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Malostranské nám. 2/25, 118 00, Prague, Czech Republic.
email: fiala@kam.mff.cuni.cz

Abstract

We consider the parameterized problem, whether for a given set D of n disks (of
bounded radius ratio) in the Euclidean plane there exists a set of k non-intersecting

disks. We expose an algorithm running in time nO(
√

k), that is—to our knowledge—the
first algorithm for this problem with running time bounded by an exponential with a
sublinear exponent. For λ-precision disk graphs of bounded radius ratio, we show that
the problem is fixed parameter tractable with respect to parameter k.

The results are based on a new “geometric
√·-separator theorem” which holds for all

disk graphs of bounded radius ratio. The presented algorithm then performs, in a first
step, a “geometric problem kernelization” and, in a second step, uses divide-and-conquer
based on our geometric separator theorem.

Our techniques can be extended to various other graph problems, such as dominating

set, to obtain similar results for disk graphs of bounded radius ratio.

1 Introduction

The problem and its motivation. In this paper, we study the parameterized indepen-

dent set problem on disk graphs, which takes as an input a set D of disks in the plane and
an integer k and the task is to determine whether there are k mutually disjoint disks in D.
The problem is motivated by numerous applications, among which we want to highlight the
area of frequency assignment problems in cellular networks [22]. Here, one considers a set
of antennas which transmit data on a given frequency to their local environment. Assuming
that this environment can be modeled by a disk centered at the position of the antenna, the

1



graph class (classical) complexity parameterized complexity

20.276 n [25]
general graphs

rel. lower bound: 2Ω(n) [18]
W[1]-complete [11]

open problem
disk graphs DGσ 2O(

√
n log(n)) [Rem. 17]

2O(
√

k log(n)) [Thm. 16]
disk graphs DGσ,λ FPT [Cor. 7]

(with λ-precision)
2O(

√
n) [Rem. 13]

2O(
√

k log(k))+log(n) [Cor. 7]

2O(
√

n) [21][Rem. 11] FPT
planar graphs

rel. lower bound: 2Ω(
√

n) [6] 2O(
√

k)+log(n) [2, 3]

Table 1: Relating our results on independent set for disk graphs to known results for general
graphs and for planar graphs.

task to determine the maximum number of antennas which can operate simultaneously with-
out any conflict using the same frequency becomes a maximum independent set problem
on a disk graph.1

Previous work. It is known [7] that the problem is NP -hard even for unit disk graphs. A
way to cope with this hardness was proposed by approximation theory [15, 17]. Very recently,
Erlebach et. al. [15] gave a PTAS for independent set on disk graphs, which is based on
a sophisticated use of so-called shifting techniques as they were introduced in [4, 16]. Note
that the running time of the given PTAS is far from being practical, since the degree of the
polynomial running time for obtaining an approximation ratio (1 + 1

ℓ−1)2 grows as ℓ2nO(ℓ4).
In this paper, however, we are interested in exact solutions for the given problem. More-

over, we take the viewpoint of parameterized complexity (see [12]). Formally, a parameterized
problem is a two-dimensional language L ⊆ Σ∗×N, where Σ is some alphabet. The input in-
stances are objects of the form (I, k) and the integer k is called the parameter. We ask for an
algorithm which decides if (I, k) ∈ L running in time 2g(n,k), where n = |I|. A parameterized
problem is called fixed parameter tractable, if there is an algorithm with g(n, k) = f(k)+h(n),
where f is some arbitrary function and h(n) ∈ O(log n). The class of fixed parameterized
tractable problems is denoted by FPT .

We want to briefly summarize various results on the parameterized and classical complex-
ity of the independent set problem for general graphs and for planar graphs (the latter
are equivalent to the class of coin graphs [19], i.e., disk graphs where disks are not allowed
to overlap); see Table 1 for an overview.

In parameterized complexity study, it is known [11] that independent set is complete
for the class W [1], which captures parameterized intractable problems (see [12] for details).
However, restricted to planar graphs, independent set is in FPT , and for the (asymp-
totically) best known algorithm we get h(n) = log(n) and f(k) = O(

√
k) being sublinear

in k (see [2, 3]). Moreover, very recently, Cai and Juedes [6] showed that there is no fixed
parameter algorithm with f(k) = o(

√
k) unless 3SAT∈ DTIME(2o(n)), which is generally

considered to be very unlikely.

