1

An intersection of a finite number of closed halfspaces in R? defines a poly-
A polyhedron can also be represented as conv(V) + cone(Y), the
Minkowski sum of the convex hull of a finite set of points V and the cone
of a finite set of rays. A bounded polyhedron is called a polytope. In what fol-
lows, we will discuss mostly polytopes for simplicity and refer to the unbounded
case explicitly only towards the end. We call a polytope (polyhedron resp.)

hedron.

Complexity of Approximating the Vertex
Centroid of a Polyhedron*

Khaled Elbassioni' Hans Raj Tiwary?
March 5, 2011

Abstract

Let P be an H-polytope in R? with vertex set V. The vertex centroid
is defined as the average of the vertices in V. We first prove that comput-
ing the vertex centroid of an H-polytope, or even just checking whether
it lies in a given halfspace, is #P-hard. We also consider the problem
of approximating the vertex centroid by finding a point within an e dis-
tance from it and prove this problem to be #P-easy in the sense that it
can be solved efficiently using an oracle for some #P-complete problem.
In particular we show that given an oracle for counting the number of
vertices of an H-polytope, one can approximate the vertex centroid in
polynomial time. Counting the number of vertices of a polytoped de-
fined as the intersection of halfspaces is known to be #P-complete. We
also show that any algorithm approximating the vertex centroid to any
“sufficiently” non-trivial (for example constant) distance, can be used to
construct a fully polynomial-time approximation scheme for approximat-
ing the centroid and also an output-sensitive polynomial algorithm for
the Vertex Enumeration problem. Finally, we show that for unbounded
polyhedra the vertex centroid can not be approximated to a distance of
d2=° for any fixed constant § > 0 unless P = NP.

Introduction

*During part of this work the second author was supported by Graduiertenkolleg fellowship

for PhD studies provided by Deutsche Forschungsgemeinschaft.

T Max-Planck-Institut fiir Informatik, Saarbriicken, Germany; (elbassio@mpi-inf.mpg.de)
$Université Libre de Bruxelles (ULB), Département de Mathématique, CP 216, Brussels,

Belgium; (hans.raj.tiwary@ulb.ac.be)

defined by a set of inequalities an H-polytope (H-polyhedron resp.) and a poly-
tope (polyhedron resp.) defined by vertices (and extreme rays) a V-polytope
(polyhedron respectively).

Let P be an H-polytope in the ambient space R? with vertex set V. Various
notions try to capture the essence of a “center” of a polytope. Perhaps the
most popular notion is that of the center of gravity of P. Recently Rademacher
proved that computing the center of gravity of a polytope is #P-hard [8]. The
proof essentially relies on the fact that the center of gravity captures the volume
of a polytope perfectly and that computing the volume of a polytope is #P-
hard [4]. Note that, randomized polynomial algorithms exist that approximate
the volume of a polytope within any arbitrary factor [5]. It is also easy to see
that the center of gravity can be approximated by simply sampling random
points from the polytope, the number of samples depending polynomially on
the desired approximation (See Algorithm 5.8 of [5]).

In this paper we study a variant of the notion of “center” defined as the
centroid (average) of the vertices of P. Despite being quite a natural feature
of polytopes, this variant seems to have received very little attention both from
theoretical and computational perspectives. Throughout this paper we will
refer to the vertex centroid just as centroid. The reader should note that in
popular literature the word centroid refers more commonly to the center of
gravity. We nevertheless use the same terminology for simplicity of language.
Our motivation for studying the centroid stems from the fact that the centroid
encodes the number of vertices of a polytope. As we will see, this also makes
computing the centroid hard.

The parallels between centroid and the center of gravity of a polytope mimic
the parallels between the number of vertices and the volume of a polytope.
Computing the volume is #P-complete [4] but it can be approximated quite
well [5]. Accordingly, the problem of computing the corresponding centroid
is hard ([8], Theorem 1) but the volume centroid can be approximated quite
well [5]. On the other hand computing the number of vertices is not only #P-
complete [3, 7], it can not be approximated within any factor polynomial in the
number of facets and the dimension. As we will see in this paper, computing the
vertex centroid of an H-polytope exactly is #P-hard. Even approximating the
vertex centroid for unbounded H-polyhedra turns out to be NP-hard. We do
not know the complexity of approximating the vertex centroid of an H-polytope
(bounded case).

