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Abstract

For the new Meppel district Nieuwveense landen a hybrid energy concept is developed based

on biogas cogeneration. The generated electricity is used to power domestic heat pumps which

supply thermal energy for domestic hot water and space heating demand of households. In

this paper we investigate scheduling of a group of heat pumps in order to minimize the

maximum peak of the total electricity consumption. Results of two different control methods

are presented to balance the electric power demand for the group of heat pumps. The paper

addresses specific issues like computational hardness and the difficulty of prediction of energy

demand. We show that the control method which uses a scaling time gives equal results to

an exact approach but requires less computational effort.

1 Introduction

In modern society, a significant amount of energy is consumed for heating water for tap water and

space heating [5]. Almost every building is connected to a district heating system or equipped

with appliances for heating water locally. Typical appliances for heating water are electrical and

gas heating systems, heat pumps and Combined Heat and Power units (microCHP). The heated

water is stored in buffers to be prepared for the demand of inhabitants. In our model, a house

consists of two local heating systems, one for space heating and the other for tap. A schematic

overview of the model is presented in Figure 1. It consists of:

• a supply which represents some source of energy (e.g. electricity, gas),

• a converter which converts the energy into heat (hot water),

• a buffer which stores heat for later usage and
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• a demand which represents the consumption profile of heat.

A more formal definition of the used model for local heating and the used parameters and variables

is given in Section 2. In principle, the presented model can consider arbitrary types of energy but

in this paper we use electricity and heat to distinguish consumed and produced energy. This

simple model of a local heating system can not only be applied for heating water but has many

other applications in Smart Grids (e.g. control of fridges and freezers) and Inventory Management

(Section 2 presents more details about those applications).

The considered problems originate from a project called MeppelEnergie [3, 1] where the plan is

to build a group of houses and a biogas station in Meppel, a small city in the Netherlands [2]. In

this project, part of the houses will have a heat pump for space heating and tap water demands.

In the MeppelEnergie project, the electrical production of the biogas station will only be used by

the heat pumps. Therefore, the heat pumps should be scheduled in such a way that they only

consume, if possible, the electricity produced by the biogas station. If this is not possible, the

remaining energy has to be bought on the electricity market at minimal cost.

The planning of a group of heating systems may have many objectives in practice. In the

MeppelEnergy project, energy is transported by electrical networks or gas pipes and converted

by heating supply systems. Generators and transport equipment have to be dimensioned for the

maximal consumption peak. Thus, the main objective is minimizing the maximal consumption

which may decrease investments in the system. The mathematical background of this problem is

presented in [11] which proves that problem of minimizing peak is NP-complete [11].

A somewhat similar problem was considered by Bosman et al.[7, 9] who studied a microCHP

planning problem and proved that minimizing peak is NP-complete in their model [8]. Bosman et

al.[6] also present a dynamic programming algorithm for the microCHP planning problem whose

time complexity is O(T 3C+1) where T is the number of time intervals and C is the number of

microCHPs.

Although minimizing peak is algorithmically a hard problem, this paper presents its practical

importance based on the application to the MeppelEnergie case. Section 2 gives a more detailed

problem formulation which leads to an algorithm called global MILP control. As this algorithm

requires a lot of computational power, we develop an algorithm called time scale MILP control in

Section 3. The simulation results of these two algorithms are presented in Section 5 based on the

case MeppelEnergie which is explained in Section 4.
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Figure 1: Schematic picture of a house with two separated heating systems for space heating and
tap.

2 Problem statement and global MILP control

In this section we present a mathematical description of the studied model and possible applications

of this model.

First of all, we consider a discrete time model for the considered problem, meaning that we split

the planning period into T time intervals of the same length. We consider a set C = {1, . . . , C} of

C heating systems and a set T = {1, . . . , T} of T time intervals. Note that the heating of a house

is split into two independent heating systems (see Figure 1). In this paper, the letter c is always

an index of a heating system (either space heating or tap) and t is an index of a time interval. For

mathematical purposes, we separate a heating system into a converter, a buffer and demand; see

Figure 1. We say “a converter c” or “a buffer c” or “a demand c” to refer to the devices of the

heating system c ∈ C.

