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The Erdős–Szekeres Theorem

Theorem (Erdős and Szekeres, 1935)

For every k there is a least number ES(k) such that every set of ES(k) + 1 points
in the plane in general position contains k points in convex position.

A set of a points on a graph of a strictly concave function is an a-cap.
A set of u points on a graph of a strictly convex function is a u-cup.

In fact, they showed that every set of N(a, u) + 1 =
(
a+u−4
a−2

)
+ 1 points

in general position contains either an a-cap or a u-cup and this is tight.
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The Erdős–Szekeres Theorem
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The Erdős–Szekeres Conjecture

Trivially, we have

ES(k) ≤ N(k , k) =

(
2k − 4

k − 2

)
.

In 1960, Erdős and Szekeres showed ES(k) ≥ 2k−2 for every k ≥ 2.

Conjecture (Erdős and Szekeres, 1935)

For every k ≥ 2, ES(k) = 2k−2.

In 2005, Tóth and Valtr showed current best upper bound

ES(k) ≤
(

2k − 5

k − 2

)
.

The Erdős–Szekeres conjecture is known to hold for k ≤ 6. For k = 6 it
was shown by Peters and Szekeres using an exhaustive computer search.
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In 1960, Erdős and Szekeres showed ES(k) ≥ 2k−2 for every k ≥ 2.
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The Erdős–Szekeres conjecture is known to hold for k ≤ 6. For k = 6 it
was shown by Peters and Szekeres using an exhaustive computer search.
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General setting

Fox, Pach, Sudakov, and Suk introduced the following abstract setting.

Let K3
N be the complete 3-uniform hypergraph with the vertex set [N].

For vertices v1 < · · · < vk of K3
N , the edges {v1, v2, v3}, {v2, v3, v4}, . . . ,

{vk−2, vk−1, vk} form a (monotone) k-path.

A coloring of K3
N assigns either a red or a blue color to every edge of K3

N .

Let N̂(a, u) be the maximum number N such that there is a coloring of
K3

N with no red a-path and no blue u-path.

In a coloring of triples of points according to their orientation, red and
blue monotone k-paths correspond to k-caps and k-cups, respectively.

A straightforward generalization of the proof of Erdős and Szekeres gives

N̂(a, u) =

(
a + u − 4

a − 2

)
= N(a, u).
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N̂(a, u) =

(
a + u − 4

a − 2

)
= N(a, u).



General setting

Fox, Pach, Sudakov, and Suk introduced the following abstract setting.

Let K3
N be the complete 3-uniform hypergraph with the vertex set [N].

For vertices v1 < · · · < vk of K3
N , the edges {v1, v2, v3}, {v2, v3, v4}, . . . ,

{vk−2, vk−1, vk} form a (monotone) k-path.

Monotone 5-path
A coloring of K3

N assigns either a red or a blue color to every edge of K3
N .

Let N̂(a, u) be the maximum number N such that there is a coloring of
K3

N with no red a-path and no blue u-path.

In a coloring of triples of points according to their orientation, red and
blue monotone k-paths correspond to k-caps and k-cups, respectively.

A straightforward generalization of the proof of Erdős and Szekeres gives
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Convexity generalized

There are point sets in convex position that are not a cap nor a cup.

Every point set in convex position is a union of a cap and a cup.

Peters and Szekeres generalized the notion of convex position as follows.

A (convex) k-gon is an ordered 3-uniform hypergraph on k vertices
consisting of a red and a blue monotone path that are vertex disjoint
except for the common end-vertices.

There is exactly 2k−2 pairwise nonisomorphic k-gons.
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The Peters–Szekeres Conjecture

For k ≥ 2, let ÊS(k) be be the maximum number N such that there is a
coloring of K3

N with no k-gon.

By the results of Erdős and Szekeres, we have 2k−2 ≤ ÊS(k) ≤
(
2k−4
k−2

)
.

Peters and Szekeres proved ÊS(k) = 2k−2 for k ≤ 5 using exhaustive
computer search.

Conjecture (Peters and Szekeres, 2006)

For every k ≥ 2, ÊS(k) = 2k−2.

As our main result we refute this conjecture.

Theorem

We have ÊS(7) > 32 and ÊS(8) > 64.

We also tried to tackle the Erdős–Szekeres conjecture by restricting to
special colorings of K3

N , but this conjecture remains open.
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For k ≥ 2, let ÊS(k) be be the maximum number N such that there is a
coloring of K3

N with no k-gon.
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We also tried to tackle the Erdős–Szekeres conjecture by restricting to
special colorings of K3

N , but this conjecture remains open.



The Erdős–Szekeres Conjecture revisited

In 1996, Erdős, Tuza, and Valtr refined the Erdős-Szekeres conjecture by
adding a third parameter in N(a, u).