The problem of enumerating vertices of an H-polytope has been studied
for a long time. However, in spite of years of research it is neither known to
be hard nor is there an output sensitive polynomial algorithm for it. Note
that the problem of enumerating all vertices of an H-polytope is different from
the problem of counting the number of vertices. While the latter problem is
known to be #P-complete [3, 7], the complexity status of Vertex Enumeration is
open [1]. A problem that is polynomially equivalent to the Vertex Enumeration
problem is to decide if a given list of vertices of an H-polytope is complete [1].
In this paper we show that any algorithm that approximates the centroid of
an arbitrary polytope to any “sufficiently” non-trivial distance can be used to

obtain an output sensitive polynomial algorithm for the Vertex Enumeration
problem.

The main results of this paper are the following:

(I) Computing the centroid of an H-polytope is #P-hard, and it remains
#P-hard even just to decide whether the centroid lies in a halfspace.

(IT) Approximating the centroid of an H-polytope is #P-easy.

(IIT) Any algorithm approximating the centroid of an arbitrary polytope within
a distance d2—9 for any fixed constant § > 0 can be used to obtain a
fully polynomial-time approximation scheme for the centroid approxima-
tion problem and also an output sensitive polynomial algorithm for the
Vertex Enumeration problem.

(IV) There is no polynomial algorithm that approximates the vertex centroid of

an arbitrary H-polyhedron within a distance dz=9 for any fixed constant
6 >0, unless P = NP.

The first two results in (I) follow easily from the hardness of counting the
number of vertices of an H-polytope. The next result is obtained by repeatedly
slicing the given polytope, in a way somewhat similar to the one used to prove
that computing the center of gravity is #P-hard [8]. The bootstrapping result
in (IIT) is obtained by taking the product of the polytope with itself sufficiently
many times. Using this result, and building on a construction in [6], we prove
(IV). Namely, we use a modified version of the construction in [6] to show that
it is NP-hard to approximate the centroid within a distance of 1/d, then we
use the result in (IIT) to bootstrap the hardness threshold to d2 = for any fixed
constant § > 0.

We should remark that for the approximation of centroid, we only consider
polytopes (and polyhedra) whose vertices lie inside a unit hypercube. To see
how this assumption can easily be satisfied, notice that a halfspace h can be
added to a polyhedron P such that P N h is bounded and the vertices of P are
preserved in P N h. Suppose for simplicity that the polyhedron is defined as
the set of inequalities Az < 1. Then it is easy to see that a halfspace whose
normal is any vector lying in cone(A4) when added to the set of inequalities
makes the polyhedron bounded if the defining hyperplane has a large enough
distance from the origin. The distance required for this only requires a number
of bits polynomial in the size of the input A. For details see [9] where the same
issue is discussed in a different context.

Once we have a polytope in R, solving 2d linear programs gives us the width
along each coordinate axis. The polytope can be scaled by a factor depending
on the width along each axis to obtain a polytope all whose vertices lie inside a
unit hypercube. In case we started with a polyhedron P, the scaled counterpart
of the halfspace h that was added can be thrown to get back a polyhedron that
is a scaled version of P and all whose vertices lie inside the unit hypercube. In
Subsection 2.2 we provide justification for this assumption.

Since all the vertices of the polytope (or polyhedron) lie inside a unit hyper-
cube, any arbitrary point from inside this hypercube is at a distance of at most
d? from the vertex centroid. Thus, our last result above should be contrasted
to the fact that approximating the vertex centroid within a distance of dz is
trivial. Also, even though we discuss only polytopes i.e. bounded polyhedra in
Subsections 2.1 and 2.2, the results and the proofs are valid for the unbounded
case as well. We discuss the unbounded case explicitly only in Subsection 2.3.

2 Results

2.1 Exact Computation of the Centroid

The most natural computational question regarding the centroid of a polytope
is whether we can compute the centroid efficiently. The problem is trivial if the
input polytope is presented by its vertices. So we will assume that the polytope
is presented by its facets. Perhaps not surprisingly, computing the centroid of an
‘H-polytope turns out be #P-hard. We prove this by showing that computing
the centroid of an H-polytope amounts to counting the vertices of the same
polytope, a problem known to be #P-hard [3, 7].

Proposition 1 Given an H-polytope P C RY, it is #P-hard to compute its
centroid c(P).