We consider a simple converter which has only two states: In every time interval the converter

is either turned on or turned off. The amount of consumed electricity is Ec and the amount of

produced heat (or any other form of energy) is Hc during one time interval in which the converter

c ∈ C is turned on. If the converter is turned off, then it consumes and produces no energy. Let

xc,t ∈ {0, 1} be the variable indicating whether the converter c ∈ C is running in time interval

t ∈ T .

The state of charge of a buffer c ∈ C at the beginning of time interval t ∈ T is denoted by sc,t

which represents the amount of heat in the buffer. Note that sc,T+1 is the state of charge at the

end of planning period. The state of charge sc,t is limited by an upper bound Uc.
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The amount of consumed heat by the inhabitants of the house from heating system c ∈ C

during time interval t ∈ T is denoted by Dc,t. This amount is assumed to be given and is called

the demand of heating system c. In this paper, we study off-line problems, so we assume that

demands Dc,t are given for the whole planning period.

The operational variables of the converters xc,t and the states of charge of buffers sc,t are

restricted by the following constraints.

sc,t+1 = sc,t +Hcxc,t −Dc,t for c ∈ C, t ∈ T (1)

0 ≤ sc,t ≤ Uc for c ∈ C, t ∈ {1, . . . , T + 1} (2)

xc,t ∈ {0, 1} for c ∈ C, t ∈ T (3)

Equation (1) is the charging equation of the buffer. During time interval t ∈ T , the state of charge

sc,t of a buffer c ∈ C is increased by the production of the converter which is Hcxc,t and it is

decreased by the demand Dc,t. Equations (2) and (3) ensure that the domains of variables sc,t

and xc,t, respectively, are taken into account. Note that the initial state of charge sc,1 can be fixed

(e.g. by setting sc,1 = Uc

2 ).

In this paper, we consider the objective function of minimizing the peak:

minimize m

where m ≥
∑

c∈C Ecxc,t for t ∈ T
(4)

Since Ecxc,t is the amount of consumed electricity by a converter c in time interval t, the sum∑
c∈C Ecxc,t is the amount of electricity consumed by all converters in time interval t. Furthermore,

the inequality and the objective function (4) guarantees that the value of the variable m is the

maximal consumption of electricity during one time period within the whole planning period.

In the following we give some other possible applications of this model.

Fridges and freezers: A fridge essentially works in the opposite way than heating, so it may

be modelled similarly. However, we have to be careful with the correct interpretation of

all parameters. The state of charge of the buffer again represents the temperature inside

the fridge, but a higher state of charge means a lower temperature. The converter does not

produce heat to the fridge but it decreases the temperature inside the fridge, so the converter

increases the state of charge of the buffer (fridge). The demand decreases the state of charge

of the fridge due to thermal loss and usage of the fridge by humans.
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Inventory: The considered heating problem is also related to Inventory control problems [14]. A

buffer may represent an inventory and a converter may represent orders. However, this leads

to a situation, where only a limited capacity of inventory is given and it is only possible to

order a fix amount of goods which is not a typical situation in inventory management.

Note that the objective function and all constrains are linear and operational state variables

are binary, so constraints and the objective (1)–(4) form an instance of Mix Integer Linear Pro-

gramming (MILP). This instance can be solved by any MILP solver (see e.g. [10]) and we call

this approach global MILP control. However, as the number of binary variables may get too large

for planning many houses over a long planning horizon, this method may get computationally ex-

pensive. Therefore, in the following sections an algorithm which significantly reduces the number

of variables is given.

3 Time scale MILP control

The method presented in the previous section creates one large instance of MILP and solves it

by an MILP solver. This method gives us an optimal solution for the whole planning period

but it may not be suitable for practical purposes. First, finding an optimal solution requires a

lot of computational power. Next, the prediction of demand for the distant future may be very

inaccurate.

