Recent Progress on Hill’s Conjecture

Martin Balko, Radoslav Fulek and Jan Kynčl

Charles University in Prague,
Czech Republic

August 3, 2014
Preliminaries – Drawings

- **Drawing of a graph** G: vertices = distinct points in \mathbb{R}^2, edges = simple continuous arcs.
Preliminaries – Drawings

- **Drawing of a graph** G: vertices = distinct points in \mathbb{R}^2, edges = simple continuous arcs.
- **Forbidden:**
Preliminaries – Drawings

- **Drawing of a graph** G: vertices = distinct points in \mathbb{R}^2, edges = simple continuous arcs.

- Forbidden:

![Diagram showing a path passing through vertices](image)
Preliminaries – Drawings

- **Drawing of a graph** G: vertices = distinct points in \mathbb{R}^2, edges = simple continuous arcs.
- **Forbidden:**
 - Passing through vertices
 - Infinitely many points in common
Preliminaries – Drawings

- **Drawing of a graph** G: vertices = distinct points in \mathbb{R}^2, edges = simple continuous arcs.

- Forbidden:
 - Passing through vertices
 - Infinitely many points in common
 - Edges touching
Preliminaries – Drawings

- **Drawing of a graph** G: vertices = distinct points in \mathbb{R}^2, edges = simple continuous arcs.

- **Forbidden:**
 - Passing through vertices
 - Infinitely many points in common
 - Edges touching
 - Multiple crossings
Preliminaries – Drawings

- **Drawing of a graph** G: vertices = distinct points in \mathbb{R}^2, edges = simple continuous arcs.

- **Forbidden:**
 - Passing through vertices
 - Infinitely many points in common
 - Edges touching
 - Multiple crossings

- A drawing is **simple** if every two edges have at most one point in common.
Preliminaries – Drawings

- **Drawing of a graph** G: vertices = distinct points in \mathbb{R}^2, edges = simple continuous arcs.

- **Forbidden:**
 - Passing through vertices
 - Infinitely many points in common
 - Edges touching
 - Multiple crossings

- A drawing is **simple** if every two edges have at most one point in common.
Preliminaries – Drawings

- **Drawing of a graph** G: vertices = distinct points in \mathbb{R}^2, edges = simple continuous arcs.

- **Forbidden:**
 - Passing through vertices
 - Infinitely many points in common
 - Edges touching
 - Multiple crossings

- A drawing is **simple** if every two edges have at most one point in common.

- In a **semisimple** drawing independent edges may cross more than once.
Drawing of a graph G: vertices = distinct points in \mathbb{R}^2, edges = simple continuous arcs.

Forbidden:

- Passing through vertices
- Infinitely many points in common
- Edges touching
- Multiple crossings

A drawing is **simple** if every two edges have at most one point in common.

In a **semisimple** drawing independent edges may cross more than once.
Preliminaries – Drawings

- **Drawing of a graph** G: vertices = distinct points in \mathbb{R}^2, edges = simple continuous arcs.

- **Forbidden:**
 - Passing through vertices
 - Infinitely many points in common
 - Edges touching
 - Multiple crossings

- A drawing is **simple** if every two edges have at most one point in common.

- In a **semisimple** drawing independent edges may cross more than once.

- A drawing is called **x-monotone** if edges are x-monotone curves.
Preliminaries – Crossings
Preliminaries – Crossings

- A **crossing** in a drawing D of G is a common interior point of two edges.
A crossing in a drawing D of G is a common interior point of two edges. The crossing number $\text{cr}(G)$ of G is the minimum number of crossings $\text{cr}(D)$ in D taken over all drawings D of G.
Preliminaries – Crossings

- A **crossing** in a drawing D of G is a common interior point of two edges.
- The **crossing number** $\text{cr}(G)$ of G is the minimum number of crossings $\text{cr}(D)$ in D taken over all drawings D of G.

Observation

All drawings with minimum number of crossings are simple.
A crossing in a drawing D of G is a common interior point of two edges. The crossing number $cr(G)$ of G is the minimum number of crossings $cr(D)$ in D taken over all drawings D of G.

