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Abstract

This paper studies a planning problem for heating water. Hereby, boilers (e.g. gas or
electric boilers, heat pumps or microCHPs) are used to heat the water and store it for domestic
demands. We consider a simple boiler which is either turned on or turned off and has a buffer
of limited capacity. The energy needed to run the boiler has to be bought on a day-ahead
market, so we are interested in a planning which minimizes the cost to supply the boiler with
energy. We present a greedy algorithm whose time complexity is O(T'a(T")) where T is the
number of time intervals and « is the inverse of Ackermann function.

1 Introduction

In modern society, a significant amount of energy is consumed for heating water [1]. Almost every
building is connected to a district heating system or equipped with appliances for heating water
locally. Typical appliances for heating water are electrical and gas heating systems, heat pumps
and Combined Heat and Power units (microCHP). The heated water is stored in buffers to be
prepared for the demands of the inhabitants of the building.

In this paper we consider a local heating systems which consist of

e a supply which represents some source of energy (electricity, gas),
e a converter which converts the energy into heat (hot water),
e a buffer which stores the heat for later usage and

e a demand which represents the (predicted) consumption profile of heat.

A more formal definition of the considered setting for local heating and the used parameters and
variables is given in Section 1.1. The presented model can consider arbitrary types of energy but
in this paper we use electricity and heat to distinguish consumed and produced energy. However,
this simple model of a local heating system can not only be applied for heating water but has many
other applications, e.g. heating demand of houses, fridges and freezers and inventory management.
More details about those applications are given also in Section 1.1.

The electricity used to heat the water has to be bought. Although these prices are nowadays
mostly fixed for private costumers, the supply companies are faced with variable prices resulting
e.g. from a day ahead market. This leads to the objective of minimizing the total cost of electricity
consumed by the heating system during the planning period. Note that in cost or auction based
control algorithms for Smart Grids, this objective is also used (see e.g. [14]).

1.1 Problem statement and results

In the following we present a mathematical description of the studied model and a summary of
the results of this paper.
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First of all, we consider a discrete time model for the considered problem, meaning that we
split the planning period into T time intervals of the same length resulting in a set 7 = {1,...,T}
of time intervals. In this paper, the letter ¢ is always used as an index of time intervals.

For the heating system, we consider a simple converter which has only two states: In every time
interval the converter is either turned on or turned off. The amount of produced heat during one
time interval in which the converter is turned on is denoted by H. If the converter is turned off,
then it consumes and produces no energy. Let z; € {0,1} be the variable indicating whether the
converter is running in time interval ¢ € T or not. Furthermore, if the converter is running, then
it consumes some amount of electricity which costs P; in time interval ¢ € 7. In another words,
P; is the price for running the converter in time interval ¢ € 7. Summarizing, the objective of the
planning problem is minimizing the cost for producing the heat, which is given by >, Pyx;.

Coupled to the heating system is a buffer. The state of charge of the buffer in the beginning
of time interval ¢ € T is denoted by s; and represents the amount of heat in the buffer. Note that
s7+1 is the state of charge at the end of planning period. Based of the physical properties of the
buffer, the state of charge s; is limited by a lower bound L; and an upper bound U;. These two
bounds are usually constant over time: the upper bound Uy is the capacity of buffer and the lower
bound L; is zero. But it may be useful to allow different values, e.g. a given initial state of charge
can be modelled by setting L; and U; equal to the initial state. In this paper, we always assume
that L, = Uy, meaning that the initial state of charge s; is fixed.

The (predicted) amount of consumed heat by the inhabitants of the house from the boiler
during time interval ¢ € T is denoted by D;. This amount is assumed to be given and is called
the demand. In this paper, we study off-line version of the problem, so we assume that both the
demands D; and also the prices P; are given for the whole planning period already at time the
beginning of the planning period.

The variables x; specifying the operation of the converter and the states of charge of the buffer
s¢ are restricted by the following constraints.

