Matroid Theory Tutorials:
 (7) Regular Matroids

Homework

HW 1. Show that an incidence matrix of a graph G is totally unimodular if and only if the graph G is bipartite. (Incidence matrix of a graph G is a $0 / 1$-matrix M such that its rows are indexed by vertices of G and columns are indexed by edges of G and for a vertex v and an edge $e, M_{v, e}=1$ if and only if $v \in e$.)

HW 2. Consider the following matrix (matroid):

$$
R_{10}=\left(I_{5} \left\lvert\, \begin{array}{ccccc}
1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 1
\end{array}\right.\right)
$$

- What is a dual of the matroid R_{10} ?
- Is R_{10} a graphic matroid?
- Is it possible to add minuses (change 1 to -1) to the right sumbatrix 5×5 of R_{10} such that the matrix R_{10} is totally unimodular?