Observation
All drawings with minimum number of crossings are simple.
A **crossing** in a drawing D of G is a common interior point of two edges.

The **crossing number** $\text{cr}(G)$ of G is the minimum number of crossings $\text{cr}(D)$ in D taken over all drawings D of G.

Observation

All drawings with minimum number of crossings are simple.

The **monotone crossing number** $\text{mon-cr}(G)$ of G is the minimum number of crossings $\text{cr}(D)$ in D taken over all x-monotone drawings D of G.
Crossing Number of K_n
Crossing Number of K_n

Conjecture (Hill, 1958)

We have $\text{cr}(K_n) = Z(n) := \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$ for every $n \in \mathbb{N}$.
The conjecture is still open.
Crossing Number of K_n

Conjecture (Hill, 1958)

We have $\text{cr}(K_n) = Z(n) := \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$ for every $n \in \mathbb{N}$.

- The conjecture is still open.
- We have $\text{cr}(K_n) \leq Z(n)$ (Harary and Hill 1963, Blažek and Koman 1964).
Crossing Number of K_n

Conjecture (Hill, 1958)

We have $\text{cr}(K_n) = Z(n) := \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$ for every $n \in \mathbb{N}$.

- The conjecture is still open.
- We have $\text{cr}(K_n) \leq Z(n)$ (Harary and Hill 1963, Blažek and Koman 1964).
- Hill's optimal drawing of K_{10}:
Crossing Number of K_n

Conjecture (Hill, 1958)

We have $cr(K_n) = Z(n) := \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$ for every $n \in \mathbb{N}$.

- The conjecture is still open.
- We have $cr(K_n) \leq Z(n)$ (Harary and Hill 1963, Blažek and Koman 1964).

Hill’s optimal drawing of K_{10}:

Optimal 2-page drawing of K_{10}:
Crossing Number of K_n

Conjecture (Hill, 1958)

We have $\text{cr}(K_n) = Z(n) := \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor$ for every $n \in \mathbb{N}$.

- The conjecture is still open.
- We have $\text{cr}(K_n) \leq Z(n)$ (Harary and Hill 1963, Blažek and Koman 1964).

Hill’s optimal drawing of K_{10}:

Optimal 2-page drawing of K_{10}:

- A drawing is **2-page** if the vertices are placed on a line ℓ and each edge is fully contained in a halfspace determined by ℓ.
Main Result
Main Result

- Proving the lower bound = hard part of Hill’s conjecture.
Main Result

- Proving the lower bound = hard part of Hill’s conjecture.
- Best lower bound: \(cr(K_n) \geq 0.8594 \cdot Z(n) \) (Richter and Thomassen, 1997).
Main Result

- Proving the lower bound = hard part of Hill’s conjecture.
- Best lower bound: $cr(K_n) \geq 0.8594 \cdot Z(n)$ (Richter and Thomassen, 1997).
- What about other variants of the crossing number?
Main Result

- Proving the lower bound = hard part of Hill’s conjecture.
- Best lower bound: \(\text{cr}(K_n) \geq 0.8594 \cdot Z(n) \) (Richter and Thomassen, 1997).
- What about other variants of the crossing number?

Theorem (B., Fulek, Kynčl, 2013)

For every \(n \in \mathbb{N} \) we have \(\text{mon-cr}(K_n) = Z(n) \).
Main Result

- Proving the lower bound = hard part of Hill’s conjecture.
- Best lower bound: \(\text{cr}(K_n) \geq 0.8594 \cdot Z(n) \) (Richter and Thomassen, 1997).
- What about other variants of the crossing number?

Theorem (B., Fulek, Kynčl, 2013)

For every \(n \in \mathbb{N} \) we have \(\text{mon-cr}(K_n) = Z(n) \).

- Proven independently by (Ábrego et al., 2013) using the same techniques.
Main Result

- Proving the lower bound = hard part of Hill’s conjecture.
- Best lower bound: \(\text{cr}(K_n) \geq 0.8594 \cdot Z(n) \) (Richter and Thomassen, 1997).
- What about other variants of the crossing number?