Therefore, we consider an on-line control in which the decision which converters will be running

is made only for the coming time interval. On the other hand, we cannot ignore the future

completely. Indeed, we should take more care about the near future time intervals than the distant

ones because the current decision has stronger impact on the near future and the prediction is in

general more accurate for the near future.

As the general formal notation of Time scale control may be hard to understand, we use an

example to present the approach. Assume that the up-coming time interval has index 1. The

decision which converters c ∈ C will be running during the coming time interval 1 needs to be

made, meaning that the values of variables xc,1 need to be decided. Since also the influence of

the very near future needs to be detailed, we also consider binary variables e.g. for the next two

time intervals i.e. variables xc,2 and xc,3. For the further future, the plan does not need to be so

precise, so for e.g. another two time intervals, we relax the integral constraints, meaning that we

require 0 ≤ xc,4, xc,5 ≤ 1. The reason for relaxing these variables is to decrease the number of
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integral variables which has the dominating effect on the computational time required to solve an

MILP instance. From the practical point of view, these relaxed variables (e.g. xc,4) can signify

the probability that a converter c will run in time interval 4, and so
∑

c∈C Hcxc,4 is the expected

demand of electricity.

Following this, for the even more distant future, we only need a rough planning. In order

to explain the idea of rough planning, let us consider the state of charge equation e.g. for time

intervals t = 8, 9 and 10.

sc,9 = sc,8 +Hcxc,8 −Dc,8

sc,10 = sc,9 +Hcxc,9 −Dc,9

sc,11 = sc,10 +Hcxc,10 −Dc,10

We sum these equations and after simplification we obtain

sc,11 = sc,8 +Hc(xc,8 + xc,9 + xc,10)− (Dc,8 +Dc,9 +Dc,10).

The rough plan for converter c for time intervals t, t+1, . . . , t′ is now defined by xc,t..t′ =
∑t′

i=t xc,i,

that is we replace time intervals t, t + 1, . . . , t′ by one block of time intervals t..t′. During this

block, converter c consumes Ecxc,t..t′ electricity and produces Hcxc,t..t′ heat. Using this notation,

the state of charge equation for a block 8..10 of time intervals t = 8, 9 and 10 is

sc,11 = sc,8 +Hcxc,8..10 −Dc,8..10

where Dc,8..10 = Dc,8+Dc,9+Dc,10 is the cumulative demand for time intervals 8, 9 and 10. In this

example, we replace the three variables xc,8, xc,9 and xc,10 by one aggregated variable xc,8..10 which

is constrained by bounds 0 ≤ xc,8..10 ≤ 3. In this way, we can cover a longer planning horizon

without requiring too many variables in an MILP instance. Furthermore, note that only the sum

of demands Dc,8..10 for distant future time intervals is important. The practical consequence is

that the time where a significant demand occurs does not have to be predicted precisely, e.g. in

the morning it is sufficient to predict the amount of hot water demand for evening showers but

the exact time when inhabitants will take a shower can be approximated.

In our example, we consider rough planning variables xc,6..7, xc,8..10, and x11..15. In summary,
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all state of charge equations are

sc,t+1 = sc,t +Hcxc,t −Dc,t for t = 1, . . . , 5

sc,8 = sc,6 +Hcxc,6..7 −Dc,6..7

sc,11 = sc,8 +Hcxc,8..10 −Dc,8..10

sc,16 = sc,11 +Hcxc,11..15 −Dc,11..15

for every c ∈ C.

The capacity constraints of buffers remain the same, so

Lc,t ≤ sc,t ≤ Uc,t for t ∈ {1, 2, 3, 4, 5, 6, 8, 11, 16} .