1Note that we always consider disk graphs with given representation, i.e., with given set of disks in the
plane. This makes sense, since most applications which are modeled by disk graphs already provide this
representation in a very natural way.
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In the classical (one-dimensional) complexity study, the best known algorithm running in
time 2e(n) with e(n) = 0.275n is due to Robson. Moreover, e(n) ∈ o(n) is impossible unless
3SAT∈ DTIME(2o(n)) (see [18]). If restricted to planar graphs, Lipton and Tarjan applied
their well-known planar separator theorem [20] to get an algorithm with e(n) = O(

√
n). This

is the best possible asymptotic behavior for e (unless 3SAT∈ DTIME(2o(n))), since otherwise
an algorithm with e(n) ∈ o(

√
n) in combination with a known linear problem kernel would

lead to an algorithm for the parameterized problem better than the relative lower bound
shown by Cai and Juedes.

Main results and methods used. It is an interesting phenomenon that, for planar graphs,
in both cases (parameterized and classical complexity) the asymptotically best algorithms
were derived based on separator theorems: in the case of classical complexity, by a direct
divide-and-conquer approach using the planar separator theorem [21], and in the case of pa-
rameterized complexity, by a combination of so-called “reduction to a linear problem kernel”
(see Section 3 for details) and divide-and-conquer [3]. Due to the large constants involved,
the algorithms are considered to be impractical, but relevant from a theoretical point of view,
since they match the corresponding relative lower bounds.

In this paper, for the case of disk graphs, we pursue a similar strategy of combining a
geometric version of reduction to problem kernel with a divide-and-conquer approach based on
an appropriate separator theorem. However, for disk graphs, so far such separator theorems
are known only for so-called intersection graphs of τ -neighborhood systems [14, 23, 24],
which are closely related to (unit) disk graphs with λ-precision, where all centers are at
mutual distance of at least λ > 0. With respect to general disk graphs, we quote from the
introduction of Hunt et. al. [17]:

“The [...] drawback is that problems such as maximum independent set and mini-
mum dominating set [...] cannot be solved at all by the separator approach. This
is because an arbitrary (unit) disk graph of n nodes can have a clique of size n.”

The key result in this paper is to show a way out of this dilemma by proving a new type of
“geometric separator theorem” which holds for disk graphs with bounded radius ratio. Our
geometric separator theorem can be seen as a generalization of (classical) separator theorems,
where the guarantee is not on the size of the separator in terms of its number of vertices, but
in terms of the space occupied by its disks.

This result is used to optimally solve the parameterized independent set problem on
disk graphs of bounded radius ratio in time 2g(n,k) with g(n, k) = O(

√
k log(n)), which is —

to our knowledge — the first algorithm for this problem with running time bounded by a
function with an exponent sublinear in k. In the worst case (i.e., when k = n) this turns into
an algorithm of running time 2e(n) with the sublinear term e(n) =

√
n log(n); a running time

which cannot be achieved for general graphs (unless 3SAT ∈ DTIME(2o(n))).
In addition, in the case of disk graphs with λ-precision, we can show that the indepen-

dent set problem is in FPT with g(n, k) = f(k) + log(n) and f(k) = O(
√

k log(k)). The
results are summarized in Table 1.
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2 Preliminaries and Notation

Our subject to explore are intersection graphs of geometric objects in the plane, namely of
disks. We assume that each point z of the plane is determined by its x any y coordinates
and the plane is equipped by the standard distance d(z, z′) =

√
(x − x′)2 + (y − y′)2.

If S = {S1, . . . , Sn}, Si ⊆ R
2 is a collection of geometric objects, we denote by

⋃S =⋃n
i=1 Si the union of S. For a collection S, let GS = (VS , ES) denote the intersection graph

of S, i.e., VS = {v1, . . . , vn} and ES = {(vi, vj) | Si ∩ Sj 6= ∅}. The collection S is called
the representation of GS . Moreover, for a subset S ′ ⊆ S, we denote by VS′ ⊆ VS the subset
of vertices induced by S ′, i.e., VS′ = {vi | Si ∈ S ′}. In this setting GS′ = GS [VS′ ] is the
subgraph of GS induced by the set of vertices VS′ .

Disk graphs. A disk D ⊆ R
2 is specified by a triple (r, x, y) ∈ R

3, where (x, y) are
coordinates of the center of the disk in the Euclidean plane and r is its radius. The graph
class of disk graphs, denoted by DG is the set of all graphs G, for which we find a collection of
disks D = {D1, . . . ,Dn} such that G = GD. Note that for given collection D, the graph GD
is given with a natural embedding in the plane, where vi sits in the position of the center
of Di.