St41 = S¢ t+ Hxy — D, for teT (1)
L, <s<U, for ted{l,...,T+1} (2)
xy €4{0,1} for teT (3)

Equation (1) is the charging equation of the buffer. During time interval ¢ € T, the state of
charge s; of the buffer is increased by the production of the converter which is Hzx; and it is
decreased by demand D;. Equations (2) and (3) ensures that the domains of variables s; and z,
respectively, are taken into account. In this paper, the objective function is to minimize the cost
for the electricity needed to produce the heat and this cost is given by the sum } , . Pia;.

In a previous paper [7], we presented an algorithm for the problem of minimizing cost for the
local heating which is based on dynamic programming and it has the time complexity O(T?). In
Section 4 we prove that the optimal solution also can be fount using a greedy algorithm. This
greedy algorithm first sorts all time intervals by their prices P;, and then it processes all time
intervals one-by-one. In the basic version of the algorithm, the necessary updates in each step
take time O(T), so the total time complexity of the algorithm is O(7?), which is the same as the
dynamic programming algorithm. In Section 5, we use disjoint-set data structure of the union-find
algorithm (see e.g. Cormen et al. [4]) to obtain a complexity of O(Ta(T')) where « is the inverse
of Ackermann function. Hereby, we ignore the complexity of sorting the time intervals since the
order may be a part of the input or a be fount using a bucket sort algorithm (see e.g. Cormen et
al. [4]).

2 Related works and applications
In the following we present related literature and give some possible applications of this model.

Some related works can be found in the inventory management and lotsizing literature (see e.g.
[5, 10] for reviews). In inventory control problems (see [15]) a buffer may represent an inventory



of items, whereby a converter represent the production of items and demand represent the orderd
quantities. As our problem consists of only one commodity, the single item lot sizing problem
is related (see [3] for a review). Wagner and Whitin [18] presented an O(T?) algorithm for the
uncapacitated lot-sizing problem which was improved by Federgruen and Tzur [6] to O(T logT).
On the other hand, Florian, Lenstra and Rinnooy [9] proved that the lot-sizing problem with
upper bounds on production and order quantities is NP-complete. Computational complexity of
the capacited lot sizing problems is studied in [2]. Our problem is a special case of capacited single
item lot sizing problem which does not seem to be considered in the literature.

One other related area is vehicle routing and scheduling (see e.g. [11] for an overview of this
area). For example, Lin, Gertsch and Russell [13] studied optimal vehicle refuelling policies. In
their model, a refueling station can provide an arbitrary amount of gas while our converter is
restricted to two possible states of heat generation. Other papers on vehicle refuelling policies
are more distant from our research since they consider that a car is routed on a graph (see e.g.
[16, 12]).

In the following we give some possible applications of the model presented in this paper.

Hot water: Converter and buffer can be seen as a model of a simple electrical or gas boiler.
Hereby, demand represents the consumption of hot water in a house.

House Heating: The model may be used to express a very simple model for house heating. The
converter represents a simple heater. The capacity of the buffer corresponds to thermal
capacity of the heating system (e.g. hot water buffer or thermal capacity of concrete floors
and walls) and the state of charge of the buffer is related to the temperature inside the
house. Heat losses of the house may be modelled using the demand if we assume that the
temperature difference inside the house does not have significant influence on the losses.
More details about using thermal mass as a buffers is presented in [17] and computing heat
demands is explained in [8].

Fridges and freezers: A fridge essentially works in the opposite way than heating, so it may
be modelled similarly. However, we have be careful with the correct interpretation of all
parameters. The state of charge of the buffer again represents the temperature inside the
fridge, but a higher state of charge means a lower temperature. The converter does not
produce heat to the fridge but it decreases the temperature inside the fridge, so the converter
increases the state of charge of the buffer (fridge). The demand decreases the state of charge
of the fridge due to thermal loss and usage of the fridge by humans.

3 Reformulation of the problem

In [7] a reformulation of the problem presented in Section 1.1 is given, which enables a better
presentation and analysis of our algorithm. For sake of completeness, we give this reformulation
in this section. We show that conditions (1) and (2) can be replaced by one condition (8).