Theorem (B., Fulek, Kynčl, 2013)

For every \(n \in \mathbb{N} \) we have \(\text{mon-cr}(K_n) = Z(n) \).

- Proven independently by (Ábrego et al., 2013) using the same techniques.
- This result can be generalized to:
Proving the lower bound = hard part of Hill’s conjecture.
Best lower bound: \(\text{cr}(K_n) \geq 0.8594 \cdot Z(n)\) (Richter and Thomassen, 1997).
What about other variants of the crossing number?

Theorem (B., Fulek, Kynčl, 2013)

For every \(n \in \mathbb{N}\) we have \(\text{mon-cr}(K_n) = Z(n)\).

- Proven independently by (Ábrego et al., 2013) using the same techniques.
- This result can be generalized to:
 - \textit{s-shellable drawings}, \(s \geq n/2\) (Ábrego et al., 2013),
Main Result

- Proving the lower bound = hard part of Hill’s conjecture.
- Best lower bound: \(\text{cr}(K_n) \geq 0.8594 \cdot Z(n) \) (Richter and Thomassen, 1997).
- What about other variants of the crossing number?

Theorem (B., Fulek, Kynčl, 2013)

For every \(n \in \mathbb{N} \) we have \(\text{mon-cr}(K_n) = Z(n) \).

- Proven independently by (Ábrego et al., 2013) using the same techniques.
- This result can be generalized to:
 - \(s \)-shellable drawings, \(s \geq n/2 \) (Ábrego et al., 2013),
 - \(x \)-monotone weakly semisimple odd crossing number,
Main Result

- Proving the lower bound = hard part of Hill’s conjecture.
- Best lower bound: \(\text{cr}(K_n) \geq 0.8594 \cdot Z(n) \) (Richter and Thomassen, 1997).
- What about other variants of the crossing number?

Theorem (B., Fulek, Kynčl, 2013)

For every \(n \in \mathbb{N} \) we have \(\text{mon-cr}(K_n) = Z(n) \).

- Proven independently by (Ábrego et al., 2013) using the same techniques.
- This result can be generalized to:
 - \(s \)-shellable drawings, \(s \geq n/2 \) (Ábrego et al., 2013),
 - \(x \)-monotone weakly semisimple odd crossing number,
 - weakly semisimple \(s \)-shellable drawings.
Main Result

- Proving the lower bound = hard part of Hill’s conjecture.
- Best lower bound: \(\text{cr}(K_n) \geq 0.8594 \cdot Z(n) \) (Richter and Thomassen, 1997).
- What about other variants of the crossing number?

Theorem (B., Fulek, Kynčl, 2013)

For every \(n \in \mathbb{N} \) we have \(\text{mon-cr}(K_n) = Z(n) \).

- Proven independently by (Ábrego et al., 2013) using the same techniques.
- This result can be generalized to:
 - \(s \)-shellable drawings, \(s \geq n/2 \) (Ábrego et al., 2013),
 - \(x \)-monotone weakly semisimple odd crossing number,
 - weakly semisimple \(s \)-shellable drawings.
- Since 2-page drawings are \(x \)-monotone, we have \(\text{mon-cr}(K_n) \leq Z(n) \).
Sketch of the Proof: Double Counting
Key idea: generalize the concept of k-edges (Ábrego et al., 2012).
Sketch of the Proof: Double Counting

- Key idea: generalize the concept of k-edges (Ábrego et al., 2012).

w is to the left of uv

w is to the right of uv
Key idea: generalize the concept of k-edges (Ábrego et al., 2012).

A k-edge is an edge that has exactly k vertices on the same side.
Key idea: generalize the concept of \(k \)-edges (Ábrego et al., 2012).

A \(k \)-edge is an edge that has exactly \(k \) vertices on the same side.

Let \(E_k(D) \) denote the number of \(k \)-edges in \(D \).
Sketch of the Proof: Double Counting

- Key idea: generalize the concept of k-edges (Ábrego et al., 2012).

