Better upper bounds on the Füredi–Hajnal limits of permutations

Josef Cibulka and Jan Kynčl

Charles University, Prague

January 19th, 2017 / SODA 2017
An Extremal Problem on Binary Matrices

- All matrices will be binary matrices . . . all entries from \{0, 1\}.
- A matrix A contains a matrix B if B can be obtained from A by removing some rows, columns and 1’s.

$$B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \quad A = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

- Otherwise A avoids B
- $\text{ex}_B(n)$... maximum number of 1’s in an $n \times n$ matrix A avoiding B
- B is forbidden
- Similar to the Turán theory of graphs.
An Extremal Problem on Binary Matrices

- All matrices will be binary matrices . . . all entries from \(\{0, 1\} \).
- A matrix \(A \) contains a matrix \(B \) if \(B \) can be obtained from \(A \) by removing some rows, columns and 1’s.

\[
B = \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix} \\
A = \begin{pmatrix}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0
\end{pmatrix}
\]

- Otherwise \(A \) avoids \(B \)
- \(\text{ex}_B(n) \) ... maximum number of 1’s in an \(n \times n \) matrix \(A \) avoiding \(B \)
- \(B \) is forbidden
- Similar to the Turán theory of graphs.
An Extremal Problem on Binary Matrices

- All matrices will be **binary matrices**... all entries from \{0, 1\}.
- A matrix A **contains** a matrix B if B can be obtained from A by removing some rows, columns and 1’s.

$$B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \quad A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

- Otherwise A **avoids** B
- $\text{ex}_B(n)$... maximum number of 1’s in an $n \times n$ matrix A avoiding B
- B is **forbidden**
- Similar to the Turán theory of graphs.
An Extremal Problem on Binary Matrices

- All matrices will be **binary matrices** ... all entries from \{0, 1\}.
- A matrix \(A\) **contains** a matrix \(B\) if \(B\) can be obtained from \(A\) by removing some rows, columns and 1’s.

\[
B = \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix} \quad A = \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix}
\]

- Otherwise \(A\) **avoids** \(B\)
- \(\text{ex}_B(n)\) ... maximum number of 1’s in an \(n \times n\) matrix \(A\) avoiding \(B\)
- \(B\) is **forbidden**
- Similar to the Turán theory of graphs.
An Extremal Problem on Binary Matrices

- All matrices will be **binary matrices** ... all entries from \(\{0, 1\}\).
- A matrix \(A\) **contains** a matrix \(B\) if \(B\) can be obtained from \(A\) by removing some rows, columns and 1's.

\[
B = \begin{pmatrix}
 \bullet & \bullet & \bullet \\
 \bullet & & \\
 & &
\end{pmatrix} \quad A = \begin{pmatrix}
 \bullet & & \\
 \bullet & & \\
 & & \\
 & &
\end{pmatrix}
\]

- Otherwise \(A\) **avoids** \(B\)
- \(\text{ex}_B(n)\) ... maximum number of 1's in an \(n \times n\) matrix \(A\) avoiding \(B\)
- \(B\) is **forbidden**
- Similar to the Turán theory of graphs.
Forbidden permutation matrices

- Permutation \(\leftrightarrow\) Permutation matrix
 \[
 2 \leftrightarrow \begin{pmatrix}
 \bullet \\
 \bullet
 \end{pmatrix} \\
 4 \leftrightarrow \begin{pmatrix}
 \bullet \\
 \bullet
 \end{pmatrix} \\
 3 \leftrightarrow \begin{pmatrix}
 \bullet
 \end{pmatrix} \\
 1 \leftrightarrow \begin{pmatrix}
 \bullet
 \end{pmatrix}
 \]
- An \textit{n-permutation matrix} is an \(n \times n\) binary matrix with exactly one 1 in every column and row.

