A SAT attack on the Erdős–Szekeres conjecture

Martin Balko and Pavel Valtr

Charles University in Prague, Czech Republic

September 4, 2015

Theorem (Erdős and Szekeres, 1935)

For every k there is a least number $\mathsf{ES}(k)$ such that every set of $\mathsf{ES}(k)+1$ points in the plane in general position contains k points in convex position.

Theorem (Erdős and Szekeres, 1935)

For every k there is a least number $\mathsf{ES}(k)$ such that every set of $\mathsf{ES}(k)+1$ points in the plane in general position contains k points in convex position.

Theorem (Erdős and Szekeres, 1935)

For every k there is a least number $\mathsf{ES}(k)$ such that every set of $\mathsf{ES}(k)+1$ points in the plane in general position contains k points in convex position.

Theorem (Erdős and Szekeres, 1935)

For every k there is a least number $\mathsf{ES}(k)$ such that every set of $\mathsf{ES}(k)+1$ points in the plane in general position contains k points in convex position.

A set of a points on a graph of a strictly concave function is an a-cap.
 A set of u points on a graph of a strictly convex function is a u-cup.

Theorem (Erdős and Szekeres, 1935)

For every k there is a least number $\mathsf{ES}(k)$ such that every set of $\mathsf{ES}(k)+1$ points in the plane in general position contains k points in convex position.

A set of a points on a graph of a strictly concave function is an a-cap.
 A set of u points on a graph of a strictly convex function is a u-cup.

• In fact, they showed that every set of $N(a, u) + 1 = {a+u-4 \choose a-2} + 1$ points in general position contains either an a-cap or a u-cup and this is tight.

• Trivially, we have

$$\mathsf{ES}(k) \leq \mathsf{N}(k,k) = \binom{2k-4}{k-2}.$$

• Trivially, we have

$$\mathsf{ES}(k) \leq \mathsf{N}(k,k) = \binom{2k-4}{k-2}.$$

• In 1960, Erdős and Szekeres showed $ES(k) \ge 2^{k-2}$ for every $k \ge 2$.

Trivially, we have

$$\mathsf{ES}(k) \leq \mathsf{N}(k,k) = \binom{2k-4}{k-2}.$$

• In 1960, Erdős and Szekeres showed $ES(k) \ge 2^{k-2}$ for every $k \ge 2$.

Conjecture (Erdős and Szekeres, 1935)

For every $k \ge 2$, $ES(k) = 2^{k-2}$.

Trivially, we have

$$\mathsf{ES}(k) \leq \mathsf{N}(k,k) = \binom{2k-4}{k-2}.$$

• In 1960, Erdős and Szekeres showed $ES(k) \ge 2^{k-2}$ for every $k \ge 2$.

Conjecture (Erdős and Szekeres, 1935)

For every $k \ge 2$, $ES(k) = 2^{k-2}$.

• In 2005, Toth and Valtr showed current best upper bound

$$\mathsf{ES}(k) \leq \binom{2k-5}{k-2}.$$

Trivially, we have

$$\mathsf{ES}(k) \leq \mathsf{N}(k,k) = \binom{2k-4}{k-2}.$$

• In 1960, Erdős and Szekeres showed $ES(k) \ge 2^{k-2}$ for every $k \ge 2$.

Conjecture (Erdős and Szekeres, 1935)

For every $k \ge 2$, $ES(k) = 2^{k-2}$.

• In 2005, Toth and Valtr showed current best upper bound

$$\mathsf{ES}(k) \leq \binom{2k-5}{k-2}.$$

• The Erdős–Szekeres conjecture is known to hold for $k \le 6$. For k = 6 it was shown by Peters and Szekeres using an exhaustive computer search.

• Fox, Pach, Sudakov, and Suk introduced the following abstract setting.

- Fox, Pach, Sudakov, and Suk introduced the following abstract setting.
- Let \mathcal{K}_N^3 be the complete 3-uniform hypergraph with the vertex set [N].

- Fox, Pach, Sudakov, and Suk introduced the following abstract setting.
- Let \mathcal{K}_N^3 be the complete 3-uniform hypergraph with the vertex set [N].
- For vertices $v_1 < \cdots < v_k$ of \mathcal{K}_N^3 , the edges $\{v_1, v_2, v_3\}, \{v_2, v_3, v_4\}, \ldots, \{v_{k-2}, v_{k-1}, v_k\}$ form a (monotone) k-path.

- Fox, Pach, Sudakov, and Suk introduced the following abstract setting.
- Let \mathcal{K}_N^3 be the complete 3-uniform hypergraph with the vertex set [N].
- For vertices $v_1 < \cdots < v_k$ of K_N^3 , the edges $\{v_1, v_2, v_3\}, \{v_2, v_3, v_4\}, \ldots, \{v_{k-2}, v_{k-1}, v_k\}$ form a (monotone) k-path.