First, we expand the recurrence formula (1) into an explicit equation

t t
St41 = S1 +ZHJ}Z' - ZDZ'.
i=1 i=1

Since we assume that the initial state of charge satisfies s; = L; = U, we can replace s; by L,
and substitute this into inequalities (2), leading to

¢ ¢
Liy SL1+HZ$1'—ZD¢ < Uit

i=1 =1

which can be rewritten as
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Figure 1: Precomputation of lower and upper bounds on the sequence of partial sums 22:1 T;
according to Section 3. Full lines are the original bounds (A4}); and (B;}); defined by formulae (5)
and (6) and dashed lines are the precomputed bounds (A;); and (By)s. Observe that .

Since the sum 22:1 x; is an integer between 0 and ¢ we obtain the following simple constrains for
this sums

t
A <Y @i <BjforteT (4)
=1

where

Li1—L t D,
Al = maX{O7 ’V il 1; 2zt l-‘ } : (5)

t
Bl = min {t, {Ut“ Ll; Liz1 DZJ } . (6)

The values of A} and By for every ¢t € T can easily be computed in time O(T'). In the rest of

this section we study properties of sequences A, ..., A% and Bj, ..., B} which are shortly denoted
by (A}): and (Bj)s, respectively.
Observe that the sequence of partial sums 2221 x; for t =1,...,T is non-decreasing and the

difference of two consecutive elements is at most 1. We say that a sequence (Z;); of T + 1 integers
Zo, Z17 ey ZT satisfies (7) if

ZOZOa

7
Zt_ngtht_l—i—lforalltGT. ( )

We show that we can replace parameters A} and B; by parameters A; and By such that sequences
(A¢): and (By) satisfy (7) and the binary variables z; satisfy (4) if and only if they satisfy

t
i=1

The idea of the replacement is presented in Figure 1. It is easy to see that for this example every
solution (z); that satisfies (4) also satisfies (8) and vice versa. In [7] an algorithm to obtain
required sequences (A:): and (By); is given.



4 Greedy algorithm

In this section we present a greedy algorithm to the problem of fulfilling the heat demand with
minimal cost which is based on solution that can be formulated as

Minimize > oier Py
such that A; < 2221 ;< By forteT 9)
z; € {0,1} forte T

For the following, we assume that the bounds A; and B; are precomputed, meaning that the
sequences (A;): and (By): satisfies (7).

The first natural question is under which conditions problem (9) has a feasible solution. An
obvious condition for the existence of a feasible solution x; is that A; < B; for every t € 7. This
condition is also sufficient, since in this case x; = A; — A;_1 for t € T gives a feasible solution.
Summarizing, we get the following lemma.

Lemma 4.1. The problem (9) has a feasible solution if and only if
Ay < By for everyt € T. (10)

Since the condition (10) can easily be evaluated in linear time, we assume in the remainder
of the paper that the problem (9) has a feasible solution. To solve the problem, we use the
classical greedy approach. First, the time intervals are sorted by prices P;. Then, time intervals
are processed in order of increasing prices and the converter is turned on in time interval t* € T,
if there exists a feasible solution satisfying x4« = 1. Such a feasible solution implies

-1 t
Ap1 < E 7 < ) T < By
i1 i1

which implies the following lemma.

Lemma 4.2. If the problem (9) has a feasible solution (x;); satisfying x> = 1 for a givent* € T,
then the inequality As«_1 < By« holds.

Note that the condition As«_1 < By in the lemma is well-defined also for t* = 1 since we
consider that Ay = 0. The condition A1 < B+ in Lemma 4.2 is also sufficient (if (10) is
satisfied) and is the base for the presented approach. At this point, we do not give a formal proof
of this implication, but the proof follows from the further considerations and lemmas (e.g. 4.3 or
4.5).

