺ sj iff 1/si < 1/sj (or, equivalently: 1/si < 1/sj for
i < j).

Then, let εj =
1
2j and

bji := −

(

1

si − εj

)

· ej − ed+1.



This the mirror image of a point slightly to the right of pji , for 1 ≤ i < n; see

Figure 1. Let Bj consist of all balancing points of the form bji and set

Pj := Rj ∪Bj .

Fig. 1. The set Pj : points and balancing points

The main lemma. Now we come to prove the main lemma, namely that the
point set allows a linear ham-sandwich cut if and only if there are d elements that
sum up to 0, based on the following two simple lemmas. The first one states that
any (not necessarily linear) ham-sandwich cut must intersect exactly one point
from each set Pj , whereas the second one guarantees that any linear hyperplane
that contains a point from Rj will bisect Pj .



Lemma 4. Any linear ham-sandwich cut intersects exactly one point from each
Pj, 1 ≤ j ≤ d+ 1.

Proof. For Pd+1 = {q} this is trivial. We show that for any linear Ham-Sandwich
cut h = (h1, . . . , hd+1) we have hi 6= 0 for all i: First, if hd+1 were 0, because the
cut must pass through at least one point from each set, we would have hj = 0 for
all j. Thus, hd+1 6= 0. Further, as hj(p

j)j = −hd+1(p
j)j 6= 0 for some pj ∈ Pj ,

we also must have hj 6= 0 for all j.
Thus, no cut can pass through more than one point of any set Pj : If

hj(p)j + hd+1(p)d+1 = h · p = 0 = h · p′ = hj(p
′)j + hd+1(p

′)d+1

for two points p, p′ ∈ Pj , then p = p′ or hj = 0, a contradiction.
⊓⊔

Lemma 5. Any linear hyperplane intersecting a single point from Rj bisects the
set Pj .

Proof. Let h · pji = 0 and without loss of generality h · pjk < 0 for all 1 ≤ k < i.

Then also h · −bjk < 0 and thus h · bjk > 0 for all 1 ≤ k < i. Further, h · pjk > 0

for all k > i and h · bjk < 0 for k ≥ i. So

|h−
Pj
| = |h−

Rj
|+ |h−

Bj
| = i− 1 + n− i =

⌊

|Pj |

2

⌋

= |h+
Pj
|.

⊓⊔

Lemma 6. There are d elements in S that sum up to 0 if and only if there is a
linear Ham-Sandwich cut.

Proof. ⇒: Let
∑d

j=1 sij = 0. We have to find a linear hyperplane h · x = 0

such that for each set Pj it holds that |h+
Pj
|, |h−

Pj
| ≤

⌊

|Pj |
2

⌋

. Choose hj = sij for

1 ≤ j ≤ d and hd+1 = −1. Because
∑d

sij = 0, we have h · q =
∑d

sij = 0 (so
the one element set Pd+1 is bisected). Further,

h · pjij = hj · 1/sij + hd+1 · 1 = 1− 1 = 0.

Because of Lemma 5, this means that all sets are bisected, and thus we have
a linear Ham-Sandwich cut.

⇐: Let h be a linear Ham-Sandwich cut. All hi must be nonzero (Lemma
4), so we can assume hd+1 = −1. For each j, we have h · pj = 0 for exactly one
point pj ∈ Pj . This means that

0 = h · pj = hj(p
j)j + hd+1(p

j)d+1 = hj(p
j)j − 1(pj)d+1 = hj(p

j)j − 1,

and so either hj = sij or hj = sij − εj for some ij . Because for any ∅ 6= J ⊂
{1, . . . , d} we have 0 <

∑

j∈J εj < 1 and S is a set of integers, if one (or more)



of the hj were of the latter form, the total sum can never be an integer, and in
particular not 0. But this is required for q to lie on h.

Thus, hj = sij ∈ S for some ij , and as q also lies on the hyperplane, we get

0 = hq =
d

∑

j=1

hj =
d

∑

j=1

sij ,

i.e., there are d elements in S that sum up to 0. ⊓⊔

From this Theorem 2 follows.

Remarks. In the previous construction, the origin (i.e., the point for which we
want to solve the decision version) is not part of any of the sets, but this is easily
fixed: Set Pd+1 = {0, q/2, q}. Then any Ham-Sandwich cut through 0 also has to
go through the other two points (otherwise there would be too many points on
the one side) and thus must also contain q. On the other hand, whenever there
are no such d elements that sum up to 0, all Ham-Sandwich cuts are (truly)
affine hyperplanes through q/2. This gives a slightly stronger result:

Theorem 5. The following problem is W[1]-hard with respect to the dimension
and NP-hard: Given d point sets in R

d and a point q ∈
⋃

Pi, is there a Ham-
Sandwich cut through q?

The hardness proof can easily be adapted to show the following:

Corollary 4. The following problems are W[1]-hard with respect to the dimen-
sion and NP-hard:

1. (d-Strong-Ham-Sandwich) Given d + 1 point sets in R
d, is there a hy-

perplane that bisects all sets?
2. (d-Colorful-Hyperplane) Given d point sets in R

d, is there a linear
hyperplane that contains at least one point from each set?

Proof. 1. Follows by adding 0 as a set.
2. Follows from the fact that any Ham-Sandwich cut through the origin will

contain a point from each of the sets.
⊓⊔
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6. C. Caratheodory. ber den Variabilitätsbereich der Fourierschen Konstanten von
positiven harmonischen Funktionen. Rend. Circ. Mat. Palermo, 32:193–217, 1911.

7. T. M. Chan. A (slightly) faster algorithm for Klee’s measure problem. In Proc.
24th Annual Symposium on Computational Geometry, pages 94–100, 2008.

8. G. B. Dantzig and M. N. Thapa. Linear Programming 2: Theory and Extensions.
Springer, 2003.

9. R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer, November 1999.

10. H. Edelsbrunner and R. Waupotitsch. Computing a Ham-sandwich Cut in Two
Dimensions. J. Symb. Comput., 2(2):171–178, 1986.

11. H. G. Eggleston. Convexity. Cambridge University Press, 1963.
12. J. Erickson. New Lower Bounds for Convex Hull Problems in Odd Dimensions.

SIAM J. Comput., 28(4):1198–1214, 1999.
13. M. R. Fellows and N. Koblitz. Fixed-Parameter Complexity and Cryptography.

AAECC-10: Proceedings of the 10th International Symposium on Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, pages 121–131, 1993.

14. J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. Springer, 2006.

15. A. Gajentaan and M. H. Overmars. On a class of O(n2) problems in computational
geometry. Comput. Geom. Theory Appl., 5(3):165–185, 1995.

16. P. Giannopoulos, C. Knauer, and G. Rote. The parameterized complexity of some
geometric problems in unbounded dimension. In Parameterized and exact compu-
tation. 4th international workshop, IWPEC 2009, volume 5917 of Lecture Notes in
Computer Science, pages 198–209, 2009.

17. P. Giannopoulos, C. Knauer, M. Wahlström, and D. Werner. Hardness of dis-
crepancy and related problems parameterized by the dimension. In 26th European
Workshop on Computational Geometry (EuroCG), pages 173–176, 2010.

18. P. Giannopoulos, C. Knauer, and S. Whitesides. Parameterized Complexity of
Geometric Problems. Computer Journal, 51(3):372–384, 2008.
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