The class of disk graphs of bounded radius ratio σ is the subclass DGσ ⊂ DG
of all graphs G ∈ DG which admit a representation D = {D1, . . . ,Dn}, such that
(maxi=1,...n ri)/(mini=1,...n ri) ≤ σ, where ri denotes the radius of disk Di. The parameter σ
is called radius ratio. By a rescaling argument, for a graph G ∈ DGσ with representation D,
we can always achieve, that the smallest disk in D has radius one and, hence, all radii being
upper bounded by σ.

Finally, a collection D is said to have λ-precision if all centers of disks are pairwise at
least λ apart (see [17, Definition 3.2]). Again, by a rescaling argument, all disk graphs have
a representation with λ-precision, however only some graphs of DGσ, allow a representation
with radii in [1, σ] and precision λ. We denote this class of graphs by DGσ,λ.

Throughout the paper, we assume that a disk graph G is given together with its repre-
sentation witnessing its membership in DG, DGσ or DGσ,λ, respectively. This makes sense
from an application point of view, since the graph is usually derived from the placement or
real objects in the space, and it is natural that these objects have bounded size as well as
distinguishable placement.

Grid graphs. Fix an arbitrary constant δ > 0, and consider the infinite grid of span δ
as the planar graph Hδ = (W δ, Eδ) with vertices W δ = {wi,j | i, j ∈ Z} and edges Eδ =
{(wi,j , wk,l) | |i− j|+ |k − l| = 1}. The canonical (straight-line) embedding of Hδ is given by
putting vertex wi,j at the coordinates (iδ, jδ). The set of faces Fδ of Hδ contains all closed
squares F δ

i,j = [iδ, (i + 1)δ]× [jδ, (j + 1)δ] ⊆ R
2. For a grid vertex w ∈ W δ, we define the face

neighborhood N̂(w) := {F ∈ Fδ | w ∈ F}. Similarly for W ′ ⊆ W δ, N̂(W ′) =
⋃

w∈W ′ N̂(w).

Definition 1 For a collection of disks D = {D1, . . . ,Dn}, we define Hδ
D to be the smallest

subgraph of the infinite grid Hδ induced by a set of grid points which completely covers all
disks in D. We call Hδ the covering grid (of span δ) for D. In other words, if we define the
set of faces hit by D as Fδ

D = {F ∈ Fδ | F ∩⋃D 6= ∅}, and if W δ
D is the set of all grid points

of Fδ
D, then the covering grid Hδ

D is the subgraph Hδ
D which is induced by W δ

D.
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An example which illustrates the construction of Hδ
D is given in Fig. 4 in the Appendix.

Finally, for a collection D of disks and a set S ⊆ R
2 (e.g., a set of grid vertices or a set of

faces), we call D[S] := {D ∈ D | D ∩ S 6= ∅} the set of disks induced by S.

Measures. We use the standard Lebesgue measure µ in R
2 as follows: For a Lebesgue

measurable set S ⊆ R
2, µ(S) denotes the size of S, i.e. the space in R

2 occupied by S. In
particular, for a collection of disks D = {D1, . . . ,Dn} let µ(D) = µ(

⋃D) be the space covered
by the union of disks D1, . . . ,Dn.

Definition 2 Let G be a graph class closed on taking subgraphs. A function ξ : G → R
+,

that is monotonous with respect to the subgraph ordering, i.e., ξ(G) ≤ ξ(G′) if G ⊆ G′, and
for which ξ((∅, ∅)) = 0, is called a graph measure.

Example 3 We specify two graph measures which play a decisive role throughout the paper.

1. The usual counting measure | · | which assigns to any graph G the size of its vertex set
|VG| clearly is a graph measure.

2. The Lebesgue measure µ(·) which assigns to a disk graph GD with representation D
the value µ(GD) = µ(D) is a graph measure for DG, when we restrict the subgraph
ordering to GD ⊆ GD′ ⇔ D ⊆ D′.

3 A Geometric Problem Kernelization

A well known tool for the design of fixed parameter algorithms is reduction to problem kernel.

Definition 4 Let L be a parameterized problem, i.e., L consists of pairs (I, k), where prob-
lem instance I has a solution of size k (the parameter). Reduction to problem kernel , then,
means to replace problem (I, k) by a “reduced” problem (I ′, k′) (called problem kernel) such
that

k′ ≤ c · k, |I ′| ≤ p(k), and (I, k) ∈ L iff (I ′, k′) ∈ L, (1)

where c is a constant,2 and the function p, called the size of the problem kernel, depends only
on k. Furthermore, we require that the reduction from (I, k) to (I ′, k′) is computable in time
TK(|I|, k), which is a polynomial.