The operational constraints of converters now are

xc,t ∈ {0, 1} for t ∈ {1, 2, 3}

0 ≤ xc,t ≤ 1 for t ∈ {4, 5}

0 ≤ xc,6..7 ≤ 2

0 ≤ xc,8..10 ≤ 3

0 ≤ xc,11..15 ≤ 5

and the objective is

minimize m

where m ≥
∑

c∈C Ecxc,t for t ∈ {1, 2, 3, 4, 5}

2m ≥
∑

c∈C Ecxc,6..7

3m ≥
∑

c∈C Ecxc,8..10

5m ≥
∑

c∈C Ecxc,11..15

This instance of MILP problem can be solved by any MILP solver. The values of variables xc,1

of an optimal solution are used to determine which converters c ∈ C should run in the coming

time interval 1. For the next time interval 2, a similar instance of an MILP problem is created

by shifting indices of time intervals by one and refining the predicted demands Dc,t. There is no

general rule how time intervals should be split into blocks since it is strongly influenced by the

particular case studies. In this study, we use one specific choice to study the potential of this
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approach.

4 Case application

Both methods of control (Global and Time scale MILP control) are applied to a specific case which

involves the final building phase of the Meppel project of 135 houses, where each house is equiped

with a separate heat pump for domestic hot water and one for space heating. The applied energy

system in Meppel is explained in detail in [17]. The purpose of this paper is to investigate the

quality of the power balancing for heat pump electricity demand with both types of control and to

compare them with a reference case where each heat pump determines the control by itself (using

PI control). To generate heat demand profiles, the following approach is followed:

• develop a thermal model to determine house space heating demand

• apply measured weather data (we investigate one week with a high space heating demand)

• define various typical house and household profiles to generate a variety of space heating

and domestic hot water demand profiles

• simulate space heating demands of the various households

• determine reference control results

• input domestic hot water and space heating demands into the Global and Time scale MILP

control algorithms and determine results

In the next sections, the individual steps of the approach are explained in more details.

4.1 Space heating thermal model

The purpose of the case application is to investigate whether the MILP control methods out-

lined in the previous sections give a satisfactory result for practical heat demand profiles or not.

Suitable methods to determine space heating demand are listed in [12] and include modelling of

thermal network, radiant time series and transfer function methods. Accuracy differences between

these methods are small, and largely depend on the accuracy of the input data. We choose to

adopt the thermal network modelling approach because it is relatively easy to integrate physical

characteristics of buildings into the model. Thermal networks also may be quite suitable to be

integrated into smart grid control algorithms at a later stage of our research.

8



To validate the accuracy of the thermal network approach, we compare the results of our model

with simulations of the whole building using TRNSYS and measured data in future work. For the

present paper we apply the thermal network shown in Figure 2. The model equations are derived

Tz

Ta

Tf

qload

Tcs

Rz‐wi

Rwindows

Rf‐cs

Rwi‐wo

Cwi

Cf

Twi Cz

qgain

Cwo

TwoRwo‐a
Rz‐f

qvent
qinf

Rroof

Figure 2: Applied thermal network model

as follows:

Cwo ·
dTwo

dt
=

(Ta − Two) ·Awall

Rwo−a
+

(Twi − Two) ·Awall

Rwi−wo

Cwi ·
dTwi

dt
=

(Two − Twi) ·Awall

Rwi−wo
+

(Tz − Twi) ·Awall

Rz−wi

Cf ·
dTf
dt

=
(Tz − Tf ) ·Af

Rz−f
+

(Tcs − Tf ) ·Af

Rf−cs

Cz ·
dTz
dt

= Dc,t + qvent + qinf + qgain +
(Tf − Tz) ·Af

Rz−f
+

+
(Twi − Tz) ·Awall

Rwall
+

(Ta − Tz) ·Awindows

Rwindows
+

(Ta − Tz) ·Aroof

Rroof

The terms in these equations are explained in Table 1. Scheduled values for heat gains (qgain) due

to resident and electric appliance dissipations are given in Section 4.3. Infiltration and ventilation

associated heat losses (qinf and qvent) are determined by the following equations:

qinf = φair,inf · ρair · cp,air · (Ta − Tz)

qvent = φair,vent · ρair · cp,air · (Ta − Tz)

