Data Structure I: Tutorial 8

Bloom Filter

- Given a set $S \subseteq U$ of size n
- We use a binary array T of length m initialized by the value false
- and k hash functions $h_{1}, \ldots, h_{k}: U \rightarrow M$ where $M=\{0, \ldots, m-1\}$
- An element $x \in S$ is inserted by setting $T\left[h_{i}(x)\right]=$ true for all $i=1, \ldots, k$

Exercise 1. - Can we recognize that an element was inserted into our Bloom filter?

- Can we recognize that an element was NOT inserted into our Bloom filter?
- When Bloom filters can be useful?

Approach for the assignment

- You have to implement a Bloom filter
- Use a hash table from the standard library (e.g. Dict, unordered_map) to store candidates for duplicates
- It is necessary to use the data generator twice
- First time, for every element x given by the generator:
- If it is possible that an element x is stored in the Bloom filter, insert x into the hash table for candidates
- Insert x into the Bloom filter
- Second time
- Count the number of occurrences of all candidates in the hash table
- On the second occurrence of an element, store it in the resulting array

Hints for the assignment:

- You do not have enough memory to store all elements in the hash table, so you have store only candidates given by the Bloom filter
- Properly calculate the size of Bloom filter based on the given memory limits
- Array [False] ${ }^{*} 2^{* *} 20$ requires approximately 8 MB since Python stores it as an array of pointers to one value False. Use bytearray instead
- Read carefully the documentation of bytearray and distinguish the terms bit and byte
- In Python, do not import numpy or other libraries consuming more memory to load than available
- It is forbidden to store duplicates in the submitted file

Counting filters:

- Our goal is to modify Bloom filters to be able to delete an element
- We replace the binary array T by an array C of m small counters (4-bits counters are usually sufficient)
- Operation Insert increases by one all counters $C\left[h_{1}(x)\right], \ldots, C\left[h_{k}(x)\right]$
- Operation Delete decreases all these counters by one

Definition 2. Tabular hashing

- Assume that $u=2^{w}$ and $m=2^{l}$ and w is a multiple of an integer d
- Binary code of $x \in U$ is split to d parts x^{0}, \ldots, x^{d-1} by $\frac{w}{d}$ bits
- For every $i \in[d]$ generate a totally random hashing function $T_{i}:\left[2^{w / d}\right] \rightarrow M$
- Hashing function is $h(x)=T_{0}\left(x^{0}\right) \oplus \cdots \oplus T_{d-1}\left(x^{d-1}\right)$
\oplus denotes bit-wise exclusive or (XOR).
Theorem 3. Tabular hashing is 3-independent, but it is not 4-independent.