Trivial:
- \(\exp_P(n) \geq 2(k - 1)n - (k - 1)^2\) for every \(k\)-permutation matrix \(P\)

\[
P \left(\begin{array}{ccc}
 \bullet & \bullet & \bullet \\
 \bullet & \bullet
\end{array} \right) \hspace{1cm} \text{Avoided by:} \left(\begin{array}{ccc}
 \bullet & \bullet & \bullet & \bullet \\
 \bullet & \bullet & \bullet & \bullet \\
 \bullet & \bullet & \bullet & \bullet \\
 \bullet & \bullet & \bullet & \bullet
\end{array} \right)
\]

Superadditivity: If \(k \geq 2\), \(\exp_P(n_1 + n_2) \geq \exp_P(n_1) + \exp_P(n_2)\)

Proof: If \(A\) and \(B\) avoid \(P\), then either \(\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}\) or \(\begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix}\) avoids \(P\).
The Füredi–Hajnal conjecture

Theorem (The Füredi–Hajnal conjecture, Marcus and Tardos 2004)

For every k-permutation matrix P:

$$
\exp_P(n) \leq 2k^4 \binom{k^2}{k} n = 2^{O(k \log(k))} n.
$$

- $c_P \overset{\text{def}}{=} \lim_{n \to \infty} \exp_P(n)/n \ldots$ the Füredi–Hajnal limit of P
- c_P exists by the superadditivity and is finite by the theorem of Marcus and Tardos
- $c_P \leq 2^{O(k)}$ for every k-permutation matrix P (Fox 2017+)
The Stanley–Wilf conjecture

- $S_P(n)$... the set of n-permutation matrices avoiding a permutation matrix P
- $|S_P(n)|$ is supermultiplicative \rightarrow lower bound exponential in n

Theorem (Marcus, Tardos (2004), using a result of Klazar (2000))

*For every permutation P, we have $|S_P(n)| \leq s_P^n$ for some constant s_P.***

- Was a conjecture of Stanley and Wilf from around 1992.
- **The Stanley–Wilf limit:** $s_P \overset{\text{def}}{=} \lim_{n \to \infty} \sqrt[n]{|S_P(n)|}$
 - Klazar 2000: $s_P \leq 15c_P$
 - C. 2009: $s_P \leq 2.88c_P^2$
 - C. 2009: $c_P \leq O(s_P^{4.5})$
 - Fox 2017+: $c_P \leq O(s_P^3)$
 - C.,K. 2017+: $c_P \leq O(s_P^{2.75})$
Lower bounds on c_P

The trivial lower bound $c_P \geq 2(k - 1)$ is tight for some k-permutation matrices

\begin{equation}
I_k \begin{pmatrix}
\bullet & \bullet & \cdots & \bullet \\
\bullet & \bullet & \cdots & \bullet \\
\vdots & \vdots & \ddots & \vdots \\
\bullet & \bullet & \cdots & \bullet
\end{pmatrix}
\quad A \text{ avoiding } I_k:
\begin{pmatrix}
\bullet & \bullet & \cdots & \bullet \\
\bullet & \bullet & \cdots & \bullet \\
\vdots & \vdots & \ddots & \vdots \\
\bullet & \bullet & \cdots & \bullet
\end{pmatrix}
\quad \text{At most } k - 1 \text{-entries on each diagonal}
\end{equation}

Theorem (C. 2009)

For every k there is a k-permutation matrix X_k satisfying $c_{X_k} \geq \Omega(k^2)$ (explicit construction of X_k-avoiding matrices).

\begin{equation}
X_8 \begin{pmatrix}
\bullet & \bullet & \cdots & \bullet \\
\bullet & \bullet & \cdots & \bullet \\
\vdots & \vdots & \ddots & \vdots \\
\bullet & \bullet & \cdots & \bullet
\end{pmatrix}
\quad \text{Avoided by:}
\begin{pmatrix}
\bullet & \bullet & \cdots & \bullet \\
\bullet & \bullet & \cdots & \bullet \\
\vdots & \vdots & \ddots & \vdots \\
\bullet & \bullet & \cdots & \bullet
\end{pmatrix}
\end{equation}

Conjecture (Many people)

The values s_P (and c_P) are bounded by a polynomial in k.
Lower bounds on c_P

Theorem (Fox 2017+)

For every k, there is a k-permutation matrix F_k satisfying $c_{F_k} \geq 2^{\Omega(\sqrt{k})}$ (probabilistic construction of F_k-avoiding matrices).

$$F_9 \begin{pmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{pmatrix}$$

Avoided by:

$$\{i2^j + 1, \ldots, (i+1)2^j\}$$

Theorem (Fox 2017+)

Asymptotically almost all k-permutation matrices P satisfy $c_P \geq 2^\Omega(\sqrt{k/\log(k)})$.

