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THE SUBCHROMATIC INDEX OF GRAPHS

JIRI FIALA — VAN BANG LE

ABSTRACT. In an edge coloring of a graph each color class forms a subgraph
without a path of length two (a matching). An edge subcoloring extends this
concept: each color class in an edge subcoloring forms a subgraph without path
of length three. While every graph with maximum degree at most two i1s edge
2-subcolorable, we point out in this paper that recognizing edge 2-subcolorable
graphs with maximum degree three is NP-complete, even when restricted to
triangle-free graphs. As by-products, we obtain NP-completeness results for the
star index and the subchromatic number for several classes of graphs. It is also
proved that recognizing edge 3-subcolorable graphs is NP-complete.

Moreover, edge subcolorings and subchromatic index of various basic graph
classes are studied. In particular, we show that every unicyclic graph i1s edge 3-
subcolorable and edge 2-subcolorable unicyclic graphs have a simple structure
allowing an easy linear time recognition.

1. Introduction

Let G = (V, E) be a graph. An independent set (a clique) is a set of pairwise
nonadjacent (adjacent) vertices. For W C V' the subgraph of G induced by W
is denoted by G[W]. For F C E the symbol V(F') denotes the set of endvertices
of edges from F, and G(F) = (V(F), F) is the subgraph of G induced by the
edge set F.

A (proper) vertez r-coloring of G is a partition V,...,V, into disjoint in-
dependent sets called color classes of the coloring. The chromatic number y(G)
is the smallest number r for which G admits a vertex r-coloring. One of the
most interesting generalizations of the classical vertex coloring is the notion of
vertex subcoloring; see [2], [9], [12], [15]. A vertex r-subcoloring is a partition
Vi,..., V. of V where each color class V, consists of disjoint cliques (of various
sizes). The smallest number r for which G has a vertex r-subcoloring is called
the subchromatic number x,(G) of G.
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Note that a partition V,,...,V_ of V is a vertex r-coloring of G = (V, E) if
and only if for each ¢ the graph G[V,] does not contain a P, as an (induced)
subgraph. The partition is a vertex r-subcoloring if and only if for each ¢ the
graph G[V,] does not contain a P, as an induced subgraph. (P, denotes the
path on k vertices.)

A (proper) edge r-coloring is a partition E,,...,E_  of E into color classes
E, in which every two distinct edges do not have an endvertex in common, i.e.,
cach E, forms a matching. The chromatic index x'(G) is the smallest number
r for which G admits an edge r-coloring. Clearly, a partition E,,...,E_of E
is an edge r-coloring of G = (V, E) if and only if for each ¢ the subgraph G(E;)
does not contain a P, as a (not necessarily induced) subgraph. This observation
leads to the following natural generalization of the classical edge coloring.

DEFINITION 1. An edge r-subcoloring of the edges of a graph G = (V, E) is
a partition E,...,E_of E into disjoint color classes E, such that for each FE,
the graph G(E;) contains no P, as a (not necessarily induced) subgraph. The
subchromatic index x'(G) is the smallest number r for which G admits an edge
r-subcoloring.

Remark 1. Obviously, a partition E, ..., E, of E(G) is an edge r-subcoloring
of G if and only if for each 7 the connected components of G(E,) are stars or

triangles, where a star is a complete bipartite graph K, , for some s > 1.

A related notion that has been studied in the literature is as follows. A
partition E,,..., E_ of E(G) is a star partition of G if for each ¢ the connected
components of G(E,) are stars. The star indez x*(G) of G is the smallest
number 7 for which G has a star partition into r subsets E,; cf. [1], [3], [4], [5],
[11], [17], [21].

Clearly, X’ (G) < x*(G) for all graphs G, and it holds that x.(G) = x*(G)
whenever G is triangle-free.

Recall that the line graph L(G) of a graph G has the edges of G as vertices
and two distinct edges e, €’ are adjacent in L(G) whenever they have an endver-
tex in common. It is well-known that proper edge colorings of G correspond to
proper vertex colorings of L(G) and vice versa. In particular, y/'(G) = X(L(G)) :
Likewise, the following fact is easy to see.

FActT 1. Edge subcolorings of a graph G correspond to vertex subcolorings of
the line graph L(G) of G and vice versa. In particular, x'(G) = x, (L(G))

Our terminology of edge subcoloring is intended to recall this fact.
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2. Basic properties and examples

The subchromatic index of a disconnected graph is the maximum subchro-
matic index among those of its connected components. Hence, without loss of
generality we assume throughout this paper that all graphs are connected.

