Matroid Theory Tutorials: (3) Matroid Algorithms

Homework

HW 1. Let $M = (E, \mathcal{I})$ be a matroid with a weight function $w \colon E \to \mathbb{R}$.

- 1. Show that if w is injective, then there is a unique base of the maximum weight. I.e., the greedy algorithm output a unique solution.
- 2. Show that if w is not injective, then the greedy algorithm can output arbitrary base of the maximum weight.

HW 2. Modify the greedy algorithm, that it will find a base B of the maximum weight, such that B contains a fixed indpendent set I.

Other Exercises

Exercise 1. Prove that algorithmic version of MATROID INTERSECTION for 3 matroids is an NP-hard problem.

Solution: We prove the statement via reduction from the following problem.

DIRECTED HAMILTONIAN PATH Input: An directed graph G = (V, E), vertices $s, t \in V$. Question: Is there a directed (s, t)-path in G which contains all vertices of G?

We describe the Hamiltonian path in G by 3 matroids:

- 1. M_1 : graphic matroids of \overline{G} , where \overline{G} is the underlying undirected graph of G (we replace directed edges by undirected ones).
- 2. $\mathcal{I}(M_2)$: Sets of edges $I \subseteq E$ such that for a directed graph $G_2 = (V, I)$ holds that $indeg(v) \leq 1$ for all $v \in V$ and indeg(s) = 0.
- 3. $\mathcal{I}(M_3)$: Sets of edges $I \subseteq E$ such that for a directed graph $G_3 = (V, I)$ holds that $outdeg(v) \leq 1$ for all $v \in V_3$ and outdeg(t) = 0.

It is needed to verify that M_2 and M_3 is still matroids, but it is not difficult. Now, consider the maximum independent set I in the intersection $\mathcal{I}(M_1) \cap \mathcal{I}(M_2) \cap \mathcal{I}(M_3)$. The set I has the following properties:

1. Since $I \in \mathcal{I}(M_1)$, it does not contain a cycle (even an undirected one).

- 2. Since $I \in \mathcal{I}(M_2)$, $indeg(v) \leq 1$ for all $v \in V$ and indeg(s) = 0.
- 3. Since $I \in \mathcal{I}(M_3)$, $outdeg(v) \leq 1$ for all $v \in V_3$ and outdeg(t) = 0.

Thus, the edges in I induces a union of directed paths such that s is a start vertex of one of them and t is an end vertex of one of them. If I contains exactly n - 1 edges, then it has to induce a directed Hamiltonian path. Therefore, G contains a directed Hamiltonian (s,t)-path if and only if |I| = n - 1.