Proof Embed P in R%! by putting a copy of P in the hyperplane x4, = 1
and making a pyramid with the base P and apex at the origin. Call this new
polytope Q. The facets of () can be computed efficiently from the facets of P.
Treating the direction of the positive x441-axis as up, it is easy to see that the
centroid of the new polytope lies at a height 1 — n+r1 if and only if the number
of vertices of P is n. Thus any algorithm for computing the centroid can be run
on Q and the number of vertices of P can be read off the (d 4 1)-st coordinate.

O

Suppose, instead, that one does not want to compute the centroid exactly
but is just interested in knowing whether the centroid lies to the left or to the
right of a given arbitrary hyperplane. This problem turns out to be hard too,
and it is not difficult to see why.

Proposition 2 Given an H-polytope P C R? and a hyperplane h = {a-x = b},
it is #P-hard to decide whether a - c(P) < b.

Proof Consider the embedding and the direction pointing upwards as used
in the proof of Proposition 1. Given an oracle answering sidedness queries for
the centroid and any arbitrary hyperplane, one can perform a binary search on
the height of the centroid and locate the exact height. The number of queries
needed is only logarithmic in the number of vertices of P, which is at most
O(| 4] logm) if P has m facets. O

2.2 Approximation of the Centroid

As stated before, even though computing the gravitational centroid of a poly-
tope exactly is #P-hard, it can be approximated to any precision by random
sampling. Now we consider the problem of similarly approximating the vertex
centroid of an H-polytope. Let dist(x,y) denote the Euclidean distance between
two points x,y € RY. We are interested in the following problem:

Input: H-polytope P C R? and a real number € > 0.

Output: p € R such that dist(c(P),p) < e.

Recall that we only consider polytopes that are contained in a unit cube.
This is a natural assumption since the problem of approximating the centroid
is not so interesting if we allow polytopes that contain an arbitrarily large ball,
since this would allow one to use an algorithm for approximating the centroid
with any fized guarantee to obtain another algorithm with an arbitrary guar-
antee by simply scaling the input polytope appropriately, running the given
algorithm and scaling back.

We would like an algorithm for this problem that runs in time polynomial in
the number of facets of P, the dimension d and % Clearly, such an algorithm
would be very useful because if such an algorithm is found then it can be used
to test whether a polytope described by m facets has more than n vertices,

in time polynomial in m,n and the dimension d of the polytope by setting

€< % (% — n+_1) in the construction used in the proof of Proposition 1 This in

turn would yield an algorithm that computes the number of vertices n of a d-
dimensional polytope with m facets, in time polynomial in m, n and d. As stated
before, a problem that is polynomially equivalent to the Vertex Enumeration
problem is to decide if a given list of vertices of an H-polytope is complete
[1]. Clearly then, a polynomial-time approximation scheme for the centroid
problem would yield an output-sensitive polynomial algorithm for the Vertex
Enumeration problem.

Now we prove that the problem of approximating the centroid is #P-easy.
We do this by showing that given an algorithm that computes the number of
vertices of an arbitrary polytope (a #P-complete problem), one can compute
the centroid to any desired precision by making a polynomial (in %, the number
of facets and the dimension of the polytope) number of calls to this oracle.
Notice that in the approximation problem at hand, we are required to find a
point within a d-ball centered at the centroid of the polytope and of radius e.
We first modify the problem slightly by requiring to report a point that lies
inside a hypercube, of side length 2e, centered at the centroid of the polytope.
(The hypercube has a clearly defined center of symmetry, namely its own vertex
centroid.) To see why this does not essentially change the problem, note that the
unit hypercube fits completely inside a d-ball with the same center and radius
@. Therefore the value of € changes exactly by a factor of @. We will call any
point that is a valid output to this approximation problem, an e-approximation
of the centroid ¢(P).

Given an H-polytope P and a hyperplane {a - = b} that intersects P in

the relative interior and does not contain any vertex of P, define P, and P» as
follows:
P=Pn{zla-z<b}, Pyo=Pn{zla-z>b}.

Let V7 be the common vertices of P; and P, and V5 be common vertices
of P, and P. Note that V7, V5 are just a partition of the vertex set of P and
not the complete vertex sets of Py, P». The hyperplane {a -2z = b} creates some
extra vertices in P; and P,. The following lemma gives a way to obtain the
e-approximation of the centroid of P from the e-approximations of the centroids
of V1 and V5.