By the definition, the edge subchromatic index is monotone with respect to
graph inclusion, i.e., G' C G = X' (G’') < x,(G). The next observation shows a
close link between subchromatic indices of graphs where one is formed from the
other by removal of a vertex.

OBSERVATION 1. For any graph G and any vertex v of GG it holds that

X (@) < XG(G\ o) + 1.

Proof. Any subcoloring of G\ v can be extended to a subcoloring of G
by using an extra new color on all edges incident with v. O

General lower and upper bounds for the subchromatic index are given below.
Let A(G) be the maximum degree of a vertex in the graph G.

PROPOSITION 1. Any graph G with m edges on n vertices satisfies

Moreover, x(G) > ™ if G is triangle-free.

Proof. Since every color class consists of stars and triangles, it may contain
at most n edges. In the subcoloring each edge has to be colored and the lower
bound follows.

Note that a color class in a graph on n vertices can have n edges if and
only if n is a multiple of 3 and the class itself is a covering of the vertices by
3 disjoint triangles. In triangle-free graphs no such class exists and the lower
bound can be made sharp.

How to obtain the upper bound we have from Fact 1: x.(G) = x, (L(G)) <

A(L(G)) 2A(G)—2 o . .
{f—‘ +1< {f—‘ + 1 = A(G) where the inequality for the subchro-
matic number was shown in [2].

To find a valid subcoloring using at most A(G) edge colors efficiently, we
may proceed greedily on the vertex set: with each new vertex u assign colors to
its adjacent edges as follows: for an edge (u,v) pick a color that is not used on
an already colored edge incident with v. Such a subcoloring is triangle-free and

all stars have the property that the center of the star is the latest vertex of the
star in the order. O
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Observe that the upper bound is attained e.g., for the 5-cycle x.(Cy) =2 =
A(Cy) or the Petersen graph x.(P) = 3 = A(P). The last property follows
for any cubic graph which contains (' as an induced subgraph: it is impossible
to extend a valid 2-subcoloring to all edges incident to the cycle C;. See also
Figure 1.

COROLLARY 1. Any r-regular graph G satisfies § < x’(G) < r. Moreover,
7 < X(G) if G is triangle-free.

2.1 Trees and cycles

For trees and cycles the subchromatic index can be determined explicitly as
follows:

PROPOSITION 2.

(1) For any tree T, x'(T) = x*(T) < 2; X\(T) = 2 if and only if T is not
a star;

(i) x4(C3) =1 and \(C,) =x*(C,) =2 for all n > 4.

Ll

Proof. Color greedily. O

2.2 Cacti

A cactus is a connected graph in which every block (maximal 2-connected sub-
graph) is an edge or a cycle. Equivalently, a graph G is a cactus if and only if
every two cycles in GG are edge-disjoint.

PROPOSITION 3. For all cacti G we have \(G) < x*(G) < 3. Moreover, an
edge 3-subcoloring can be found in linear time.

Proof. Let T be a breadth-first search (bfs) tree of G rooted at vertex v.
We claim that all edges of G outside T form a matching.

During the search we arrange vertices into levels based on the distance from
the initial vertex. Since G is a cactus, the tree T misses from each odd cycle
the edge connecting the two vertices at the highest level. Similarly, for an even

cycle one of the two edges incident with the vertex at the highest level remains
outside T'.

Now observe the given two edges e, ¢’ of E(G)\ E(T), either e is separated
from ¢’ by the lowest vertex of the cycle containing e, or vice-versa.

We color T with two colors and use the matching E(G) \ E(T) as the third
color. This shows y*(G) < 3. Since a bfs-tree can be performed in linear time,
Proposition 3 follows. O
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We leave it as an open problem whether cacti with subchromatic index at
most 2 allow a simple structural description. Since all cacti have treewidth up-
perbounded by 2, their subchromatic index can be computed in polynomial time
as we will show later in Section 3.3.

Observe that in any edge 2-subcolored cactus G each vertex of degree at
least 3 is either a center of a monochromatic star or it belongs to a monochro-
matic triangle. Let us direct the edges of monochromatic stars K, ., k > 2
towards their centers. (The other edges remain undirected.) Clearly,7no vertex
of degree at least 3 in G is of outdegree 2 or more. Each directed cycle is of even
length, since the colors of stars must alternate.

