Matroid Theory Tutorials:
 (1) Basic definitions

Homework

HW 1. Let A be the following matrix.

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

Consider two matroids \mathcal{M}_{1} and \mathcal{M}_{2} such that A is a representation of \mathcal{M}_{1} over \mathbb{F}_{2} and also A is a representation of \mathcal{M}_{2}, but now over \mathbb{F}_{3}. Does it holds that $\mathcal{M}_{1}=\mathcal{M}_{2}$?

HW 2. Which properties are lost when we go from a graph to a graphic matroid? Consider a graphic matroid $\mathcal{M}(G)=(E, \mathcal{I})$ where G is a simple graph. However, the matroid $\mathcal{M}(G)$ is given by an oracle:

- We know the set E.
- For any subset $X \subseteq E$ we can ask the oracle, if $X \in \mathcal{I}$.

Can we decide (with an arbitrary computational power) the following questions?

1. Is the graph G connected?
2. Does the graph G contains a clique with at least 30 vertices?
3. Does the graph G contains a perfect matching?

HW 3. Prove that a uniform matroid $U_{m, n}$ is representable over a suitable field.

Other exercises

Exercise 1. Decide, if the following structures are matroids.

1. Let $G=(V, E)$ be a graph. The elements of a matroid are the edges of G. A set $X \subseteq E$ is independent if the set X creates a matching (not necessarily a maximal one). The empty set is also a matching.
Solution: No, it is not always possible to extend a matching. A counterexample $G=P_{4}$.
2. Let F be the Fano plane. The elements of a matroid are the points of F. A set of points X in independent if no three points in X lies on a line.
Solution: It is even a representable matroid.
3. Let $k \geq 3$ and $H=(V, E)$ be a hypergraf. Elements of a matroid are the edges E of H. Elements e_{1}, \ldots, e_{ℓ} are independent if no vertex in $\bigcup_{i \leq \ell} e_{i} \subseteq X$ is covered by k elements of e_{1}, \ldots, e_{ℓ}.
Solution: No, it is not always possible to extend an independent set.
Exercise 2. Is it possible to every vector matroid describe as a graphic matroid? Is it possible to every graphic matroid describe as a vector matroid, i.e., is every graphic matroid representable?
Solution: $U_{2,4}$ is not a graphic matroid. Each graphic matroid $\mathcal{M}(G)$ is representable over any field - let D be a directed graph arising from G by arbitrary orientation of the edges. An incidence matrix of D is a representation of $\mathcal{M}(G)$.

For a matroid $\mathcal{M}=(E, \mathcal{I})$ and its rank function $r: 2^{E} \rightarrow \mathbb{N}_{0}$ we define the following notions.

Definition 1. Closure $c l: 2^{E} \rightarrow 2^{E}, \operatorname{cl}(X)=\{y \in E \mid r(X \cup y)=r(X)\}$.
The closure of X contains such elements y that by adding y to X we do not increase the rank.

Definition 2. A set X is closed if $\operatorname{cl}(X)=X$.
A set X is closed if we increase the rank of X by adding any element y to X.
Definition 3. A hyperplane H is a maximal set such that $r(H) \neq r(B)$ where B is a base of \mathcal{M}.

Exercise 3. Describe these notions (closure, closed set and hyperplane) in terms of graphic matroids $\mathcal{M}(G)$.

Solution:

- Closure

Clearly, $X \subseteq c l(X)$. For $y \notin X$, consider graph $\left(V_{X}, X\right)$ and its arbitrary spanning tree T_{X}. It holds that $r(X)=\left|E_{T_{X}}\right|$. If $r(X)=r(X \cup y)$, it means $T_{X}+e$ is not a spanning tree, otherwise $r(X)=r(T)<r(T+e)=r(X \cup y)$. Thus, by adding $y \notin X$ to X, a new circle (not completely contained in X) has to occur.

- Closed set

A set X is closed if by adding any $y \in E \backslash X$ to X does not yield any new circle in $X \cup y$ (containing y).

- Hyperplane

A hyperplane is any maximal set of edges which does not contain any span tree of G.
Exercise 4. Describe these notions in terms of vector matroids.
Solution: Closure of X : set of vectors which are in a subspace generated by X. A set X is closed if any vector v not in X is linearly independent on vectors in X. A hyperplane is any maximal set of vectors which has dimension $r(B)-1$.