Lemma 1 Given P,Vi,V, defined as above, let n1 and no be the number of
vertices in Vi and Vi respectively. If ¢1 and co are e-approximations of the
centroids of Vi and Va respectively, then ¢ = % is an e-approximation of
the centroid c* of P.

Proof Let c¢;; be the j-th coordinate of ¢; for ¢ € {1,2}. Also, let ¢} be
the actual centroid of V; with ¢j; denoting the j-th coordinate of ¢j. Since ¢;
approximates ¢; within a hypercube of side-length 2¢, for each j € {1,---,d}
we have

c;-kj —e< ¢y ScfjJre.
Also, since c¢* is the centroid of P,

3k *
o = nicy + nacy
ni + no

Hence, for each coordinate ¢} of ¢* we have

ni(e—e)+na(eay—e) < nl(clj +€) + n2(c2j +€)

ni+nsz ;— n1 + na
> o <q < MO
niy + no
= cj— € < c}‘ <cj+e
= cj—€ Scjgc;—i—e.

O

Now to obtain an approximation of the centroid, we first slice the input
polytope P from left to right (say, 1 coordinate) into % slices each of thickness
at most €. Using standard perturbation techniques we can ensure that no vertex
of the input polytope lies on the left or right boundary of any slice. Any point
in the interior of a slice gives us an e-approximation of the x; coordinates of
vertices of P that are contained in that slice. We can compute the number
of vertices of P lying in this slice - which itself is a polytope - by subtracting
the number of vertices on the boundary of the slice from the total number of

vertices of the slice. This can be done using the oracle for vertex counting and
then using the previous Lemma along with a slicing along each of the coordinate
axes, we can obtain an approximation to the centroid of P. Note that for slicing
along one axis we only approximate that particular coordinate of the centroid
and hence slicing along each of the axes is necessary and sufficient. Thus we
have the following theorem:

Theorem 1 Given an H-polytope P contained in the unit hypercube, an e-
approximation of the centroid of P can be computed by making a polynomial
number of calls to an oracle for computing the number of vertices of a polytope.

Now we present a bootstrapping theorem indicating that any “sufficiently”
non-trivial approximation of the centroid can be used to obtain arbitrary approx-
imations. For the notion of approximation let us revert back to the Euclidean
distance function. Thus, any point x approximating the centroid ¢ within a
parameter e satisfies dist(z,c) < e. As before we assume that the polytope P

is contained in the unit hypercube. Since the polytope is thus contained in a
Vd

2
approximates the centroid within a distance v/d. Before we make precise our
notion of “sufficiently” non-trivial and present the bootstrapping theorem, some
preliminaries are in order.

ball with the origin as its center and radius at most any point inside P

Lemma 2 Suppose (z,9), (u,u) € R?*?, then

ety)~ @)l
I I < ,
2 NG
where || - || is the Buclidean norm in R? and R?? respectively.

The proof of the above lemma is easy and elementary, and hence we omit
it here. Next, consider the product of two polytopes. Given d-dimensional
polytopes P, Q the product P x Q is defined as the set {(z,y)|x € P,y € O}.
The facet defining inequalities of the product of P, @ can be computed easily
from the inequalities defining P and Q.

P ={z|Ajz < b1} and Q = {y|A2y < ba} = PxQ = {(x,y)|A12z < b1, Aoy < by},

where A; € R™1 %4 Ay € R™2%%2 g c R4y € R b € R™M X1 by € RM2X1,

It is easy to see that the number of vertices of P x Q is the product of the
number of vertices of P and that of Q, and the number of facets of P x Q is
the sum of the number of facets of P and that of Q. Moreover, the dimension
of P x @Q is the sum of the dimensions of P and Q. Moreover, the vertices of

P x Q are exactly all pairs of vertices with one vertex from P and the other
from Q [10]

Observation 1 If ¢ is the centroid of a polytope P then (c,c) is the centroid of
P x P.