Figure 1 shows some cacti G that do allow such orientation of their cycles

and hence have \!(G) = 3.

X%

FIGURE 1. Some cactl with subchromatic index 3.

2.3 Unicyclic graphs

A (connected) graph is unicyclic if it contains exactly one cycle. As we show
now, all edge 2-subcolorable unicyclic graphs have a simple structure and hence
can be easily recognized in linear time.

THEOREM 1. For any unicyclic graph G we have x'(G) < 3. Moreover,
X.(G) = 3 if and only if the only cycle C of G has length 2k + 1, k > 2

and all vertices of C' are of degree at least 3 in G.

Proof. Since unicyclic graphs are cacti, the first part follows from Propo-
sition 3. We have shown above that if an odd cycle €y, k > 2 contains no
vertex of degree 2, then the graph G cannot be edge 2-subcolorable.

It suffices to construct an edge 2-subcoloring in all other cases. First consider
the case when C' is a triangle. We make it monochromatic (say white) and then
distribute all remaining edges of G into two color classes as follows: two edges
belong to the same class if their distance from C' has the same parity modulo 2.
(The edge-distance is viewed as the distance between the corresponding vertices
in the line graph.)

133



JIRI FIALA — VAN BANG LE

Now assume that (.., contains a vertex of degree 2. Let us denote the
vertices of C' by vy,v,,...,v,, ., where deg(v, ) = 2. We delete the edge (v,,v,)
from G and obtain a tree T'. We use an edge 2-subcoloring of T obtained by
rooting T in the vertex v, and by using white colors on odd levels and black
on even. In particular, the edge (v, ,v,) is black and it is plausible to color
(v,,v,) white to obtain an edge 2-subcoloring of G.

For an even cycle C' we delete the edge (v,,v,) as color edges of the resulting
tree as in the previous case. Then v, is the center of a black star and it is feasible
to color the remaining edge (v,,v,) black. O

Clearly, C' can be found in G in linear time. Theorem 1 also implies that
unicyclic graphs with subchromatic index at most 2 can be recognized in linear
time.

2.4 Complete bipartite graphs

Since complete bipartite graphs contain no triangle, subchromatic index coin-
cides with the star chromatic index. We adopt the following results straightfor-
wardly:

PROPOSITION 4. For any n > 1 it holds that

2.5 Cubes

Recall that the d-dimensional Cube @, has all 0,1 d-tuples as vertices and
two such d-tuples are adjacent in @, if and only if they differ in exactly one
position. Note that (), is d-regular, bipartite and has 24 vertices.

PROPOSITION 5 ([21]).
(i) For k22, X{(Qyr_p) = X" (Qox ) = 2+t
(i) Forn >3, [4]+1<\,(Q,) = x*(Q,) < [4] +log, n.

2.6 Complete graphs

PROPOSITION 6. For any n > 1 the subchromatic index of the complete
graph K is bounded by:
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Moreover, the lower bound is attained if and only if n = 6k+3 for some integer k.

Proof. The upper bound by x*(K,) = [§] + 1 was given in [1]. For an
odd n a subcoloring of K attaining the lower bound on color classes given by
n—1

Proposition 1 | § | = #5= is equivalent to a Kirkman triple system on n vertices.

Its existence has been shown exactly for all n = 6k + 3 in [19]. O

This allows us to classify the subchromatic index for all complete graphs of
order at most ten. First we show that x’ (/) = 4. Assume for a contradiction
that a valid edge 3-subcoloring of K exists. Then each color class may have at
most 6 edges. Hence, at least two of these two classes must have at least 5 edges
because |EK6| = 15. By a case study it is easy to determine that a color class
with at least five edges may only induce a subgraph in K of one of the possible
three types: K; U K; or K; UP; or K 5. (Here U stands for disjoint union.)

If K, UK, is a color class, the remaining edges form K, ; which has no edge
2-subcoloring. Obviously, K, . can appear only once as a color class. Hence, if
an edge 3-subcoloring exists, it must contain two color classes of type K, U P;.
Up to an isomorphism there is only one way to combine such two classes, but
the remaining edges form C, U K, , hence no edge 3-subcoloring of K exists.

We summarize the values of subchromatic index of small complete graphs the
following table:

Graph G| K, | K, | K;| K, | K;| K| K, | K| Ky | K|,
XL, G 0| 1] 1] 2] 3| 4| 4| 4| 4| 5

The values for K. and K, are majorized by x/ (/) given by Proposition 6.
The remaining values follow from the monotone property of ! and other bounds
which were discussed above.