Corollary

These two theorems hold also when c_P is replaced with s_P.
The new upper bounds

Theorem

Asymptotically almost all k-permutation matrices P satisfy

\[c_P \leq 2^{O(k^{2/3} \log(k)^{7/3})}. \]

That is,

\[\text{Prob}\{c_P \leq 2^{O(k^{2/3} \log(k)^{7/3})} \mid P \text{ is a } k\text{-permutation matrix}\} \to 1 \]

as \(k \to \infty \)

Summary of bounds:

<table>
<thead>
<tr>
<th>All k-permutation matrices</th>
<th>Almost all</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_P \geq 2k - 2) [trivial]</td>
<td>(c_P \geq 2^{\Omega(\sqrt{k/ \log(k)})}) [Fox 2017+]</td>
</tr>
<tr>
<td>(c_P \leq 2^{O(k)}) [Fox 2017+]</td>
<td>(c_P \leq 2^{O(k^{2/3} \log(k)^{7/3})})</td>
</tr>
</tbody>
</table>

Corollary

Asymptotically almost all k-permutation matrices P satisfy

\[s_P \leq 2^{O(k^{2/3} \log(k)^{7/3})}. \]
Scattered permutation matrices

- The distance vector between two 1-entries is the vector whose coordinates are the differences between the row and column indices.

\[
\begin{pmatrix}
1 & 1 \\
4 & k
\end{pmatrix}
\]

Distance vector \((-1, 4)\)

- A k-permutation matrix \(P\) is scattered if every vector is a distance vector of at most \(\log_2(k)\) pairs of 1-entries of \(P\).

Theorem

The number of k-permutation matrices that are not scattered is at most

\[
2k! \left(\frac{4e}{\log_2(k)} \right)^{\log_2(k)} = k! \cdot \frac{1}{\log_2(k)^{\Omega(\log(k))}}.
\]
Lemma

Let A be a $3k \times 3k$ binary matrix, where $k \geq 9$. Let P be a scattered k-permutation matrix. If every row and every column of A has at most $k^{1/3}/(3 \log_2(k)^{1/3})$ 0-entries then A contains P.

Proof.
Trivial algorithm for finding an occurrence of P on a fixed set of rows of A:

![Diagram showing the algorithm](image)
Finding scattered permutation matrices — Base case

- Run $2k + 1$ instances of the algorithm — one on each k-tuple of consecutive rows of A.
- Aim: Show that they together make at most twice more stalls than moves.

Sketch of the proof:

- $\tilde{O}, \tilde{\Omega}, \tilde{\Theta}$... ignoring logarithmic multiplicative factors
- For contradiction more than $2/3$ of instances stalled in one column.
- For simplicity $\tilde{\Omega}(k^{2/3})$ instances stalled on each 0 of the column.
- M ... the set of $\tilde{\Omega}(k^{2/3})$ instances stalled on one fixed 0.
- All instances of M start moving within the next $\tilde{O}(k^{1/3})$ columns.
- P scattered \rightarrow at most $\log_2(k)$ instances become stalled on each 0 in the following columns.
- Half of the instances of M make at least $\tilde{\Omega}(k^{1/3})$ moves before they stall.
Scattered perm. matrices — Trading size for density

- Density \(q \) of \(A \) is \(\ldots \) fraction of the number of 1-entries and all entries.

Corollary

For every scattered \(P \), we have

\[
\text{ex}_P(4k) \leq (4k)^2 \cdot (1 - \tilde{\Omega}(k^{-2/3})).
\]

That is, every \(4k \times 4k \) matrix of density at least \((1 - \tilde{\Theta}(k^{-2/3})) \) contains \(P \).

