
Data Structure I: Tutorial 8
Bloom Filter

• Given a set S ⊆ U of size n

• We use a binary array T of length m initialized by the value false

• and k hash functions h1, . . . , hk : U → M where M = {0, . . . ,m− 1}

• An element x ∈ S is inserted by setting T [hi(x)] = true for all i = 1, . . . , k

Exercise 1. • Can we recognize that an element was inserted into our Bloom filter?

• Can we recognize that an element was NOT inserted into our Bloom filter?

• When Bloom filters can be useful?

Approach for the assignment

• You have to implement a Bloom filter

• Use a hash table from the standard library (e.g. Dict, unordered map) to store candi-
dates for duplicates

• It is necessary to use the data generator twice

• First time, for every element x given by the generator:

– If it is possible that an element x is stored in the Bloom filter, insert x into the
hash table for candidates

– Insert x into the Bloom filter

• Second time

– Count the number of occurrences of all candidates in the hash table

– On the second occurrence of an element, store it in the resulting array

Hints for the assignment:

• You do not have enough memory to store all elements in the hash table, so you have
store only candidates given by the Bloom filter

• Properly calculate the size of Bloom filter based on the given memory limits

• Array [False] * 2**20 requires approximately 8 MB since Python stores it as an array
of pointers to one value False. Use bytearray instead

• Read carefully the documentation of bytearray and distinguish the terms bit and byte

• In Python, do not import numpy or other libraries consuming more memory to load
than available

1

• It is forbidden to store duplicates in the submitted file

Counting filters:

• Our goal is to modify Bloom filters to be able to delete an element

• We replace the binary array T by an array C of m small counters (4-bits counters are
usually sufficient)

• Operation Insert increases by one all counters C[h1(x)], . . . , C[hk(x)]

• Operation Delete decreases all these counters by one

Definition 2. Tabular hashing

• Assume that u = 2w and m = 2l and w is a multiple of an integer d

• Binary code of x ∈ U is split to d parts x0, . . . , xd−1 by w
d bits

• For every i ∈ [d] generate a totally random hashing function Ti : [2
w/d] → M

• Hashing function is h(x) = T0(x
0)⊕ · · · ⊕ Td−1(x

d−1)

⊕ denotes bit-wise exclusive or (XOR).

Theorem 3. Tabular hashing is 3-independent, but it is not 4-independent.

2