3. Computational complexity

Formally, we define EDGE k-SUBCOLORABILITY as a decision problem which
for a given graph G (the instance) answers the question: “Is x/(G) < k?”

In the following sections we will show that the problem is NP-complete in
general. (Obviously, EDGE k-SUBCOLORABILITY € NP.) On the other hand, a
linear time algorithm exists for a restricted class of graphs of bounded treewidth.
This also implies that cacti of subchromatic index at most 2 can be recognized
in linear time.

3.1 NP -hardness of EDGE 2-SUBCOLORABILITY

In this section we prove the following negative result.
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THEOREM 2. EDGE 2-SUBCOLORABILITY is NP-complete even when restricted
to triangle-free graphs of maximum degree three.

As all graphs with maximum degree at most 2 are edge 2-subcolorable, The-
orem 2 is the best possible with respect to degree constraint.

Proof. We prove Theorem 2 by showing a reduction from the NOT-ALL-
EQUAL 3-SATISFIABILITY (NAE-3SAT) problem which has been shown to be
NP-complete by Schaefer [20] (see also [14, Problem LO3]).

This problem decides whether a Boolean formula @ in conjunctive normal
form satisfying that each clause is a disjunction of literals, allows a satisfying
assignment for @ such that each clause in & contains at least one negatively
valued literal. This problem can be reduced to the case when all literals are
positive (i.e., with no negations) and when each clause contains exactly three
not necessarily distinct literals. (Also known as SET SPLITTING or HYPERGRAPH
2-COLORABILITY [14, Problem SP4].) We denote the class of all formulas that
allow such an assignment by NAE-35AT.

Let a formula ® be an instance for the NAE-3SAT problem. Assume that
® consists of m clauses C,C,,...,C  over variables z,,2,,...,z,  such that
every clause C; contains exactly three positive literals C'; = (:ch1 Ve, V l’jg).

We will construct a triangle-free graph H = H(®) of maximum degree three
such that H has an edge 2-subcoloring if and only if ® e NAE-3SAT.

Clause gadget. Consider the graph G, depicted in Figure 2 (left) with three
labeled vertices a,b, c.

a b c

FIGURE 2. Clause gadget G (left) with an edge 2-subcoloring (right).

FAcT 2.
(1) The graph G, is edge 2-subcolorable. In any edge 2-subcoloring the

edges (a,b), (b,c) receive different colors.

(ii) Every coloring of the two edges (a,b), (b,c¢) with two distinct colors can
be extended into an edge 2-subcoloring of the entire graph G, such that
the two edges incident with the vertex a and the two edges incident with
¢ receive different colors (cf. Figure 2 (right)).
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Fact 2 can be seen quickly by inspection.

Variable gadget. Let k& > 2 be an integer. Let G%, be the graph depicted in
Figure 3 with k labeled vertices a,,...,a,.

: k
FI1GURE 3. Variable gadget GY,.

FACT 3. The graph G% is edge 2-subcolorable. In any edge 2-subcoloring the
thick edges receive the same color.

For the construction of H we take the incidence graph Gy, . Vertices of G
represent variables and clauses of @, and edges represent the incidence relation.
Since the same variables may appear in the same clause as a literal, multiple
edges may appear in Gy, .

For the construction of H we replace each clause-representing vertex v. of
degree three with a unique copy of G, such that the three edges incident with
v are one-to-one incident with the vertices a,b and ¢ (i.e., each edge chooses
exactly one vertex).

Let further each vertex u, representing a variable x, with &, > 2 occurrences
be replaced by a unique copy G, of GI‘C} . Note that variables with only one oc-
currence can be either represented by G3, or alternatively recursively eliminated
from the formula by a preprocessing. Similarly as in the previous case, the k,
edges incident with u; become one-to-one incident with the vertices a,,...,a;..

The construction of H is completely described. Since all gadgets have max-
imum degree three and no triangles, and since labeled vertices in the gadgets
have degree one or two, H has maximum degree three and no triangles as well.