Theorem (Size-density tradeoff)

Let \(u \in \mathbb{N} \) and \(q \in (1/u, 1) \). If every \(u \times u \) matrix of density \(q \) contains \(P \), then

\[
c_P \leq 2u^3 u^\lceil -\log u/\log q \rceil.
\]

That is,

\[
q = 1 - \tilde{\Theta}(k^{-2/3}) \quad \text{and} \quad q = 2\tilde{\Theta}(k^{2/3})/n.
\]
Upper bounds for special matrices

- $c_P \leq k^{O(\log(k))}$ for matrices with 1-entries on the main diagonal and the main skew diagonal

 Example:

 \[
 X = \begin{pmatrix}
 \cdot & \cdot & \cdot \\
 \cdot & \cdot & \cdot \\
 \cdot & \cdot & \cdot
 \end{pmatrix}
 \]

- $c_P \leq k^{O(k^{1/2} \log(k))}$ for grid products of matrices with small Füredi–Hajnal constant

 Example:

 \[
 F = \begin{pmatrix}
 \cdot & \cdot & \cdot & \cdot \\
 \cdot & \cdot & \cdot & \cdot \\
 \cdot & \cdot & \cdot & \cdot \\
 \cdot & \cdot & \cdot & \cdot
 \end{pmatrix}
 \]
Higher-dimensional matrices

In a \(d \)-dimensional permutation \(P \):

- Every \((d - 1) \)-dimensional slice contains exactly one 1-entry.
- Every projection to 2 dimensions is a permutation.

\[
\begin{align*}
\text{3-dimensional permutation} & \\
\text{Projection on } xy\text{-plane.} & \\
\text{xy-slices} & \\
\end{align*}
\]

- \(\text{ex}_P(n) \) is maximum number of 1’s in a \(P \)-avoiding \(d \)-dimensional \(n \times n \times \cdots \times n \) binary matrix.
- \(S_P(n) \) is the set of \(P \)-avoiding \(d \)-dimensional \(n \times n \times \cdots \times n \) permutation matrices.
Higher-dimensional generalizations of the conjectures

Let P be a d-dimensional permutation matrix of size at least $2 \times 2 \times \cdots \times 2$.

Observation (Trivial bounds)

1. $\Omega(n^{d-1}) \leq \text{ex}_P(n) \leq n^d$
2. $2^{\Omega(n)}(n!)^{d-2} \leq |S_P(n)| \leq (n!)^{d-1}$

Theorem (Klazar, Marcus (2007))

$\text{ex}_P(n) \leq O(n^{d-1})$

Theorem (C. (2009))

$|S_P(n)| \leq 2^{O(n \log \log(n))} (n!)^{d-1-1/(d-1)}$

Theorem

$2^{-O(n)}(n!)^{d-1-1/(d-1)} \leq |S_P(n)| \leq 2^{O(n)}(n!)^{d-1-1/(d-1)}$
Avoiding a $2 \times 2 \times 2$ permutation matrix

- Let P be the $2 \times 2 \times 2$ permutation matrix with 1-entries at $(1, 1, 1)$ and $(2, 2, 2)$.

\[
P = \begin{array}{ccc}
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\end{array}
\]

- Let A be an $n \times n \times n$ permutation matrix with 1-entries at positions $\alpha_1 = (x_1, y_1, z_1), \ldots, \alpha_n = (x_n, y_n, z_n)$.
- Three linear orders on $\alpha_1, \ldots, \alpha_n$: $<_x, <_y$, and $<_z$.
- Partial order $<_\ldots$ intersection of $<_x, <_y$, and $<_z$.
- That is: $\alpha_i <_\ldots \alpha_j$ if and only if $x_i < x_j$ & $y_i < y_j$ & $z_i < z_j$.
- If A is a random $n \times n \times n$ permutation matrix, then $<_\ldots$ is a random partial order of dimension 3.
- A avoids P if and only if $\{\alpha_1, \ldots, \alpha_n\}$ is an antichain in $<_\ldots$

Theorem (Brightwell (1992))

The probability that a random d-dimensional partial order on n elements is an antichain is at least $(e^{-2}n^{1-1/(d-1)})^n$.