Matroid Theory Tutorials: (6) Representability – double series

Homework

The following figure depicts a geometry representation of a matroid P_6 (a geometry representation in the Eucledian plane is considered, i.e., an element set is independent if the corresponding point set is affine independent):

$$e_1 \quad e_2 \quad e_3$$

$$e_4 \quad e_5 \quad e_6$$
Matroid P_6 .

HW 1. Show that for any representation of P_6 in a form $[I_3|D]$ (where the columns of D correspond the line $\{e_4, e_5, e_6\}$) holds that all all elements of D are non-zero.

HW 2. Show that, if the matroid P_6 is representable over a field \mathbb{F} , then there is a representation of P_6 over \mathbb{F} in a form:

e_1	e_2	e_3	e_4	e_5	e_6
/1	0	0	1	1	1
0	1	0	1	a	b
$\sqrt{0}$	0	1	1	c	$_{d}$ /

Further, show that each representation in this form satisfies:

- 1. The column e_5 does not contain two equal elements, i.e., $a \neq c \neq 1$ (the same holds for the column e_6).
- 2. $a \neq b$ and $c \neq d$.

HW 3. Show that P_6 is not representable over GF(4). *Hint:* Use the previous exercises.

HW 4. Find a representation of P_6 over \mathbb{F}_5 .

Operation in GF(4).

+	0	1	x	x + 1
0	0	1	x	x+1
1	1	0	x + 1	<i>x</i>
x	x	x + 1	0	1
x + 1	x + 1	1 x	1	0
•	0	1	x	x + 1
0	0	0	0	0
1	0	1	x	x + 1
x	0	x	x + 1	1
x + 1	$1 \mid 0$	x + 1	1	x