Suppose now that the edges of H can be subcolored by two colors, say red
and blue. For each ¢ we define ¢(z;) = true if the thick edges of G, are red;
and ¢(z;) = false otherwise. By Fact 3 the assignment ¢ is well defined. For
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each variable gadget the edges leaving the gadget G, from vertices ay,...,a,
must obtain the same color, complementary to the color of the thick edges of
G, . On the other side, the edges pendant from a clause gadget cannot have all
the same color, since then a monochromatic P, would appear by Fact 2. Hence,
in each clause at least one variable is positively valued and at least one is valued

negatively by ¢ and ® e NAE-3SAT.

In the opposite direction assume that ® € NAE-3SAT for an assignment ¢.
We derive an edge 2-subcoloring of H as follows. If ¢(z,) = true (false) we
color the thick edges of the variable gadget G, red (blue, respectively). Then we
extend this coloring into an edge 2-subcoloring of G, . This is always possible by
Fact 3. As it was mentioned in the previous paragraph, the edges stemming from
the clause gadgets (i.e., the original edges of G ) allow a unique 2-subcoloring
extension. Finally, we complete the 2-subcoloring of H on the clause gadgets
according to Fact 2 (ii).

This argument completes the proof of Theorem 2. O

Corollaries. Since \,(G) = y*(G) holds for triangle-free graphs G, Theorem 2
implies

COROLLARY 2. Deciding if the star index of a given graph is two is NP
-complete even for triangle-free graphs with maximum degree three.

We remark that it was first proved in [17] that deciding if the star index of a
triangle free graph is two is NP-complete. However, the graph constructed in [17]
does not have bounded degree while our NP-complete result for the star index is
the best possible with respect to degree constraint.

In [12] it was shown that recognizing vertex 2-subcolorable graphs is NP-com-
plete even for triangle-free planar graphs with maximum degree 4. Fact 1 (recall
Section 1) and Theorem 2 imply

COROLLARY 3. Recognizing vertex 2-subcolorable graphs is NP-complete even
for line graphs (of triangle-free graphs) with maximum degree 4.

An (ry,...,ry)-subcoloring of a graph G = (V, E) is a partition V,,...,V,
of V' such that each V, consists of disjoint cliques, each of which has cardinality
at most r,. In [2] it was shown that all cubic graphs are (2,2)-subcolorable,
and in [18] it was shown that deciding if a cubic graph is (1,3)-subcolorable
is NP-complete. Theorem 2 and Fact 1 imply that a similar result holds if we
restrict ourselves to line graphs.

COROLLARY 4. Recognizing vertex (3,3)-subcolorable graphs is NP-complete
even for line graphs (of triangle-free graphs) with maximum degree 4.
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3.2 NP-hardness of EDGE 3-SUBCOLORING

This section deals with the proof that EDGE 3-SUBCOLORING is NP-complete.
Given a graph G we construct a graph H as follows. Take three copies G, G,, G,
of G, take further a triangle (v,,v,,v;), and for each 7 = 1,2,3 connect v, with
all vertices in (. Finally, take two vertices z,y and connect z to vy, v,, v,
and y. See Fig. 4.

FiGure 4. The graph H obtained from the copies G,G,,G5 of the given
graph G.

In the graph H the set of edges between v, and all vertices of G, is called
the (v,, G,)-star. We now point out that x,(G) <2 if and only if x!(H) < 3.

Assume that x’(G) < 2 and consider an edge 2-subcoloring of G with colors
¢y, ¢, . In H we color the three copies G, with this coloring and the (v,, G,)-stars
with the third color ¢,. We color the triangle (v,,v,,v;) with color ¢, and the
4-star at x with color ¢, . This yields an edge 3-subcoloring for H.

Assume that x,(H) < 3 and consider an edge 3-subcoloring of H with colors

CysCyyCy.
Claim 1. For 7 = 1,2,3 one of the (v, G,)-stars is monochromatic.

Proof. Assume that the claim is false. Then no two edges of the triangle
(vy,v,,v5) have the same color: If (v,,v,) and (v,,v;) are colored with ¢, say,
then the (v, G,)-star and the (v,,G;)-star must be colored with ¢, and ¢;.
This implies that the edge (v,,v,) is also colored with ¢, and the (v,,G,)-star
is also colored with ¢, and ¢;. Now, the edges (z,v;), ¢ = 1,2,3, must have
color ¢, or ¢, and there exists a P, with color ¢, or ¢,, a contradiction.