- A k-edge is an edge that has exactly k vertices on the same side.
- Let $E_k(D)$ denote the number of k-edges in D.
- There are only three simple drawings of K_4 up to homeomorphism.
Sketch of the Proof: Double Counting

- Key idea: generalize the concept of k-edges (Ábrego et al., 2012).

- A k-edge is an edge that has exactly k vertices on the same side.
- Let $E_k(D)$ denote the number of k-edges in D.
- There are only three simple drawings of K_4 up to homeomorphism.
Sketch of the Proof: Double Counting

- Key idea: generalize the concept of k-edges (Ábrego et al., 2012).

- A k-edge is an edge that has exactly k vertices on the same side.
- Let $E_k(D)$ denote the number of k-edges in D.
- There are only three simple drawings of K_4 up to homeomorphism.

- Use a double counting argument for separations to obtain:
Sketch of the Proof: Double Counting

- Key idea: generalize the concept of k-edges (Ábrego et al., 2012).

- A k-edge is an edge that has exactly k vertices on the same side.

- Let $E_k(D)$ denote the number of k-edges in D.

- There are only three simple drawings of K_4 up to homeomorphism.

- Use a double counting argument for separations to obtain:

Lemma

For a simple drawing D of K_n we get $cr(D) = 3\left(\frac{n}{4}\right) - \sum_{k=0}^{\lfloor n/2 \rfloor - 1} k(n - 2 - k)E_k(D)$.
Sketch of the Proof: Main Trick
We have expressed $cr(D)$ in terms of $E_k(D)$.
We have expressed $cr(D)$ in terms of $E_k(D)$.

However no sufficiently strong bounds for $E_k(D)$ are known.
Sketch of the Proof: Main Trick

- We have expressed $cr(D)$ in terms of $E_k(D)$.
- However no sufficiently strong bounds for $E_k(D)$ are known.
- **Trick**: we estimate the sums $E_{\leq k}(D)$ defined as

$$E_{\leq k}(D) := \sum_{j=0}^{k} \sum_{i=0}^{j} E_i(D) = \sum_{i=0}^{k} (k + 1 - i)E_i(D).$$
Sketch of the Proof: Main Trick

- We have expressed $cr(D)$ in terms of $E_k(D)$.
- However no sufficiently strong bounds for $E_k(D)$ are known.
- **Trick:** we estimate the sums $E_{\leq k}(D)$ defined as

$$E_{\leq k}(D) := \sum_{j=0}^{k} \sum_{i=0}^{j} E_i(D) = \sum_{i=0}^{k} (k + 1 - i)E_i(D).$$

Lemma

For every simple drawing D of K_n we have

$$cr(D) = 2 \sum_{k=0}^{\lfloor n/2 \rfloor - 2} E_{\leq k}(D) - \frac{1}{2} \binom{n}{2} \left\lfloor \frac{n-2}{2} \right\rfloor - \frac{1}{2} \left(1 + (-1)^n \right) E_{\leq \lfloor n/2 \rfloor - 2}(D).$$
Sketch of the Proof: Main Trick

- We have expressed \(cr(D) \) in terms of \(E_k(D) \).
- However no sufficiently strong bounds for \(E_k(D) \) are known.
- **Trick**: we estimate the sums \(E_{\leq k}(D) \) defined as

\[
E_{\leq k}(D) := \sum_{j=0}^{k} \sum_{i=0}^{j} E_i(D) = \sum_{i=0}^{k} (k + 1 - i)E_i(D).
\]

Lemma

For every simple drawing \(D \) of \(K_n \) we have

\[
\text{cr}(D) = 2 \sum_{k=0}^{\lfloor n/2 \rfloor-2} E_{\leq k}(D) - \frac{1}{2} \binom{n}{2} \left\lfloor \frac{n-2}{2} \right\rfloor - \frac{1}{2} (1 + (-1)^n) E_{\leq \lfloor n/2 \rfloor-2}(D).
\]

- That is, we want a lower bound for \(E_{\leq k}(D) \).
Sketch of the Proof: Structure of k-edges
Sketch of the Proof: Structure of k-edges

D simple, v on the outerface
Sketch of the Proof: Structure of k-edges

D simple, v on the outerface
Sketch of the Proof: Structure of k-edges

D simple, v on the outerface

- Up to this step we did not require D to be x-monotone.
Up to this step we did not require D to be x-monotone.

