Data Structure I: Tutorial 8

Bloom Filter

Given a set S C U of size n
We use a binary array T of length m initialized by the value false
and k hash functions hq,...,hg : U — M where M = {0,...,m — 1}

An element z € S is inserted by setting T'[h;(z)] = true for alli =1,...,k

Exercise 1. o Can we recognize that an element was inserted into our Bloom filter?

Can we recognize that an element was NOT inserted into our Bloom filter?

When Bloom filters can be useful?

Approach for the assignment

You have to implement a Bloom filter

Use a hash table from the standard library (e.g. Dict, unordered_map) to store candi-
dates for duplicates

It is necessary to use the data generator twice
First time, for every element x given by the generator:

— If it is possible that an element z is stored in the Bloom filter, insert x into the
hash table for candidates

— Insert z into the Bloom filter
Second time

— Count the number of occurrences of all candidates in the hash table

— On the second occurrence of an element, store it in the resulting array

Hints for the assignment:

You do not have enough memory to store all elements in the hash table, so you have
store only candidates given by the Bloom filter

Properly calculate the size of Bloom filter based on the given memory limits

Array [False | * 2**20 requires approximately 8 MB since Python stores it as an array
of pointers to one value False. Use bytearray instead

Read carefully the documentation of bytearray and distinguish the terms bit and byte

In Python, do not import numpy or other libraries consuming more memory to load
than available

e It is forbidden to store duplicates in the submitted file

Counting filters:
e Our goal is to modify Bloom filters to be able to delete an element

e We replace the binary array 7" by an array C' of m small counters (4-bits counters are
usually sufficient)

e Operation Insert increases by one all counters C[hy(z)], ..., Clhy(z)]
e Operation Delete decreases all these counters by one
Definition 2. Tabular hashing
o Assume that u = 2" and m = 2" and w is a multiple of an integer d
e Binary code of x € U is split to d parts 2°,..., 291 by 7 bits
e For every i € [d] generate a totally random hashing function Tj : [2/9] — M
e Hashing function is h(z) = To(2°) @ -+ @ Ty_1(z¥ 1)
@ denotes bit-wise exclusive or (XOR).

Theorem 3. Tabular hashing is 3-independent, but it is not 4-independent.