For integers a, u, k with 2 ≤ a, u ≤ k ≤ a + u − 2, let N(a, u, k) be the
maximum N such that there is a set of N points in the plane in general
position with no a-cap, no u-cup, and no k points in convex position.
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N(a, u, k) =
u∑

i=k−a+2

N(i , k + 2− i) =
u∑

i=k−a+2

(
k − 2

i − 2

)
.

This conjecture is equivalent with the Erdős–Szekeres conjecture.

In particular, showing N(a, u, k) >
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i=k−a+2

(
k−2
i−2

)
for some a, u, k

would refute the Erdős–Szekeres conjecture.
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In particular, showing N(a, u, k) >
∑u

i=k−a+2

(
k−2
i−2

)
for some a, u, k
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Bounds for N(a, u, k)

Erdős, Tuza, and Valtr showed N(a, u, k) ≥
∑u

i=k−a+2

(
k−2
i−2

)
for all

a, u, k with 2 ≤ a, u ≤ k ≤ a + u − 2.

The best known upper bound for N(a, u, k) is N(a, u, k) ≤
(
a+u−4
a−2

)
obtained from N(a, u, k) ≤ N(a, u).

The conjecture is true for k = a + u − 2 and k = a + u − 3.

Proposition

For every integer k ≥ 3, we have N(4, k , k) ≤
(
k
2

)
− 1.
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The Peters–Szekeres conjecture revisited

We find an analogous refinement for the Peters–Szekeres conjecture.

For integers a, u, k with 2 ≤ a, u ≤ k ≤ a + u − 2, let N̂(a, u, k) be the
maximum number N such that there is a coloring of K3

N with no red
a-path, no blue u-path, and no k-gon.

Lemma

The following statement is equivalent with the Peters–Szekeres conjecture.
For all integers a, u, k with 2 ≤ a, u ≤ k ≤ a + u − 2, we have

N̂(a, u, k) =
u∑

i=k−a+2

N̂(i , k + 2− i) =
u∑

i=k−a+2

(
k − 2

i − 2

)
.

This allows us to employ computer experiments for larger values of k .
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The SAT attack

In our experiments we use the Glucose SAT solver.

We found a coloring of K3
17 with no red 4-path and no 7-gon and proved

N̂(4, 7, 7) = 17. By the lemma, we refute the Peters–Szekeres
conjecture.

We also have N̂(4, 8, 8) ≥ 23.

Further counterexamples:

N̂(a, u, 7) 2 3 4 5 6 7
2 1
3 5 6
4 10 15 17
5 10 20 [26,35] [27,56]
6 5 15 [26,35] [31,70] [32,126]
7 1 6 17 [27,56] [32,126] [33,210]

For k = 6, we verified the refined Peters–Szekeres conjecture in all
cases, except a = u = k .
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Pseudolinear colorings

To tackle the Erdős–Szekeres conjecture, we consider only special
colorings of K3

N .
A coloring of K 3

N is pseudolinear if every 4-tuple of vertices of K 3
N

induces a coloring that is an order type of a set of 4 points in the plane.

Theorem (Streinu, 1997,Felsner and Weil, 2001, B., Fulek, and Kynčl, 2013)

There is a one-to-one correspondence between pseudolinear colorings of K3
N

and signatures of x-monotone pseudolinear drawings of KN .

For pseudolinear colorings, all our results matched the values from the
refined Erdős–Szekeres conjecture.
We verified the refined Erdős–Szekeres conjecture for some cases. We
have N(4, 7, 7) = 16 and N(4, 8, 8) = 22.
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To tackle the Erdős–Szekeres conjecture, we consider only special
colorings of K3

N .

A coloring of K 3
N is pseudolinear if every 4-tuple of vertices of K 3

N

induces a coloring that is an order type of a set of 4 points in the plane.

Theorem (Streinu, 1997,Felsner and Weil, 2001, B., Fulek, and Kynčl, 2013)
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There is a one-to-one correspondence between pseudolinear colorings of K3
N

and signatures of x-monotone pseudolinear drawings of KN .

For pseudolinear colorings, all our results matched the values from the
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Open problems

Problem (Peters and Szekeres, 2006)

For every k ≥ 2, is it true that every pseudolinear coloring of K3
N with

N = 2k−2 + 1 contains a k-gon?

Conjecture (Goodman and Pollack, 1981)

For every k ≥ 2 the number ES(k) equals the maximum N for which there is a
pseudolinear coloring of K3

N with no k-gon.

Is there some structure behind the found colorings?

Is there a general construction of colorings of K3
N with no k-gon for

arbitrarily large k and N > 2k−2 + 1.
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