For a simple x-monotone drawing D of K_n let D' be D with the rightmost vertex removed.
Sketch of the Proof: Structure of k-edges

- Up to this step we did not require D to be x-monotone.
- For a simple x-monotone drawing D of K_n let D' be D with the rightmost vertex removed.
- A k-edge in D is a (D, D')-invariant k-edge if it is a k-edge in D'.
Sketch of the Proof: Structure of k-edges

- Up to this step we did not require D to be x-monotone.
- For a simple x-monotone drawing D of K_n let D' be D with the rightmost vertex removed.
- A k-edge in D is a (D, D')-invariant k-edge if it is a k-edge in D'.
- Let $E_k(D, D')$ be the number of (D, D')-invariant k-edges.
Up to this step we did not require \(D \) to be \(x \)-monotone.

For a simple \(x \)-monotone drawing \(D \) of \(K_n \) let \(D' \) be \(D \) with the rightmost vertex removed.

A \(k \)-edge in \(D \) is a \((D, D')\)-invariant \(k \)-edge if it is a \(k \)-edge in \(D' \).

Let \(E_k(D, D') \) be the number of \((D, D')\)-invariant \(k \)-edges.

Let \(E_{\leq k}(D, D') \) be the sum \(\sum_{i=0}^{k} E_k(D, D') \).
Sketch of the Proof: Invariant \(k \)-edges
Sketch of the Proof: Invariant k-edges

Lemma

For a simple x-monotone D we have $E_{\le k}(D, D') \ge \sum_{i=1}^{k+1} (k + 2 - i) = \binom{k+2}{2}$.
Sketch of the Proof: Invariant k-edges

Lemma

For a simple x-monotone D we have $E_{\leq k}(D, D') \geq \sum_{i=1}^{k+1} (k + 2 - i) = \binom{k+2}{2}$.

- For $0 \leq k \leq (n - 3)/2$ and every $i \in [k + 1]$, the $k + 2 - i$ bottommost and $k + 2 - i$ topmost right edges at v_i are j-edges for some $j \leq k$.
Sketch of the Proof: Invariant k-edges

Lemma

For a simple x-monotone D we have $E_{\leq k}(D, D') \geq \sum_{i=1}^{k+1} (k + 2 - i) = \binom{k+2}{2}$.

- For $0 \leq k \leq (n - 3)/2$ and every $i \in [k+1]$, the $k + 2 - i$ bottommost and $k + 2 - i$ topmost right edges at v_i are j-edges for some $j \leq k$.

D simple x-monotone,
$0 \leq k \leq (n - 3)/2$
$i \in [k + 1]$
Sketch of the Proof: Invariant \(k\)-edges

Lemma

For a simple \(x\)-monotone \(D\) we have \(E_{\leq k}(D, D') \geq \sum_{i=1}^{k+1} (k + 2 - i) = \binom{k+2}{2}\).

- For \(0 \leq k \leq (n - 3)/2\) and every \(i \in [k + 1]\), the \(k + 2 - i\) bottommost and \(k + 2 - i\) topmost right edges at \(v_i\) are \(j\)-edges for some \(j \leq k\).
Sketch of the Proof: Final Bound

Theorem

Let $n \geq 3$ and let D be a simple x-monotone drawing of K_n. Then for every k, $0 \leq k < n/2 - 1$, we have $E_{\leq k}(D) \geq 3^{(k+3)/3}$.
Theorem

Let \(n \geq 3 \) and let \(D \) be a simple \(x \)-monotone drawing of \(K_n \). Then for every \(k \), \(0 \leq k < n/2 - 1 \), we have \(E_{\leq k}(D) \geq 3^{(k+3)/3} \).

- Proceed by induction on \(n \) and \(k \).
Sketch of the Proof: Final Bound

Theorem

Let $n \geq 3$ and let D be a simple x-monotone drawing of K_n. Then for every k, $0 \leq k < n/2 - 1$, we have $E_{\leq k}(D) \geq 3\binom{k+3}{3}$.

