Matroid Theory Tutorials: (2) Duals and Minors

Homework

HW 1. Let C be a circuit in matroid $\mathcal{M} = (E, \mathcal{I})$ and $e \in E$.

- 1. Show that if $e \in C$, then e is a loop in M or $C \setminus \{e\}$ is a circuit in M / e.
- 2. Show that it does not hold that if $e \notin C$, then C is a union of circuits in M / e.
- 3. Could C be a union of at least three circuits in M / e?

HW 2. Find dual matroids for the following matroids: $M(K_4), M(K_{2,3})$ and a matroid represented by the following matrix over \mathbb{Z}_2 :

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Other exercises

Exercise 1. Let G be a connected planar graph such that its spanning tree has k edges. What is the size of the spanning tree of G^* ? How it is related to the Euler's formula?

Solution: Rank of M(G) is k. Thus, rank of $M^*(G) = m - k$, where m is a number of edges of G (and G^*). Since $M^*(G) = M(G^*)$, the spanning tree of G^* has m - k edges. The Euler's formula states that for a connected planar graph G = (V, E) holds that n - m + s = 2, where n = |V|, m = |E| and s is a number of faces of G. Since n = k + 1 and s is a number of vertices of G^* (thus s = m - k + 1) we can proof the Euler's formula by properties of M(G) and $M(G^*)$:

n - m + s = k + 1 - m + m - k + 1 = 2