It is well-known that a parameterized problem is fixed parameter tractable if and only if
it admits a reduction to a problem kernel (see [13]).

As an example, we mention that, due to the 4-color theorem it is easy to derive a problem
kernel of size 4k for independent set on planar graphs. For disk graphs, we can prove a
geometric version of a problem kernel. By this, we mean that the size of the reduced instance
is upper bounded by O(k), when measured by the (Lebesgue) measure µ(·) instead of the
counting measure | · | (see Example 3).

2Usually, c ≤ 1. In general, however, it would even be allowed that k′ = g(k) for some function g. For
our purposes, however, we need that k and k′ are linearly related. We are not aware of a concrete, natural
parameterized problem with problem kernel where this is not the case.
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kernelize(disk graph GD, integer k)
// Answers either that GD has an independent set of size k,
// or that no such set exists, or returns ”geometric problem kernel” (GD′ , k).

1. scale D such that the smallest disk has unit radius.

// Since GD ∈ DGσ, the largest radius of a disk in D is σ.

2. set F• = F• = ∅, δ = 1
20

// to be compatible with Theorem 14, however any fixed δ > 0 would suffice

3. for each D ∈ D do
F• := F• ∪ {F ∈ Fδ | F ⊆ D}
F• := F• ∪ {F ∈ Fδ | F ∩ D 6= ∅}

4. if |F•|δ2 > 9πσ2k then return "YES"

// i.e., find greedily a set of k independent disks DI and return (GDI
, k), respectively.

else if |F•|δ2 < πk then return "NO"

// i.e., return (∅, k).
else return (GD , k))

Figure 1: Geometric problem kernel reduction.

Proposition 5 For the parameterized independent set (IS) problem on DGσ there ex-
ists a “geometric” problem kernel, i.e., there is a procedure (which is computable in linear
time), that transforms an instance (GD, k) to an instance (GD′ , k), such that (GD, k) ∈ IS
iff (GD′ , k) ∈ IS and

πk ≤ µ(GD′) ≤ 9πσ2k.

Proof. Recall that for a given instance (GD, k) with the representation D—due to our
assumptions—all disks have radius in the range [1, σ] and GD is naturally embedded in the
plane with respect to D.

Observe first, that µ(GD) > 9πσ2k implies that (GD, k) ∈ IS . We use the fact that
µ(D[N(v)]) ≤ (3σ)2π for any vertex v ∈ V , i.e., that the neighborhood of any vertex may
occupy the space at most 9πσ2.

And, secondly, if µ(GD) < πk, then (GD, k) /∈ IS , since the representation of any inde-
pendent set of k vertices needs space at least πk. 2

The procedure which in linear time transforms (GD, k) to (GD′ , k) with µ(GD′) ≤ cσ2k
is given in Fig. 1. (Observe that c ց 9π as δ → 0.)

Note that this is not a problem kernel according to Definition 4, since the size of GD is
measured by the (Lebesgue) measure µ(·), which, in general, is not related to the (input) size
of G. For disk graphs with λ-precision, however, we can upper bound the counting measure
by the Lebesgue measure.

Lemma 6 Let GD = (V,E) ∈ DGσ,λ be a graph with and representation D. Then,

|V | ≤ 4

π
λ−2µ(GD)

Proof. The proof is deferred to the Appendix.
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Corollary 7 The parameterized independent set problem on disk graphs DGσ,λ (with λ-
precision) admits a problem kernel of size ck with constant c = 36(σ

λ
)2, which can be computed

in linear time,
Moreover, the problem can be solved in time O(kO(k) + n), hence, it is fixed parameter

tractable.

Proof. The claimed problem kernel reduction follows immediately by Proposition 5 and
Lemma 6.

In order to solve the problem, we perform the problem kernel reduction in time O(n) and
then, on the reduced instance of size ck, we may check all

(
ck
c

)
= O(kk) subsets of k disks for

their independence. This results in the claimed total running time. 2

4 A Geometric Separator Theorem

In the following, we prove our key result—a new geometric
√·-separator theorem—that makes

our divide-and-conquer strategy work. For this purpose, in a first subsection, we briefly
introduce the notion of vertex separators and give a short overview on known

√·-separator
theorems for planar graphs and unit disk graphs with λ-precision. In a second subsection, we
prove our key result, a geometric

√·-separator theorem for general disk graphs of bounded
radius ratio.

4.1 Classical
√·-separator theorems

We start with a somewhat generalized notion of separator theorems.