- Proceed by induction on n and k.
- Edges incident to the rightmost vertex contribute to $E_{\leq k}(D)$ by

\[
2 \sum_{i=0}^{k} (k + 1 - i) = 2 \binom{k + 2}{2}.
\]
Theorem
Let $n \geq 3$ and let D be a simple x-monotone drawing of K_n. Then for every k, $0 \leq k < n/2 - 1$, we have $E_{\leq k}(D) \geq 3 \binom{k+3}{3}$.

- Proceed by induction on n and k.
- Edges incident to the rightmost vertex contribute to $E_{\leq k}(D)$ by
 \[
 2 \sum_{i=0}^{k} (k + 1 - i) = 2 \binom{k+2}{2}.
 \]
- An i-edge, $i \leq k$, in D' contributes by $k - i$ to $E_{\leq k-1}(D')$ and by $k - i$ or $k - i + 1$ to $E_{\leq k}(D)$.
Sketch of the Proof: Final Bound

Theorem

Let \(n \geq 3 \) and let \(D \) be a simple \(x \)-monotone drawing of \(K_n \). Then for every \(k \), \(0 \leq k < n/2 - 1 \), we have \(E_{\leq k}(D) \geq 3^{(k+3)/3} \).

- Proceed by induction on \(n \) and \(k \).
- Edges incident to the rightmost vertex contribute to \(E_{\leq k}(D) \) by
 \[
 2 \sum_{i=0}^{k} (k + 1 - i) = 2 \binom{k + 2}{2}.
 \]
- An \(i \)-edge, \(i \leq k \), in \(D' \) contributes by \(k - i \) to \(E_{\leq k-1}(D') \) and by \(k - i \) or \(k - i + 1 \) to \(E_{\leq k}(D) \).
- Altogether we have:
 \[
 E_{\leq k}(D) = 2 \binom{k + 2}{2} + E_{\leq k-1}(D') + E_{\leq k}(D, D')
 \]
Theorem

Let $n \geq 3$ and let D be a simple x-monotone drawing of K_n. Then for every k, $0 \leq k < n/2 - 1$, we have $E_{\leq k}(D) \geq 3^{\binom{k+3}{3}}$.

- Proceed by induction on n and k.
- Edges incident to the rightmost vertex contribute to $E_{\leq k}(D)$ by
 \[
 2 \sum_{i=0}^{k} (k + 1 - i) = 2 \binom{k+2}{2}.
 \]
- An i-edge, $i \leq k$, in D' contributes by $k - i$ to $E_{\leq k-1}(D')$ and by $k - i$ or $k - i + 1$ to $E_{\leq k}(D)$.
- Altogether we have:
 \[
 E_{\leq k}(D) = 2 \binom{k+2}{2} + E_{\leq k-1}(D') + E_{\leq k}(D, D')
 \]
 \[
 \geq 3 \binom{k+3}{3} - \binom{k+2}{2} + E_{\leq k}(D, D') \geq 3 \binom{k+3}{3}.
 \]
Characterization of Pseudolinear and x-monotone Drawings
Use the orientations of triangles to characterize x-monotone drawings of K_n.

Characterization of Pseudolinear and x-monotone Drawings
Use the orientations of triangles to characterize \(x \)-monotone drawings of \(K_n \).

Color each triangle with a sign \(+ \) or \(- \) according to its orientation \(\Rightarrow \) a signature of \(D \).
Characterization of Pseudolinear and x-monotone Drawings

- Use the orientations of triangles to characterize x-monotone drawings of K_n.
- Color each triangle with a sign $+$ or $-$ according to its orientation \Rightarrow a signature of D.
- All 16 possible forms of 4-tuples:
Characterization of Pseudolinear and x-monotone Drawings

- Use the orientations of triangles to characterize x-monotone drawings of K_n.
- Color each triangle with a sign $+$ or $-$ according to its orientation \Rightarrow a signature of D.
- All 16 possible forms of 4-tuples:
Use the orientations of triangles to characterize x-monotone drawings of K_n.