The used terms are also explained in Table 1. Ventilation air flow values φair,vent in m3/h are

defined by schedules given in Section 4.3. Infiltration air flows φair,inf are related to leakages of
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Term Signification
Ta Ambient temperature
Tz, Cz Zone (room) temperature and thermal capacity
Two, Cwo Outside wall temperature and thermal capacity
Twi, Cwi Inside wall temperature and thermal capacity
Tf , Cf Zone floor temperature and thermal capacity
Tcs Cellar or creeping space temperature
Rroof Thermal resistance of roof
Rwindow Thermal resistance of windows
Rwo−a Thermal resistance between outside wall and ambient
Rwi−wo Thermal resistance between outside and inside wall
Rz−wi Thermal resistance between zone and inside wall
Rz−f Thermal resistance between zone and floor
Rf−cs Thermal resistance between floor and concrete structure
qvent Ventilation heat flow
qinf Infiltration heat flow
qgain Internal gain heat flow
Dc,t Heating load flow (heating Demand)
φair,inf Infiltration air flow [m3/h]
φair,vent Ventilation air flow [m3/h]
ρair Air density
cp,air Specific heat capacity of air

Table 1: Nomenclature energy system characterization

the building and assumed as constant values. We defined some variations including heat recovery

ventilation.

In the following we give some notes about the complexity of the thermal model. The thermal

network model is a simplified version of the model we used in [16] to study the effects of thermal

storage in a living room floor heating system. That model included solar gains and more thermal

capacitance terms for the interior to study the effects on operative temperature as a measure of

thermal comfort. In the present paper we did not include solar gains in order to reduce complex-

ity. Solar gains have the effect that real daytime space heating demands will be lower than our

calculation results, but for the purpose of the present investigation this is not relevant.

A setpoint is the zone temperature preferred by inhabitants. Setpoints schedules are defined in

Section 4.3. The demand Dc,t for every house c and time interval t is determined by the following

rules:

• If the zone temperature Tz equals the setpoint, then the demand Dc,t is the amount of energy

which the heating system has to generate to keep the zone temperature constant.

• If the setpoint is increased, then the demand Dc,t is increased to raise the zone temperature

in a given warmup speed dTz

dt .
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• If the zone temperature Tz is above the setpoint (e.g. due to decreasing the setpoint or

natural heating by internal gains), the demand Dc,t is the minimal non-negative amount of

energy which keeps the zone temperature above the setpoint.

The output of the model is the required heating demand for this type of control. Part of our

future work is to use heat pump schedules obtained from the MILP control methods as heating

input to the zone to investigate whether the obtained heat pump control results in acceptable zone

temperature control or not.

4.2 Application of weather data

As we explained in the previous paragraph, we only include heat loss due to temperature differ-

ences between the zone temperature and ambient temperatures into the case investigation. Effects

of solar gains and wind speeds on the heat demand are excluded. Weather data containing hourly

average ambient temperatures are obtained from the website of the Dutch national weather insti-

tute ([4]). We choose data of weather station Hoogeveen which is close to Meppel. We investigate

the coldest week of 2012 as this week results in a relatively high heat demand for space heating.

4.3 House and household case information

We consider a total of 135 households and we define three types of households (see Table 2) living

in semi-detached and detached houses. Houses will be built in three phases and later phases will

have higher standard of thermal insulation due to tightening regulations. In this study we assume

that in each phase, 30 semi-detached and 15 detached houses will be built. Rc-values of semi-

detached houses in the phases are 3.5, 5.0 and 7.5 m2K/W and the Rc value of detached houses

are 5.0, 7.5 and 10.0 m2K/W .

We consider a temperature lower set point (18◦C) during working hours and night and a higher

temperature set point (20◦C) otherwise. We also define domestic hot water demand for morning,

afternoon and evening peaks. See Table 2 for schedules of the temperature set points and energy

demands for hot water.