The greedy algorithm starts with the (infeasible) solution z; = 0 for every t € T. Tt finds the
cheapest time interval t* satisfying A1 < By« and it sets x4+ := 1. After choosing t* and setting
x4+ = 1, the condition A;_1 < B; do no longer imply that z; can be set to 1. We first have to
adopt the values of sequences (A;); and (B;); to incorporate the choice x;» = 1. The following
lemma specifies how the values of (A4;); and (Bi): have to be updated in every step and shows
that this update are correct.

The lemma finds the time interval ¢4 where the sequence (A;); has the first increasing value
after the time interval ¢*, and the time interval ¢ g where the sequence (B;); has the last increasing
value before the time interval t*. These increases at time intervals ¢4 and tg are removed from
sequences (A;); and (By)y, respectively; that is values of sequences are decreased by one after these
time intervals (see Figure 2).

Lemma 4.3. Let t* € T satisfy A1 < By«, and let
tAzl—l—maX{tET;At:At*,l} tB:min{tET;Bt:Bt*}

N A, ift<tap . By ift<tp
Af = : Bf = :
At—]. thZtA Bt—]. thZtB
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Figure 2: Sequences (A:)t, (Bt)t, (AF): and (Bf): according to the Lemma 4.3.

Then, sequences (A}): and (Bf): satisfy (7) and for every 0-1 sequence (xy): with xy» = 1 the
condition (9) holds if and only if it holds

t
A < Z x; < BY for everyt € T. (11)
=

Before we prove Lemma 4.3 we first explain why we need the equivalence in the lemma. The
idea is that sequences (A}), and (B}); form another instance of the problem (9) where the time
interval t* is skipped. When we find an optimal solution (x:); for the instance of the problem
(4) with (A7): and (Bf): where t € T \ {t*}, then we obtain an optimal solution for the original
instance with (A;); and (B;); where t € T by setting x4 := 1. Note that Lemma 4.3 does not
guarantee the optimality but only the feasibility and that time interval t* needs not to be removed
in the greedy algorithm since the greedy algorithm process every time interval at most once.

Proof of Lemma 4.3. Note that if A;«_1 = Ar, then t4 = T + 1 and the sequences (A;): and
(A7): are the same. Otherwise, if Ay_y < Ap, then A;, 1 = A;, — 1. Furthermore, it holds that
By, 1 = B, — 1. Therefore, the sequences (A}): and (By): differ from sequences (A;): and (B:):
by removing (at most) one step of the step function. This implies that they satisfy (7).

In order to prove the second part, let (z;): be a 0-1 sequence with 4« = 1. For such a sequence,
the condition (9) is equivalent to

¢
A < Z z; < By for every t < t* and
iz
¢
AtflgszigBtfl for every t > t*.
i=1
it
Thus, it remains to prove that conditions (11) and (12) are equivalent.

First, we consider the lower bounds. Observe that the lower bounds of (11) and (12) only
differ for time intervals ¢t € T with ¢* < ¢ < t4. For such ¢ it holds that A} = A; and, thus, we



Algorithm 4.1: Greedy algorithm for minimizing cost.
Input: Sequences (A;); and (By); satistying (7) and (10)
Output: Optimal solution (z;); the problem (9)

initialization: x; := 0 for all t € T;
for t* € T sorted by prices (P): do
if the condition (13) is satisfied then
Tx 1= ].,
L Apply Lemma 4.3

return Optimal solution (x4):

only have to prove that (12) implies (11) since the lower bound in (11) is stronger. However, the
implication follows directly from

tr—1 t
A::At:At*,1§in§in.
i=1 i=1
i£L*

The upper bounds can be considered similar. Observe that the upper bounds of (11) and (12)
differ only for time intervals ¢ € T satisfying tg < t < t*. For such ¢ it holds that B} = B; — 1
and we only have to prove that (12) implies (11) since the upper bound in (11) is stronger. The
implication follows from

t t*
> 2 <> wi<Bp—1=B,—1=B;.
i=1 i=1
i#£t” i#£t”

