Matroid Theory Tutorials: (8) Gammoids

Homework

Definition 1. Let $G=(V, E)$ be a directed graphy and $X, Y \subseteq V$. We say that X is connected to Y, if there are $|Y|$ vertex disjoint paths from X to Y. (The path are vertex disjoint not just internally vertex disjoint. We allow paths of length 0 if $X \cap Y \neq \emptyset$.)

Definition 2. Let $G=(V, E)$ be a directed graph and $S, T \subseteq V$. A gammoid is a matroid over a set T and a subset $X \subseteq T$ is independent if S is connected to X in G. A gammoid is strict if $T=V$.

HW 1. Let \mathcal{G} be a gammoid over a set T. Show that rank of a set $X \subseteq T$ is equal to the size of the minimum (S, X)-cut.

HW 2. Show that every uniform matroid is isomorphic to some gammoid. Is it possible to represent every uniform matroid as a strict gammoid?