4.4 Simulation results of heating demand

The model equations of Section 4.1 are solved using a 15 minute time step which is required as a

minimum time step for controlling the thermal storage and to estimate related heat pump running

times. To obtain 15 minute heat demand data, we applied linear interpolation of the one hour
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Type of household Young couple Young family Elderly people
Number of persons in a household 2 4 2

Number of houses
semi-detached 27 54 9
detached 12 27 6

Higher setpoint
weekdays 17–22 8–22 10–23
weekend 9–23 9–23 10–23

Hot water on weekdays
morning 15 MJ 8 MJ 4 MJ
afternoon 0 MJ 4 MJ 4 MJ
evening 20 MJ 24 MJ 20 MJ

Hot water on weekend
morning 8 MJ 4 MJ 4 MJ
afternoon 4 MJ 4 MJ 4 MJ
evening 24 MJ 32 MJ 24 MJ

Table 2: Types of households, the number of household types in both types of houses, schedules
of higher temperature setting and hot water demands.

heat demand data. This is performed for all the houses of a different layout (semi detached or

detached), different Rc-values and different household types.

As result we show the sum of the heating demand for the 135 houses in Figure 3. The sum of
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Figure 3: Simulated total space heating demand of 135 households for the coldest week in 2012

the heating demand for domestic hot water is obtained by addition of domestic hot water demand

of each household, which is shown in Figure 4.

In our analysis we assume a heat pump coefficient of performance (COP) of 4.5 for space

heating and 2.5 for domestic hot water generation for the coldest week in 2012, we find as average

electricity input 116.4 kW for space heating and 19.3 kW for domestic hot water, leading to 135.7

kW total average electricity demand. If the MILP control performs well on minimizing peaks, we

expect control schedules for the heat pumps to give results close to this average electricity demand.
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5 Case results

In Figure 5 we show the electric energy demand (E-demand) and the results achieved with the

three methods of control. The E-demand in time intervals t is calculated as the sum of electrical

energy needed to produce heat for the space heating demand in time interval t and the average

domestic hot water demand over the whole week. For domestic hot water, calculating with the

average demand is more appropriate than the real demand because as Figure 4 shows, the real

demand is concentrated during several hours each day. It is common practice that heat pumps take

hours each day to charge the domestic hot water buffer from which the real demand is supplied,

which results in an average heat generation and electricity demand for all the houses together.

The reference control, which resembles PI control, of the zone state of charge and hot water

buffer state of charge, results in a dynamic electricity demand with many peak loads on the

network, which indicates a high level of simultaneous running heat pumps at those times.

Both methods of MILP control of the heat pumps lead to an improved, almost flat electricity

consumption profile. The result of Time scale MILP control is only slightly less flat than Global

MILP control. The average for both is 135.6 kW. The standard deviation for Time scale MILP

control is 5.9 and for Global MILP control 5.2, but for reference control 45.0. So compared to

the reference control, the total improvement of both MILP control methods on peak reduction

is approximately 87%. Global MILP control gives 1.6% better peak reduction performance than

Time scale MILP control. If we consider this almost equal performance and take into account

the reduced computational effort of Time scale MILP control, we prefer this method for future

algorithm development.
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6 Conclusions

In this paper we investigate scheduling of a group of heat pumps for 135 different households

in order to minimize the maximum peak of total electricity consumption. We generate heat

demand data for space heating by simulation with a thermal network model of houses with different

insulation properties and define domestic hot water demand profiles for three types of households.

We compare three control methods: reference (PI) control, Global MILP control and Time scale

MILP control.

In the defined case of 135 houses, MILP control decreases electricity peaks by 87% compared

to reference control. The difference between Global and Time scale MILP control is small. Peak

reduction results of Global MILP control are only 1.6% better than Time scale MILP control. But

since Time scale MILP control is computationally much more efficient, we propose to use Time

scale MILP control. The influence of chosen time scaling on the achieved result may be studied

in future research.

In this paper we only investigate the effects on peak reduction and the results look promising.

Future work will be dedicated to investigate the resulting thermal comfort as a result of the

obtained heat pump planning. For this we will perform ’inverse’ simulations, using the heat pump

schedules as input for the thermal network model used in this paper. Also part of future work

is to investigate methods of reaching a social fairness in heat pump planning and integrating this
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work into the TRIANA smart grid control method [15].
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