O

In practice, the price of electricity is usually positive. However, we present a greedy algorithm
which also works if the price P; is negative for some t € T. If all prices are non-negative, then
without loss of generality we can assume that Ar = B since there is an optimal solution which
turns the converter on only Ar-times (that is, there exists an optimal solution with ), ,z; =
Ar). In the general case where prices can be negative, the value of the objective function may
be improved by turning the converter on more often. In the later case, we need to extend the
condition A4 1 < By of the greedy algorithm to a condition which also considers negative prices.
The new condition is

A1 < By+ and (At*—l < Arpor P < 0) (13)

Note, that the condition A;«_; < By« is already necessary for setting z;+ = 1 by Lemma 4.2.
If Aj«_1 = Ap then the total minimal number of runs of the converter has to be reached already
before the time interval ¢*, so the lower bound (A;); does not force the converter on in the time
interval ¢*. In this case, it is obvious that an optimal solution satisfies x;+ = 0 unless the price
P+ is negative.

As already mentioned above, we can assume that Ar = By if all prices are non-negative. In
this case the condition A +_1 < By« implies Ay« < Ap, so the condition (13) reduces to the
condition Ap_q1 < Byx.

The greedy algorithm is summarized in Algorithm 4.1. In the following, mathematical induc-
tion is used to prove that this greedy algorithm finds an optimal solution. The following lemma
provides the base of the induction.

Lemma 4.4. If A7 = 0 and there is no t* € T such that By > 0 and Pie < 0, then z; = 0 for
all t € T is an optimal solution.



Proof. Since Ar = 0 it follows that A, = 0 for all ¢ € T and thus, the trivial solution z; = 0 for
all t € T is feasible. Let t = max{z € T; By = 0} and let (Z;); be an arbitrary feasible solution.
Observe that z; = 0 for ¢t < t; and P; > 0 for ¢ > t. Hence,

ZPti‘t:ZPt.’ftZO:Ztht

teT >t teT
which implies that the solution (z;); is optimal. O

From Lemma 4.4 it follows that the condition A7 = 0 and P;+» > 0 can be used as termination
condition in Algorithm 4.1. Next, we prove the induction step of the proof that Algorithm 4.1
finds an optimal solution. The following lemma proves that for a time interval t* € T with
minimal prize P« among all intervals satisfying (13), there exists an optimal solution (z;); with
x4+ = 1. The proof essentially processes by a contradiction, so it is assumed that there exists
an optimal solution (Z;); but Z; = 0; and a solution (#;); is constructed such that #; = 1 and
Yoier Pt <3 e Pi%. The construction finds a time interval { which is either the maximal
t < t* or the minimal ¢ > t* such that xz; = 1; and the running of the converter is rescheduled
from the time interval £ to t* without increasing the objective. Two cases result from the following
distention: If Zf;}l Z; = Aps_1, then the minimal ¢ > ¢* need to be used and if 22;1 ZT; = By,
then the maximal ¢ < t* need to be used.

Lemma 4.5. Assuming that there exists a time interval t* € T satisfying (13), let t* be the time
interval satisfying (13) with the minimal price Pi=. Then, there exists an optimal solution (x¢):
such that xi; = 1.

Proof. We prove the lemma indirectly by proving that for every feasible solution (Z;); there exists
a feasible solution (#); such that #;» = 1 and }_, .+ Pi#; < >, 7 P;%;. Since we assume that
there always exists a feasible solution, the lemma follows from this observation.

Let (Z:); be a feasible solution. If Z; = 1, we are done. Thus, we assume that z; = 0, and we
consider two cases. .

Case 1 Zf:? Z; > Apo_q: Let £ = max {t < t*; Z; = 1} which is well-defined since Zf;ll T; >
Agp<—1 > 0. The new solution now is defined by Z; =0 and #4» =1 and &, =7, fort € T \ {tA7 t*}.
In order to prove that (&) fulfills the mentioned conditions, we first prove that it is feasible. The
equality 22:1 Ty = 22:1 Z; does not hold only for time intervals ¢ with ¢ < t < t*. However, for
such t it holds that

t*—1 t

t t
A < Ap_1 < Zd_?i—1:Zi‘i—1:ZfCi<Zi‘i§Bt.
=1 1=1 =1 1=1

Hence, (Z:); is feasible.