Let’s assume, without loss of generality that (v,,v,) is colored with ¢,
(vy,v4) with ¢, and (v,,v,) with ¢;. If ¢, does not appear in the (v;, G,)-star,
then, by assumption, the (v;, G;)-star is colored with ¢, and ¢;. Hence ¢, can-
not appear in the (v,, G, )-star; otherwise there is a P, colored with ¢, . There-
fore, the (v,,G,)-star is colored with ¢, and ¢;, implying ¢, cannot appear in
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the (v, G,)-star; otherwise there is a P, colored with ¢, . Thus, the (v, G, )-star
is colored with ¢, and ¢, . But then there exists a P, colored with ¢;. This con-
tradiction shows that ¢, must appear in the (vy, G4)-star, and by symmetry, ¢,
must appear in the (v,,G,)-star and ¢; must appear in the (v,, G, )-star.

In particular, for each v, , each color appears in the star at v, minus the edge
(v,,2).

Hence, the edge (z,y) is colored differently with each of the edges (v,,x)
for 1+ = 1,2,3; otherwise there is a monochromatic P,. As only two colors are
available for the edges (z,v,),(z,v,) and (z,v;), at least two of these edges
must have the same color. By symmetry, let (z,v,) and (z,v,) have color ¢,
say. Then ¢ = ¢, since otherwise there is a monochromatic P, in the K,
induced by the v, and z. Therefore both the (v , G,)-star and the (v,, G, )-star
are colored with ¢, and ¢,. Since ¢, or ¢, appears in the (v,, G;)-star, there
exists a monochromatic P, . This last contradiction proves the claim. O

By the claim we may assume that the (v , G, )-star is colored with ¢,. If G,
has less than three vertices, then clearly x/(G) < 2. If G| has at least three
vertices, then ¢; cannot appear in G, ; otherwise there is a P, colored with
¢, . Therefore, the restriction of the edge 3-subcoloring of H on G, is an edge
2-subcoloring for G.

From the reduction above and Theorem 2 we obtain

THEOREM 3. EDGE 3-SUBCOLORABILITY is NP-complete.

3.3 Graphs of bounded treewidth

We note first that for a fixed k the EDGE k-SUBCOLORABILITY problem can be
expressed in Monadic Second Order Logic (MSOL) and a linear-time algorithm
for graphs of bounded treewidth exists due to [10].

The disadvantage of this general scheme is a huge hidden constant in the
time complexity. We follow here the usual scheme for constructing linear-time
algorithms for graphs of bounded treewidth, cf. [6], [7] and outline the main
aspects of the dynamic programming algorithm.

A nice tree decomposition of width at most ¢ of a graph G is a rooted tree
T where nodes X, of T' are subsets of vertices of G chosen according to the
following rules:

e For each edge (u,v) € E(G) there exists a node X, such that {u,v} C
X..

e For each vertex u € V(G) the nodes X, containing u induce a connected
subgraph (i.e., a subtree) in T'.
e The size of each node |X,| <t+ 1.

e Each node X, has at most two children and
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— it is called a leaf node if it has no children and | X | =1,

— or X, has one child X, then X, is either an introduce node if
X, = X; U{u} for some vertex u ¢ X;, or a forget node when
X, =X, \ {u} for some u € X,

— or X, has two children XX Then it is called a join node and
it holds that X, = X, =X,.

THEOREM 4. For any fixed k and t the EDGE k-SUBCOLORING problem can
be solved in linear time for graphs of treewidth at most t.

Proof. For the dynamic programming we compute with each node X, of
T a table Tab,; of the following contents: each entry (¢,r) € Tab, is a pair such
that: ¢ is an edge k-subcoloring of the graph G, the subgraph of G induced
by the vertex set X,. The symbol r stands for a ranking r : X, x {1,... .k} —
{0,1,2,3,4} of the following meaning: for any edge k-subcoloring ¢ extending
¢ to the subgraph of GG induced by the union of descendants of X, we define

e r(u,c) =0 if no edge of color ¢ in ¢ contains the vertex w.

o r(u,c¢) =1 if u is incident with exactly one edge (u,v) of color ¢, and
v 1is incident to no other edge of color ¢ in .

o r(u,c¢) =2 if u is incident with exactly one edge (u,v) of color ¢, but
v 1s incident also with other edges of this color in .

o r(u,c) =3 if u belongs to a monochromatic triangle of color ¢ in .

o r(u,c) =4 if u is the center of a monochromatic star K, ,, k > 2 of
color ¢ in .