Suppose we are given an algorithm for finding an e-approximation of an
arbitrary polytope contained in the unit hypercube. For example, for the simple
algorithm that returns an arbitrary point inside the polytope, the approximation
guarantee is v/d. We consider similar algorithms whose approximation guarantee
is a function of the ambient dimension of the polytope. Now suppose that for
the given algorithm the approximation guarantee is f(d). For some parameter k

k times
consider the k-fold product of P with itself P x --- x P, denoted by P*. Using
the given algorithm one can find the f(kd) approximation of P*¥ and using

Lemma 2 repeatedly one can then find the ! %)—approximation of P because

if (z,y) is an e-approximate centroid of P x P then % is an \/Lg—approximate

centroid of P. This gives us the following bootstrapping theorem:

Vd

Theorem 2 Suppose we are given an algorithm that computes a Td)—appmm'mation

for any polytope contained in the unit hypercube in polynomial time, where g(.)
s an unbounded monotonically increasing function. Then, one can compute an
e-approzrimation in time polynomial in the size of the polytope and gil(@).
In particular, if we have an algorithm with dz—? approximation guarantee
for finding the centroid of any polytope for some fixed constant § > 0, then
this algorithm can be used to construct a fully polynomial-time approximation

scheme for the general problem.

2.3 Approximating the centroid of a polyhedron is hard

The reader should note that the analysis of Subsections 2.1 and 2.2 remains
valid even for the unbounded case (polyhedra). Also recall that in our setup
vertices of the given polyhedron lie inside a unit cube. See introduction for a
discussion on how to satisfy this assumption.

Even though we do not have any idea about the complexity of approximating
the centroid of a polytope, now we show that for an arbitrary unbounded poly-
hedron the vertex centroid cannot be d2 —_approximated for any fixed constant
6 > 0 unless P = NP. To show this we first prove that for an H-polyhedron
P C R? the vertex centroid of P cannot be é—approximated in polynomial time
unless P = NP. This together with Theorem 2 implies that if the centroid

of a polyhedron could be d%_‘s-approximated then one could compute a é—

approximation of the centroid in time polynomial in d# (set g(d) = d°), which
is bounded from above by a polynomial for any fixed §. This would complete the
proof for hardness of d%’a—approximation of the centroid of an H-polyhedron.

Our proof uses the construction from [6] and its slight modification in [2]. We
give a sketch below. For completeness, we also give the complete construction
in the appendix.

The proof goes as follows: Given a Boolean CNF formula ¢, we construct
a graph G(¢) such that G(¢) has a “long” negative cycle if and only if ¢ is
satisfiable. For a given graph G we define a polyhedron P(G) such that every

negative cycle in G is a vertex of P(G) and vice-versa. From the properties of
the vertex centroid of this class of polyhedra, we then prove that for any formula
¢, L-approximating the vertex centroid of P(G(¢)) would reveal whether ¢ is
satisfiable or not.

2.3.1 Graph of a CNF formula.

Recall that the 3SAT problem is the following decision problem: Given a CNF
Boolean formula ¢ = Cy A--- A Cyr on N literals z1,--- ,xny such that every
clause C; is a disjunction of exactly 3 literals, is ¢ satisfiable?

Given a directed graph G = (V, E) and a weight function w : E — R on
its arcs, a directed cycle will be called short if it has only two nodes and long
otherwise. A cycle is negative if the total weight on its arcs is negative. The
following result was established in [6] (see also [2]).

Lemma 3 For any 3-CNF ¢ with m clauses we can obtain an arc weighted
directed graph G(¢) with the following properties:

(P1) G(¢) has 18m + 1 edges;
(P2) G(¢) has 3m short negative cycles;
(P3) every negative cycle in G(¢) has total weight —1;

(P4) there is a distinguished arc e, such that every long negative cycle but no
short cycle in G(¢) contains e; and

(P5) G(¢) has a long negative cycle if and only if ¢ is satisfiable.

2.3.2 The polyhedron of negative-weight flows of a graph.

Given a directed graph G = (V, E) and a weight function w : E — R on its arcs,
consider the following polyhedron:

(F) Z Yuv — Z You = 0 YV ueV
vi(u,v)EE vi(v,u)EE
P(G,w) = yeR”
() Y (N) Z WyvYuv = — 1
(u,v)EE
Yuw = 0 vV (u,v) €E

If we think of w,,, as the cost/profit paid for edge (u,v) per unit of flow,
then each point of P(G,w) represents a negative-weight circulation in G, i.e.,
assigns a non-negative flow on the arcs, obeying the conservation of flow at each
node of G, and such that total weight of the flow is strictly negative.

For a subset X C F, and a weight function w : F — R, we denote by
w(X) = Y, cx We, the total weight of X. For X C FE, we denote by x(X) €
{0,1}¥ the characteristic vector of X: x.(X) = 1 if and only if e € X, for
e € E. The following theorem states that the vertex set V(P(G,w)) of P(G,w)
is in one-to-one correspondence with the negative cycles of the graph G.