Color each triangle with a sign $+$ or $-$ according to its orientation \Rightarrow a signature of D.

All 16 possible forms of 4-tuples:
Use the orientations of triangles to characterize x-monotone drawings of K_n.

Color each triangle with a sign $+$ or $-$ according to its orientation \Rightarrow a signature of D.

All 16 possible forms of 4-tuples:

- $-+-+-$
- $+---$
- $--++$
- $---+$

Pseudolinear

- $++++$
- $---+$
- $++-+$
- $+-++$

Semisimple x-monotone

- $++++$
- $-+++$
- $++-+$
- $+-++$
Characterization of Pseudolinear and x-monotone Drawings

- Use the orientations of triangles to characterize x-monotone drawings of K_n.
- Color each triangle with a sign $+$ or $-$ according to its orientation \Rightarrow a signature of D.
- All 16 possible forms of 4-tuples:

![Diagram showing different orientations and forms of 4-tuples]

- Pseudolinear
- Semisimple x-monotone
- Simple x-monotone
General Drawings
There are (optimal) drawings of K_n where $E_{\leq k}(D) \geq 3\binom{k+3}{3}$ does not hold.
There are (optimal) drawings of K_n where $E_{\leq k}(D) \geq 3^{k+3} \choose 3$ does not hold.
There are (optimal) drawings of K_n where $E_{\leq \leq k}(D) \geq 3^{(k+3)}$ does not hold.
General Drawings

- There are (optimal) drawings of K_n where $E_{\leq k}(D) \geq 3\left(\frac{k+3}{3}\right)$ does not hold.

- Here we have $E_0 = 5$ and $E_1 = 0$, hence $E_{\leq 1} = 10 < 12 = 3\left(\frac{1+3}{3}\right)$.

\[\begin{array}{c}
\begin{array}{c}
\includegraphics[width=0.4\textwidth]{drawing1.png}
\end{array}
\end{array} \]
There are (optimal) drawings of K_n where $E_{\leq k}(D) \geq 3\binom{k+3}{3}$ does not hold.

Here we have $E_0 = 5$ and $E_1 = 0$, hence $E_{\leq 1} = 10 < 12 = 3\left(\frac{1+3}{3}\right)$.

Consider the number $E_{\leq \leq \leq k}(D) := \sum_{j=0}^{k} E_{\leq \leq j}(D) = \sum_{i=0}^{k} \binom{k+2-i}{2} E_i(D)$.
General Drawings

- There are (optimal) drawings of K_n where $E_{\leq \leq k}(D) \geq 3\binom{k+3}{3}$ does not hold.

Here we have $E_0 = 5$ and $E_1 = 0$, hence $E_{\leq \leq 1} = 10 < 12 = 3\left(\frac{1+3}{3}\right)$.

- Consider the number $E_{\leq \leq \leq k}(D) := \sum_{j=0}^{k} E_{\leq \leq j}(D) = \sum_{i=0}^{k} \binom{k+2-i}{2} E_i(D)$.

Conjecture

Let $n \geq 3$ and let D be a simple drawing of K_n. Then for every k satisfying $0 \leq k < n/2 - 1$, we have $E_{\leq \leq \leq k}(D) \geq 3\binom{k+4}{4}$.
General Drawings

- There are (optimal) drawings of K_n where $E_{\leq k}(D) \geq 3\binom{k+3}{3}$ does not hold.

Here we have $E_0 = 5$ and $E_1 = 0$, hence $E_{\leq 1} = 10 < 12 = 3\binom{1+3}{3}$.

- Consider the number $E_{\leq \leq \leq k}(D) := \sum_{j=0}^{k} E_{\leq \leq j}(D) = \sum_{i=0}^{k} \binom{k+2-i}{2} E_i(D)$.

Conjecture

Let $n \geq 3$ and let D be a simple drawing of K_n. Then for every k satisfying $0 \leq k < n/2 - 1$, we have $E_{\leq \leq \leq k}(D) \geq 3\binom{k+4}{4}$.

- Implies Hill’s conjecture. All drawings we have found satisfy this conjecture.