Definition 8 Let G = (V,E) be an undirected graph. A separator VS ⊆ V of G partitions
V into two parts VA and VB such that

• VA ∪̇VS ∪̇VB = V , and

• no edge joins a vertex of VA to VB .

The triple (VA, VS , VB) is also called a separation of G.

In order to provide a quantitative approach to separators, we need the notion of “measure”
as introduced in Section 2.

Definition 9 Let ξ be a graph measure. An f(·)-separator theorem for the measure ξ (and
constants α < 1, β > 0) on a class of graphs G which is closed under taking subgraphs is a
theorem of the following form:
For any G ∈ G there exists a separation (VA, VS , VB) of G such that

1. ξ(G[VS ]) ≤ β f(ξ(G))

2. ξ(G[VA]), ξ(G[VB ]) ≤ α ξ(G)
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√·-separator theorems on planar graphs. Stated in this framework, the planar separator
theorem due to Lipton and Tarjan [20] can be formulated as follows.

Theorem 10 On the class of planar graphs, there exists a
√·-separator theorem for the

counting measure | · | with constants α = 2/3 and β = 2
√

2. Moreover, the corresponding
separation can be found in linear time.

Later, Djidjev [8] improved the constants to α = 2/3 and β =
√

6. The current record
for α = 2/3 is β ≈ 1.97 [10]. Djidjev has also shown a lower bound of β ≈ 1.55 for α = 2/3
[8]. Similar

√·-separator theorems are also known for other graph classes, e.g., for the class
of graphs of bounded genus, see [9].

Remark 11 Note that Theorem 10 can directly be used to obtain a 2O(
√

n)-algorithm for
independent set on planar graphs (see [21], or [3, conference version, Prop.1]).

√·-separator theorems on disk graphs with λ-precision. In terms of geometric graphs,
a
√·-separator theorem for the counting measure was proven on the class of intersection

graphs of so-called τ -neighborhood systems (see [17]). Here, a τ -neighborhood system is
a collection B = {B1, . . . , Bn} of balls in a space of arbitrary fixed dimension, such that
the intersection of any (τ + 1) distinct balls in B is empty. It can be verified that every unit
disk graph with λ-precision is an intersection graph of a τ -neighborhood system (τ depending
on λ) and, vice versa, every intersection graph of a τ -neighborhood system in R

2 is λ-precision
disk graph (λ being the minimum distance between the centers of any two disks), see [17].
In the two-dimensional case the corresponding separator theorem reads as follows (see [23,
Theorem 2.5] and [14, Theorem 5.1]):

Theorem 12 On the class of intersection graphs of τ -neighborhood systems, there exists a√·-separator theorem for the measure | · | with constants α = 3/4 and β = O(
√

λ). Moreover,
the corresponding separation can be found in linear time.

Remark 13 As exhibited, e.g., in [3, conference version, Section 4.1], a divide-and-conquer
approach yields that independent set on intersection graphs of τ -neighborhood systems,
and hence, on unit disk graphs with λ-precision as well as for graphs from DGσ,λ, can be

solved in time 2O(
√

n).

4.2 A new geometric
√·-separator theorem

In this subsection, we prove an analogue to the classical
√·-separator theorems for the

class DGσ of disk graphs with bounded radius ratio. Note that graphs in DGσ may con-
tain arbitrary large cliques, which means that a

√·-separator theorem does not hold for the
counting measure | · |. However, if we use the (Lebesgue) measure µ(·) (see Example 3), we
obtain the following geometric

√·-separator theorem. Recall the notion from Section 2.

Theorem 14 On the class DGσ of disk graphs with bounded radius ratio, there exists a√·-separator theorem for the Lebesgue graph measure µ(·).
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More precisely there exist constants α < 1 and β such that, for every graph GD ∈ DGσ

with representation D, we find three sets DA,DS ,DB ⊆ D, such that (VDA
, VDS

, VDB
) is a

separation for GD, satisfying

1. µ(DS) ≤ σ2β
√

µ(D),

2. µ(DA), µ(DB) ≤ αµ(D).

Moreover, this separation can be found in time linear in |D|.

The idea for the proof of Theorem 14 is to construct the covering grid Hδ
D (of suitable

span) for a given collection D of disks (see Definition 2). Then, in a second step, one applies
a planar

√·-separator theorem on Hδ
D from which, in a suitable manner, the three sets

DA,DS ,DB ⊆ D will be constructed. In order to prove the Theorem we need the following
key result which interrelates the space covered by D with the size of the covering grid.