Theorem 3 ([2]) Let G = (V, E) be a directed graph and w: E — R be a real
weight on the arcs. Also, let C~(G,w) be the set of negative cycles in G. Then

VPG w) = {%X(C): CeC‘(G,w)}. (1)

Since by (P3), in the graph G arising from a 3-CNF formula, every negative
cycle has weight exactly —1, Theorem 3 implies that the vertices of P(G,w)
are exactly the characteristic vectors of the negative cycles of G. By (P5),
finding whether G has any long negative cycle, i.e., a negative cycle containing
the distinguished arc e (cf. (P4)) is NP-complete. By (P1) and (P2), for a
3-CNF formula with m clauses the constructed graph G has 18m + 1 arcs and
3m trivial short negative cycles. Consequently, the polyhedron P(G,w) that is
finally obtained has dimension 18m + 1 and 3m trivial vertices corresponding
to the short negative cycles of G.

Now, if there are no long negative cycles then the vertex centroid of P(G, w)
has value 0 in the coordinate corresponding to the edge e. For simplicity, we will
refer to this coordinate axis as x.. On the other hand, if there are K > 1 long

K 1

negative cycles in G then in the centroid ze = 5;; > 5,77 This implies that

having an e-approximation for the centroid of P(G,w) for € < would

1
2(3m+1)
reveal whether or not P(G,w) has a non-trivial vertex and hence whether or

not G has a long negative cycle. Thus we have the following theorem:

Theorem 4 There is no polynomial algorithm that computes a %—appro:m’mation
of the vertex centroid of an arbitrary H-polyhedron P C R%, unless P = NP.

An immediate consequence of Theorem 2 and Theorem 4 is that there is no
polynomial algorithm that computes any “sufficiently non-trivial” approxima-
tion of the vertex centroid of an arbitrary H-polyhedron unless P = N P. More
formally,

Corollary 1 There is no polynomial algorithm that d%_‘s—appmximates the cen-
troid of an arbitrary d-dimensional H-polyhedron for any fized constant 6 > 0
unless P = NP.

3 Open Problems

Although we can show that for unbounded polyhedra almost any non-trivial
approximation of the vertex centroid is hard, we can not make a similar state-
ment for the bounded case (i.e. polytopes). One interesting variant of Theorem
2 would be to consider a ball of radius r instead of a halfspace. If containment
of vertex centroid in a ball of radius r can be decided in time polynomial in
the number of inequalities defining the polytope, the dimension and r then one
can perform a sort of random walk inside the polytope and approximate the
centroid in polynomial time. We leave out the details of this random walk since
we do not have a method to check containment inside a ball.

10

References

1]

2]

D. Avis, D. Bremner, and R. Seidel. How good are convex hull algorithms?
Comput. Geom., 7:265-301, 1997.

E. Boros, K. Elbassioni, V. Gurvich, and H. R. Tiwary. The negative cycles
polyhedron and hardness of checking some polyhedral properties. Annals
of Operations Research, Feb. 2010.

M. E. Dyer. The complexity of vertex enumeration methods. Mathematics
of Operations Research, 8(3):381-402, 1983.

M. E. Dyer and A. M. Frieze. On the complexity of computing the volume
of a polyhedron. SIAM J. Comput., 17(5):967-974, 1988.

R. Kannan, L. Lovdsz, and M. Simonovits. Random walks and an o*(n®)
volume algorithm for convex bodies. Random Structures and Algorithms,
11(1):1-50, December 1998.

L. Khachiyan, E. Boros, K. Borys, K. M. Elbassioni, and V. Gurvich.
Generating all vertices of a polyhedron is hard. Discrete €& Computational
Geometry, 39(1-3):174-190, 2008.

N. Linial. Hard enumeration problems in geometry and combinatorics.
SIAM J. Algebraic Discrete Methods, 7(2):331-335, 1986.

L. Rademacher. Approximating the centroid is hard. In Symposium on
Computational Geometry, pages 302-305, 2007.

H. R. Tiwary. On the hardness of computing intersection, union and
minkowski sum of polytopes. Discrete Comput. Geom., 40(3):469-479,
2008.

G. M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in
Mathematics. Springer-Verlag, Berlin, 1995.

11