Next, for sake of contradiction we assume ), Pi&s > >, Pi%s, implying that P; < Pp.. If
t satisfies (13), we have a contradiction with the definition for t*, so # does not satisfy (13). From
Lemma 4.2 applied on z; = 1 it holds that A; ; < B; which implies that A; ; = A7 and P; > 0.
Since ¢ < t* we have A;_y = Ap—1 = Ap. Furthermore, we have P;» > P; > 0, meaning that t*
does not satisfy (13) which is a contradiction. Thus, Y, .+ P2 < >, .1 PiZs.

Case 2 Zi;}l Z; = Ap_1: Unlikely, we now need two subcases depending on whether there
exists ¢ > t* such that z; = 1.

Case 2.1 t = min {t > t*; 7; = 1} € T is well-defined: The new solution is defined by 7; = 0
and &+ = 1 and &y = T for t € T\ {f, t*}. In order to prove that (&), fulfills the mentioned
conditions, we first prove that it is feasible. The equality 22:1 Ty = 22:1 Z; do not holds only
for time intervals t with t* < t < {. However, for such ¢ holds that

t*—1

t t t
A<y <> @i =Y @i+1= & <Ap_1+1< Bp < By

=1 i=1 i=1 =1



Hence, (3;); is feasible.

Next, for sake of contradiction we assume ), Pt > ), Pi%, implying that P; < Pp.. If
t satisfies (13), we have a contradiction with the definition of t*, so # does not satisfy (13). From
Lemma 4.2 applied for Z; = 1 it holds that A; ; < B; which implies that A; ; = A7 and P; > 0.
Since Ape 1 = 0@ = Y e = A; , = Ap, we have P < 0 by definition of #*. This
implies 0 > P;~ > P; > 0 which is a contradiction. Thus, ), .+ PiZ; < >, Pily.

Case 2.2 7y = 0 for all ¢ > t*: Let @4+ = 1 and & = 7y for t € T \ {¢*}. It follows from
Zf;l ; = Ap—1 + 1 < By that the solution (&), is feasible. If we assume A1 < Ap, then
23:1 T = Zf;}l Z; = A1 < Ap, which implies that (Z;); is infeasible. Hence, Py« < 0. But
since ), o7 Py < ) ,cq Py, it follows that the solution (i;); satisfies all requirements. O

Theorem 4.6. Algorithm 4.1 finds an optimal solution for the local heating problem in time
o(T?).

Proof. Algorithm 4.1 assumes that the pre-computed sequences (A;); and (By); satisfy (7) and
(10). This initialization can easily be computed in linear time.

We use induction on the number of updates according to Lemma 4.3 to prove that Algorithm
4.1 finds an optimal solution. As base of the induction, we assume that Algorithm 4.1 newer
applies Lemma 4.3. In this case, there is no time interval ¢* which satisfies (13). Hence, Ar =0
and Lemma 4.4 implies that the trivial solution z; = 0 for all time intervals ¢ € T is an optimal
solution.

For the induction step, assume that Algorithm 4.1 finds a time interval t* satisfying (13) with
the minimal price P+ and that Lemma 4.3 is applied with this ¢*. By the induction hypothesis,
Algorithm 4.1 finds an optimal solution (z;); for the instance with sequences (A}) and (B} ); where
t € T\ {t*}. Algorithm 4.1 now extends this solution by setting z;» = 1. This solution (x¢); is
feasible for (A4;); and (B;); by Lemma 4.3.

By Lemma 4.5 there exists an optimal solution (Z:); satisfying Z;» = 1. By Lemma 4.3 the
solution (Z4); is feasible for the instance with sequences (Af) and (Bf): where t € T \ {t*}.
From induction hypothesis it follows that ZteT\{t*} P < ZteT\{t*} Pyzy. Hence, ), 7 Py <
> te7 P which implies that (x); is an optimal solution.