The algorithm uses usual bottom-up dynamic programming for computing
the tables Tab,. For the table evaluation it is important which of the above cases
applies, so that we obtain all correct rankings r for a subcoloring ¢. Firstly, we
describe how these rules are applied (i.e., how the tables Tab, are evaluated).
Then we show by a case study that the values were assigned correctly.

The algorithm proceeds as follows:

1. If X, = {u} is a leaf node, we let Tab, = (0, r(u,c) =0) for 1 <e < k.
2. If X, is a forget node with child X, then we store all pairs (¢,7), in
Tab, where for some (¢',7') € Tab the subcoloring ¢ is a restriction of

¢’ to the subgraph induced by X,, and r is a restriction of the ranking
' to the set X, .

3. If X, is an introduce mode with child X and {u} = X;\ X, we consider
all entries (¢/,r') € X, and all possible extensions ¢ of ¢'. Here a pair
(¢,r) is feasible if for every color ¢

3a) either u is incident with no edge of color ¢, and then we store

r(u,c) =0,
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or v is incident with only one edge (u,v) of color ¢, then r(u,c) =
r(v,e) = 1 if r'(v,e) = 0, or r(u,¢) = 2 and r(v,c) = 4 if
r'(v,c) € {1,4},

or u is incident with two edges (u,v),(u,w) of color ¢, where
o(v,w) = ¢ and r'(v,¢) = r'(w,c) = 1, then we let r(u,c) =
r(v,¢) = r(w,c) =3,

or u is incident with ¢ > 2 edges (u,v,) of color ¢ where
r'(v,e) = 0 for 1 < s < ¢q. Then we let r(u,c) = 4 and
r(v,,c)=2for 1 <s<gq.

If not specified above, we let r(v,¢) = r'(v,¢) for all other v € X, and store all

feasible pairs (¢,7) in Tab,.

4. If X, is a join node with children X, X, , in Tab,, we will keep all pairs
(¢,r) for which there exist (¢',r') € Tab,; and (¢, r"") € Tab;, such
that ¢ = ¢’ = ¢” and moreover for each color ¢ and for every vertex
u € X, at least one of the following cases applies:

4a)
4h)

de)

4d)

either r(u,c) = max{r’(u, e), ' (u, c)} and min{r’(u, e),r'"(u, c)} =
0,
or r(u,¢) = max{r’(u,c),r”(u,c)} if there exists unique vertex

v € X,, such that (u,v) is of color ¢, and r'(u, ¢),r'"(u,c) € {1,2},

or r(u,c) =3 if

4ca) either there are v, w € X, such that v, v, w form a monochro-
matic triangle in ¢ (then r(u,c¢) =r'(u,¢) =--- =r""(w,c)),

4cb) or there is a vertex v € X, such that ¢(u,v) = ¢ and
r'(u,c) = r'(v,e) # r'"(u,c) = r"(v,c) where {r’(u,c),
r'(u,c)} = {1,3}

or r(u,c) =4 if

4da) either max{r'(u,c),r"” (u,¢)} = 4 and min{r'(u, c),r" (u,¢)} €
{14}

4db) or r'(u,c¢) = r"(u,¢) =1 and no edge of color ¢ is incident
with u in ¢.

In order to argue the correctness of these rules, consider the subgraph of
G induced by the union of descendants of some node X,. Let i) be any edge
k-subcoloring ¢ of G'. We show that for 1) there exists a record (¢,r) € Tab,
if the table entries were evaluated recursively according to the above rules. For

leaf and forget nodes the statement is correct straightforwardly.

Let X, be an introduce node for the vertex u. If v is not incident with an
edge of color ¢ in ¢, then we get r(u,c¢) =0.
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If in ¢ the vertex u is incident exactly with one edge (u,v) of color ¢, then
the value of r(u,c) depends on whether v is incident with some other edges or
not. If v does not appear on X, then we keep the value r'(¢,u) according to
the rule 3a). Else, the edge (u,v) is colored also by ¢ and the value of r(u,c¢)
depends on whether v has been incident with an edge of color ¢ before, by
the rule 3b). Note that in this case v cannot be a member of a monochromatic
triangle nor a leaf of a monochromatic star of color c.

If in ¢ the vertex uw becomes a part of a monochromatic triangle u,v,w,
then (v,w) is the only edge of color ¢ in v incident with v (or w resp.). This
is the only case how a monochromatic triangle may appear and is captured by
the case 3c¢).