Proposition 15 For any ε there exists a δ such that for any set D of disks of radius at least
one:

|WD| ≤
1 + ε

δ2
µ(D).

Proof. The proof is deferred to the Appendix. 2

Proof. (of Theorem 14) The sets DS , DA and DB will be determined according to the
procedure given in Fig. 2. We now prove that, indeed (VDA

, VDS
, VDB

) is a separation of G
and that properties (1.) and (2.) of the theorem hold for the computed sets DS ,DA, and
DB :

(VDA
, VDS

, VDB
) is a separation of G: Showing that (VDA

, VDS
, VDB

) is a separation of GD is
equivalent to proving that

⋃DA ∩⋃DB = ∅. Recall that (WA,WS ,WB) is the separation of
the covering grid Hδ

D obtained by the algorithm of Lipton and Tarjan. First of all we claim
that ⋃

DA ∩ W δ
D ⊆ WA, and

⋃
DB ∩ W δ

D ⊆ WB . (2)

To see this, note that
⋃DA ∩ WS = ∅, since if there is a disk D ∈ DA containing a

point w ∈ WS—by construction of DS—we had D ∈ DS . Suppose now that there is a
vertex wB ∈ WB which lies in a disk D ∈ DA. By definition of the set DA, we find a vertex
wA ∈ WA inside D as well. Then, there exists a path P in Hδ

D which connects wA and wB

and is completely placed inside the disk D. Since (WA,WS ,WB) is a separation of Hδ
D then

there exists a vertex of WS on P contradicting
⋃DA ∩ WS = ∅. This also implies that⋃DA ∩ WB = ∅. Since W δ

D = WA ∪ WS ∪ WB, we get
⋃DA ∩ W δ

D ⊆ WA. The property⋃DB ∩ W δ
D ⊆ WB follows similarly.

Assume now, for contradiction that vertices vA ∈ VDA
and vB ∈ VDB

form an edge of ED,
that means there exists some point z in DA ∩DB . Let Fz ∈ Fδ be any of the (at most four)
squares containing z, and let Wz be the four grid vertices adjacent to Fz in Hδ

D.
We first consider the case when DB does not intersect Wz. Then it intersects one side

of Fz, and since δ ≪ 1 it contains two grid points of the square sharing this side (see the last
case depicted in Fig. 5 in the Appendix). Note that we use equation (2) in the sense that all
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geometric separator(disk graph GD)

// Returns sets DS , DA and DB corresponding to a separation (VDA
, VDS

, VDB
)

// of GD with respect to the measure µ(GD).

1. scale D such that the smallest disk has unit radius.

2. fix arbitrary ε < 1
2 and select δ according to Proposition 15

// E.g. ε = 1
4 , δ = 1

20
and construct the graph Hδ

D

3. run the algorithm of Lipton and Tarjan (see Theorem 10) on the covering

grid Hδ
D for D to obtain a separation (WA, WS , WB) with

a) |WS | ≤ β′
√
|W δ

D|, and
b) |WA|, |WB| ≤ α′|W δ

D|,
for the constants β′ =

√
8 and α′ = 2

3.

4. return the three sets

DS := D[N̂(WS)], // N̂(WS) is defined in Section 2.

DA := D[WA] \ DS ,

DB := D[WB ] \ DS .

Figure 2: Separator algorithm corresponding to Theorem 14.

grid points intersected by DB belong to WB. Then as DA must contain at least one point
of Wz (if not, either there is no possible place for z or WA ∩ WB 6= ∅).

In this case, or when we symmetrically exchange subscripts A and B, and also when both
DA and DB intersect Wz, there are two grid points wA ∈ DA, wB ∈ DB , that are in Hδ

D
at distance at most two. (All essential constellations are schematically depicted in Fig. 5.)
Since wA and wB must be separated by WS, and at the same time they belong to N̂(WS),
that is in contradiction with the definition of sets DA and DB .

ad property (1.): Consider a vertex w ∈ WS and the neighborhood N̂(w). As shown in
Fig. 6 in the Appendix, all disks in D which intersect N̂(w) must lie inside a cycle of radius
(2σ +

√
2δ) centered at w. This is clear, since disks in D have radius bounded by σ and since

the grid has span δ. More formally, we get

µ(D[N̂(w)]) ≤ (2σ +
√

2δ)2π.