Since Lemma 4.3 is called at most T-times and every step is evaluated in time O(T'), the total
time complexity is O(T?). O

Algorithm 4.1 has quadratic complexity because the updates of sequences (A;); and (By); take
linear time. This complexity easily can be improved using a binary tree. The basic idea is that
values of (A;); and (By); are handled independently by two separate balanced binary trees (see
e.g. Cormen et al. [4]). In the following, we only describe the tree for the sequence (A;): since
the tree for sequence (B;); can be handled analogously. Let A = A; — A;_;. The leaves of the
tree store the value A¢ for the time intervals t+ € 7. Time intervals are assigned to leaves in a
sorted way where the left subtree of every inner vertex contains earlier time intervals than the
right subtree. Every inner vertex of the tree stores the sum of values of A¢ for all leaves ¢ in the
subtree. Since the tree is constructed to be balanced, the length of every path from the root to
a leaf is logy(T') + O(1). This binary tree is constructed in time O(T). It is a simple exercise
to find out how values A; and B; are determined and how both trees are updated when Lemma
4.3 is applied. Both operations are performed in logarithmic time, so these binary trees improve
the time complexity of Algorithm 4.1 to O(T logT). We skip more details because next section
presents even faster data structure.

5 Union-find

In this section we use the disjoint-set data structure of the union-find algorithm (see e.g. Cormen
et al. [4]) to store and update values of sequences (A;): and (B;): to reduce the time complexity
of the presented algorithm.
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A disjoint-set data structure is a data structure that keeps track of a set of elements partitioned
into a number of disjoint (non-overlapping) subsets. A union-find algorithm is an algorithm that
performs two useful operations on such a data structure:

Find: Determine which subset a particular element is in. This can be used for determining if two
elements are in the same subset.

Union: Join two subsets into a single subset.

Using a technique called path compression, both operation have amortized complexity O(a(n))
where « is the inverse of Ackermann function and n is the number of elements.

When Algorithm 4.1 applies Lemma 4.3, the two time intervals ¢ 4 and ¢ g need to be determined
for a given t*. Since, the time intervals t 4 are equal for all time intervals ¢ having the same value of
A;_1, we use the disjoint-set data structures which partitions the set of time intervals 7 according
to values A;_1. Analogously, in order to determine time interval tg for given time interval ¢, we
use a similar disjoint-set data structures to partition the set of time intervals 7 according to values
B;. Note that values A; and B; are not stored in these data structures. These disjoint-set data
structures only store the partitioning and time intervals t4 and tp in every subset. However, this
is sufficient information to determine whether A;, = A;, and whether B;, = B, for given two
time intervals t; and to.

In order to simplify further notation, let ~ be a relation on the set of time intervals 7 such
that t; ~ to if Ay, 1 = Ay,—1 and B, = By, where t1,t3 € T. Observe that ~ is an equivalence
on 7 in which every factor class contains a set of consecutive time intervals. Factor classes of the
equivalence ~ are called B-A-sets. During the algorithm, the relation ~ is changing, but the only
change in the relation ~ is that some B-A-sets are united. In fact, one application of Lemma 4.3
leads to at most two unions: B-A-sets containing time intervals t4 — 1 and ¢4 may be united and
B-A-sets containing time intervals tg — 1 and ¢g may be united. This naturally leads to a third
usage of the disjoint-set data structure which is discussed below in more details. Since values of
A; for all time intervals ¢ of one B-A-set S are equal, we denote this value Ag. Similarly, Bg
denotes the B; value of all for any time intervals ¢ of B-A-set S.

A straightforward way to determine whether A;« 1 < By« required in condition (13) would be
to store the difference D; = B; — A;_1 for every time interval ¢ € 7 but updating these differences
after every application of Lemma 4.3 is too time consuming. Since all time intervals ¢ in one
B-A-set have the same value of the difference Dy, this difference D; can be stored in every B-A-
set. This approach is already insufficient to reach the desired time complexity. Indeed, updating

the difference D; becomes expensive when there are many B-A-sets Si, So,...,S, between time
intervals ¢t and t* since differences of all those B-A-sets need to be decreased by one. Observe
from the definition of tp that Ag, < Ag, < --- < Ag, and Bg, = Bg, = --- = Bg, in this case;

see Figure 2. Similarly, there can be many steps in the sequence (B;); without any step in the
sequence (A;); for t between t* and t4. Note that the difference D; is not used in Algorithm 4.1,
since it is only necessary to determine whether D; = 0 or D; > 0. Therefore, the difference D, is
actually stored only in some selected factor classes that form some kind of local minimals of the
sequence (D;); which is formally explained below.