Finally, the case 3d) shows how a monochromatic star may appear with a
new vertex. Clearly all ¢ leaves of this star cannot be incident with any other
edge of the same color.

Assume now that X, is a join node. Again we distinguish five cases according
to the presence of edges colored in ¥ by a color ¢ around a vertex w. If there
is no such an edge, then we get r(u,c¢) =0 and rankings r’,r’" satisfy the same
also on the children nodes, hence rule 4a).

Consider the case when u is incident with exactly one edge (u,v) of color ¢,
which is also the only edge of color ¢ incident with v. Then either v € X, and
the case 4b) applies or v ¢ X, and we follow 4a). (Here v appears either in the
subtree rooted in X, orin the subtree below X, but not in both. Clearly, ¢
cannot contain any other edge incident with u of color ¢.)

We handle similarly the case when the edge (u,v) belongs to a monochro-
matic star of color ¢ in . Then neither the center v nor any other edge of the
star appears on X,—case 4a). Or, alternatively, v belongs to X, and the star
also appears in some of the two children of X, —case 4b).

Now we discuss the case when u is a member of a triangle in ¢. The entire
triangle may appear in only one subtree below X, or X, —case 4a). It may also
completely lie in X, and we get case 4ca). It is also possible that only one edge
(u,v) of the triangle appears in X,. This last case is captured in 4cb). Here
the edge (u,v) must be recognized. The only edge of color ¢ incident with w«
and v is in one of the two subtree, while in the other subtree we must find the
remaining vertex of the triangle.

Finally, u can be a center of a monochromatic star of color ¢. Then the star
may be completely placed in one of the subtrees and case 4a) applies. Alterna-
tively, the star may appear as a union of a star with another star or with a new
edge—case 4da). The star can also be formed out of two edges, each coming
from different subtrees below X, and X, and we get the case 4db).

The dynamic programming algorithm evaluates the tables Tab, in a bottom-
up manner. An edge k-subcoloring of the entire graph G exists if and only if
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the table Tab, for the root node X is nonempty. For each node the table may

contain at most £C17) . 5U+1k entries, each of length O(t*logk + kt). Both
these values are bounded by a constant, since the treewidth ¢ and the number
of colors k are also bounded by a constant.

The evaluation of each table can be performed in time depending on k& and
t only. Hence, the entire complexity of the dynamic programming algorithm
depends only on the number of nodes of the nice tree decomposition T'. As it
is mentioned in [7] a nice decomposition of width at most ¢ containing at most
O<|V(G)|> nodes exists for any graph of treewidth at most ¢, and can be found
in linear time [8]. O

If we restrict the rankings r only to values {0,1,2,4}, then the dynamic
programming will check for the existence of an edge k-subcoloring without
monochromatic triangles, i.e., for a star partition with at most k subsets. We
can conclude that

COROLLARY 5. For any fixed parameters k and t the test whether x*(G) < k
can be performed in time linear in ‘V(G)‘ for any graph of treewidth at most t.

4. Conclusion

The concept of edge subcoloring of graphs is introduced for the first time in
this paper, motivated by the study of vertex subcolorings.
Among many interesting open questions we pose the following.

1. What is the exact value for /(K )?
(Known for n < 10; see Section 2.)

2. What is the computational complexity of EDGE 3-SUBCOLORABILITY for
planar graphs?
(Note that for all planar graphs G we have Y.(G) < x*(G) < 5;
cf. [17]. Recently Gon¢alves and O chem [16] showed that the EDGE
2-SUBCOLORABILITY is NP-complete for planar graphs by a reduction
from 2-SUBCOLORABILITY problem of planar graphs. Moreover, the com-
plexity of finding the ordinary chromatic index is not yet determined for
planar graphs. It is widely expected to be a nontrivial problem since
already the fact that any bridgeless cubic planar graph has chromatic
index 3 is equivalent to the four color theorem, see, e.g., [13].)

3. What is the computational complexity of EDGE k-SUBCOLORABILITY for
fixed k > 47
(We have proved that EDGE 2-SUBCOLORABILITY is NP-complete for
triangle-free graphs with maximum degree 3; see Theorem 2 and that
EDGE 3-SUBCOLORABILITY is NP-complete; see Theorem 3)
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4. What is the computational complexity of EDGE k-SUBCOLORABILITY for
graphs of bounded cliquewidth? Note that the straightforward expression
of the property in MSOL uses quantification over edge subsets.
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