Moreover, this implies that

µ(DS) = µ(D[N̂(WS)]) = µ

( ⋃

w∈WS

D[N̂(w)]

)

≤
∑

w∈WS

µ(D[N̂(w)]) ≤
(
(2σ +

√
2δ)2π

)
|WS | ≤ 5σ2π|WS |. (3)

Since, by our choice, ε < 1
2 we may use in the last step

√
2δ < 1

6 ≤ σ
6 . Using property

(a) of step (3.) of the algorithm in Fig. 2 and Proposition 15, we have |WS | ≤ β′√|WD| ≤

10



β′
√

1+ε
δ2 µ(D) which together with the estimate (3) establishes

µ(DS) ≤ σ2β
√

µ(D) for β =
5πβ′

δ

√
(1 + ε). (4)

ad property (2.): First of all, observe that the set
⋃DA is completely covered by the square

faces of the subgraph Hδ
D[WA], induced by the vertices of WA. To see this, suppose there

is a point z ∈ D (for some D ∈ DA) which lies in some square Fz ∈ Fδ of Hδ
D but not

of Hδ
D[WA]. As above, if the four vertices adjacent to Fz host a vertex of WB or WS , we get

D ∩ N̂(WS) 6= ∅, a contradiction.
By this observation and by the fact that |WA| ≤ α′|WD|, we get

µ(DA) ≤ µ(Hδ
D[WA]) ≤ δ2|WA| ≤ δ2α′|W δ

D| ≤ α′(1 + ε)µ(D),

where Proposition 15 was used in the last step.
Similarly, one proves µ(DB) ≤ α′(1 + ε)µ(D). 2

We note here that by our choice of ε = 1
4 , we get α = α′(1+ε) = 5

6 ; but α can be arbitrarily
close to α′ by a sufficiently small choice of ε. However then we have to consider the tradeoff
of getting a small β according to Equation (4), on the one hand, and enlarging |W δ

D|, on the
other hand.

5 The Algorithm and its Analysis

We use the geometric kernelization of Section 3 and a divide-and-conquer approach based
on the new geometric separator theorem from Section 4.2 to derive an algorithm for the
independent set problem on disk graphs of bounded radius ratio.

Theorem 16 Let D be a collection of n disks with GD ∈ DGσ. Then, there is an algorithm

running in time nO(
√

k) which decides if GD admits an independent set of size at least k, and
if the answer is “YES” it constructs one.

Proof. On input instance (GD, k), in a first step, perform the geometric kernelization ex-
plained in Section 3. After this step, without loss of generality, we may assume that µ(D) ≤ ck
for the constant c given in Proposition 5.

In a second step, the divide-and-conquer procedure indep set shown in Fig. 3 is applied
to the instance (D, ck).

Denote by T (n, s) the time needed to execute indep set(D,s) on a collection of n disks D
with µ(D) ≤ s. Let p(|D|) be the polynomial time needed to compute the sets DS,DA,
and DB according to Theorem 14, and q(|D|) be the polynomial time needed to perform

constructions of D′
A and D′

B . Note that in DS at most ⌊β
√

s
π

⌋ many disks can be independent,
since µ(DS) ≤ β

√
s and every disk has radius at least one. Hence, the total number of

independent sets in GDS
is upper bounded by

⌊β
√

s

π
⌋∑

i=0

(
n

i

)
≤ nβ̂

√
s,

11



disks indep set(disks D, space s)
// Returns an optimal independent set of GD,
// where s gives an upper bound on the space µ(D) occupied by D.

• if (D = ∅) then return indep set(disks D, space s)=∅; else

• compute DS , DA, and DB

// According to the geometric separator theorem (Theorem 14).

• for all independent sets VIS of GDS
do

• construct the sets
D′

A := DA \ {D ∈ DA | ∃D′ ∈ D[VIS] : D ∩ D′ 6= ∅}
D′

B := DB \ {D ∈ DB | ∃D′ ∈ D[VIS] : D ∩ D′ 6= ∅}
• compute resultVIS

:= VIS ∪ indep set(D′
A,αs) ∪ indep set(D′

B,αs)

• return resultVIS0
, for the independent set VIS0

with

| resultVIS0
| = min{| resultVIS

| where VIS is independent set of GDS
}

Figure 3: Divide-and-conquer algorithm for independent set for disk graphs of bounded
radius ratio based on the new geometric separator theorem.

where β̂ is some constant. Then, the recursion we have to solve in order to compute an upper
bound on T (n, s) reads as follows:

T (n, s) ≤ p(n) + nβ̂
√

s · q(n) · 2T (n, αs).

Hence, for n large enough, and a suitable constant β̃ we have

T (n, s) ≤ nβ̃
√

s · T (n, αs) ≤
log 1

α
(s)

∏

i=0

nβ̃
√

αis · T (n, 1)

≤ nβ̃
√

s(
∑∞

i=0
(
√

α)i) · T (n, 1) = n
β̃
√

s

1−
√

α · T (n, 1).