Let us consider one B-A-set S and let S~ and S™ be the preceding and the following B-A-set,
respectively. Observe that if Ag- = Ag, then Bg- + 1 = Bg and therefore Dg = Dg- + 1.
Similarly, if Bg = Bg+, then Ag +1 = Ag+ and therefore Dg = Dg+ + 1. In both cases it is
unnecessary to store the value Dg since the facts that Dg- > 0 and Dg+ > 0 imply that Dg is
positive. The difference Dy is stored in a B-A-set S if and only if

Ag- < Ag and Bg < Bg+. (14)

In summary, we use three disjoint-set data structures. In order to determine whether (13) is
satisfied, it suffices to find B-A-set storing time interval t*. The condition As_1 < By« holds
if and only if the difference D;« is unsaved or the stored value is positive. It remains to show
how those data structures are updated when Lemma 4.3 is applied. Disjoint-set data structures
factorizing by A; and B; are directly updated by the operation union.
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Algorithm 5.1: Update of the disjoint-set data structure for B-A-sets
Input: Time interval t*

Find time intervals ¢t 4 and tp;
Find B-A-sets S1,52,53, S4 and S* containing tg — 1, tg, ta4 — 1, t4 and t* respectively;
if Ag, = Ag, then
Union of sets S; and Sy into a set Sis;
if Si2 satisfies (14) then
L Set the difference Dg,, to be the difference Dg, before the last uniting;

if B53 = BS4 then
Union of sets S3 and S4 into sets S3y;
if Ss4 satisfies (14) then
L Set the difference Dg,, to be the difference Dg, before the last uniting;

if S* £ S5 and S* # S; then
L Decrease the difference Dg« by one;

Let Si, 52,53, Sy and S* be B-A-sets containing time intervals tg — 1, tg, t4 — 1, t4 and t*;
respectively. Note that S, S35 and S* may be the same and observe that the difference Dy is
changed only for time intervals ¢t with t4 < t < tp, where it decreases by one. Therefore, the
evaluation of the condition (14) may change only for sets Sy, S2,S3 and Sy4. Furthermore, S* is
the only B-A-set which can satisfy (14) and for which the stored difference Dg« can change. The
only possible changes in partitioning of time intervals 7 into B-A-sets are uniting S; and S and
uniting Ss and Sy.

In the following, we only discuss updates of B-A-sets S; and Sy since updates of B-A-sets S3
and Sy are analogous. Note that Bg, + 1 = Bg, and new values according to Lemma 4.3 satisfy
Bs, = By, = Bs,. If As, < Ag,, then B-A-sets S; and Sz are not united and the value of the
difference Dg, is deleted (if it has been stored). If Ag, = Ag,, then B-A-sets S and Ss are united.
Observe that if the united set satisfies (14), then Sy has satisfied (14) and the difference of the
united set is the difference of S;. All updates of the disjoint-set data structure of B-A-sets are
summarized in Algorithm 5.1.

The time complexity of Algorithm 4.1 if it uses the disjoint-set data structures is O(T «(T))
where « is the inverse of Ackermann function since the number of operations union and find on
the disjoint-set data structures in every iteration is upper bounded by a constant.

6 Conclusion

This paper presents a O(T a(T')) algorithm for local heating problem.

In some practical cases, a valve can be used to control the heat flow to a buffer (e.g. district
heating). This mathematically means that the constrain (3) is replaced by 0 < z; < 1. It should
be possible to adopt our algorithm to this case, although some parts may become more technical.
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