Note that T (n, 1) is constant, since µ(D) ≤ 1 implies D = ∅, because for every disk D we
have µ(D) ≥ π. By plugging in the values n = |D| and s = ck, we obtain the running time
as we have claimed. 2

Remark 17 Note that in the worst case we have k = n, which means that in the sense of
classical complexity theory we have an algorithm running in time O(2

√
n log(n)). As already

mentioned in the introduction, such a running time with a sublinear exponent cannot be
achieved for general graphs (unless 3SAT∈ DTIME(2o(n))).

Remark 18 We want to mention that the methods which yield the nO(
√

k) time algorithm
can be carried over to all problems which, on the one hand, admit a geometric problem
kernel and which, on the other hand, can be solved by a divide-and-conquer approach based
on a separator theorem. This latter property was characterized in [3] using the notion of
“weak glueability.” However, things get more involved here and, due to the lack of space, we

12



want to refer to [3] and the long version for details. As an example, we mention the weakly
glueable dominating set problem, for which a (linear) geometric problem kernel can be
proven similarly to Proposition 5.

6 Conclusion and Open Problems

In this paper, we prove a geometric separator theorem which in some sense extends the idea
of common separator theorems for planar graphs and (unit) disk graphs of λ-precision to
arbitrary disk graphs of bounded radius ratio.

The geometric separator theorem together with a geometric problem kernelization is ap-
plied to design an algorithm for the independent set problem for disk graphs of bounded

radius ratio. The running time of this algorithm is nO(
√

k).
In terms of the methods used in this paper, it is an interesting question, whether a similar

geometric separation theorem also holds for for disk graphs with arbitrary radius ratio or for
intersection graphs of other geometric objects.

As to parameterized complexity, we leave it as an open problem, whether independent

set and dominating set, respectively, on disk graphs (of bounded radius ratio) are in FPT
or complete for the classes W [1] and W [2], respectively. We want to emphasize, that we are
not aware of a (non-artificial) W [1]-complete problem which allows for an algorithm of running
time no(k), i.e., with running time bounded by an exponential with a sublinear exponent.
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Appendix

Figure 4: According to Definition 1: Constructing the covering grid Hδ
D for a collection of disks D.

wA

DB

z

DA

DA

zz

wA wA wBwB

wBDB

Fz Fz Fz

DBDA

Figure 5: For the proof of Theorem 14: The intersection of disks selects two vertices wA and wB

from the grid which are at distance at most two.

w

2σ +
√

2δ

N̂(w)

Figure 6: For the proof of Theorem 14: µ(DS) ≤ (2σ +
√

2δ)2π|WS |.
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Proof of Lemma 6:
Observe that, for given set of n disks D with radius at least one and centers of mutual distance
at least λ, the smallest value µ(D) is obtained by optimally placing all centers in the interior

of a disk. However, such a disk must have radius at least λ
√

n
2 . Since every disk has diameter

at least two, we have

µ(D) ≥
(

λ
√

n

2
+ 2

)2

π ≥ π

4
λ2n.

2

Proof of Proposition 15:
We use the theorem of Bern and Sahai [5] stating that if any set of disks is shifted in the
plane by a continuous motion, such that the center-to-center distance does not increase at
any time, then the total area of the union of disks is also non-increasing.

In particular, if we multiply all radii of disks in D by an arbitrary factor η ≥ 1, the total
area of the new set is at most η2µ(D). To see this, first multiply the coordinates of centers
as well as the radii by η. Consider this transformation of disks as a continuous mapping φ.
These disks now cover the space η2µ(D). We shift all disk centers to the original position
by the continuous mapping φ−1. Applying the Bern and Sahai’s theorem to φ−1 yields the
claim.3

Fix arbitrary positive δ ≤ 1
3(

√
2(1 + ε) −

√
2) and consider the set WD. Each point w

of WD, could be represented as a unique square of side length δ with w placed at the center.
(These squares correspond to the grid squares shifted by δ

2 in both coordinates.) All these new

squares could be covered by the original disks if we enlarge all radii by the factor (1 + 3
√

2
2 δ).

Then, due to the choice of δ,

|WD| ≤
(

1 +
3
√

2

2
δ

)2 µ(D)

δ2
≤ 1 + ε

δ2
µ(D).

2

3We thank Jǐŕı Matoušek for pointing us to the result of Bern and Sahai.
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