- Fox, Pach, Sudakov, and Suk introduced the following abstract setting.
- Let \mathcal{K}_N^3 be the complete 3-uniform hypergraph with the vertex set [N].
- For vertices $v_1 < \cdots < v_k$ of \mathcal{K}_N^3 , the edges $\{v_1, v_2, v_3\}, \{v_2, v_3, v_4\}, \ldots, \{v_{k-2}, v_{k-1}, v_k\}$ form a (monotone) k-path.

Monotone 5-path

ullet A coloring of \mathcal{K}_N^3 assigns either a red or a blue color to every edge of \mathcal{K}_N^3 .

- Fox, Pach, Sudakov, and Suk introduced the following abstract setting.
- Let \mathcal{K}_N^3 be the complete 3-uniform hypergraph with the vertex set [N].
- For vertices $v_1 < \cdots < v_k$ of \mathcal{K}_N^3 , the edges $\{v_1, v_2, v_3\}, \{v_2, v_3, v_4\}, \ldots, \{v_{k-2}, v_{k-1}, v_k\}$ form a (monotone) k-path.

Monotone 5-path

- ullet A coloring of \mathcal{K}_N^3 assigns either a red or a blue color to every edge of \mathcal{K}_N^3 .
- Let $\hat{N}(a, u)$ be the maximum number N such that there is a coloring of \mathcal{K}_N^3 with no red a-path and no blue u-path.

- Fox, Pach, Sudakov, and Suk introduced the following abstract setting.
- Let \mathcal{K}_N^3 be the complete 3-uniform hypergraph with the vertex set [N].
- For vertices $v_1 < \cdots < v_k$ of \mathcal{K}_N^3 , the edges $\{v_1, v_2, v_3\}, \{v_2, v_3, v_4\}, \ldots, \{v_{k-2}, v_{k-1}, v_k\}$ form a (monotone) k-path.

Monotone 5-path

- ullet A coloring of \mathcal{K}_N^3 assigns either a red or a blue color to every edge of \mathcal{K}_N^3 .
- Let $\hat{N}(a, u)$ be the maximum number N such that there is a coloring of \mathcal{K}_N^3 with no red a-path and no blue u-path.
- In a coloring of triples of points according to their orientation, red and blue monotone k-paths correspond to k-caps and k-cups, respectively.

- Fox, Pach, Sudakov, and Suk introduced the following abstract setting.
- Let \mathcal{K}_N^3 be the complete 3-uniform hypergraph with the vertex set [N].
- For vertices $v_1 < \cdots < v_k$ of \mathcal{K}_N^3 , the edges $\{v_1, v_2, v_3\}, \{v_2, v_3, v_4\}, \ldots, \{v_{k-2}, v_{k-1}, v_k\}$ form a (monotone) k-path.

Monotone 5-path

- ullet A coloring of \mathcal{K}_N^3 assigns either a red or a blue color to every edge of \mathcal{K}_N^3 .
- Let $\hat{N}(a, u)$ be the maximum number N such that there is a coloring of \mathcal{K}_N^3 with no red a-path and no blue u-path.
- In a coloring of triples of points according to their orientation, red and blue monotone k-paths correspond to k-caps and k-cups, respectively.
- A straightforward generalization of the proof of Erdős and Szekeres gives

$$\widehat{\mathsf{N}}(\mathsf{a},\mathsf{u}) = \binom{\mathsf{a}+\mathsf{u}-\mathsf{4}}{\mathsf{a}-\mathsf{2}} = \mathsf{N}(\mathsf{a},\mathsf{u}).$$

• There are point sets in convex position that are not a cap nor a cup.

- There are point sets in convex position that are not a cap nor a cup.
- Every point set in convex position is a union of a cap and a cup.

- There are point sets in convex position that are not a cap nor a cup.
- Every point set in convex position is a union of a cap and a cup.

- There are point sets in convex position that are not a cap nor a cup.
- Every point set in convex position is a union of a cap and a cup.

- There are point sets in convex position that are not a cap nor a cup.
- Every point set in convex position is a union of a cap and a cup.

- There are point sets in convex position that are not a cap nor a cup.
- Every point set in convex position is a union of a cap and a cup.

Peters and Szekeres generalized the notion of convex position as follows.

- There are point sets in convex position that are not a cap nor a cup.
- Every point set in convex position is a union of a cap and a cup.

- Peters and Szekeres generalized the notion of convex position as follows.
- A (convex) k-gon is an ordered 3-uniform hypergraph on k vertices
 consisting of a red and a blue monotone path that are vertex disjoint
 except for the common end-vertices.

- There are point sets in convex position that are not a cap nor a cup.
- Every point set in convex position is a union of a cap and a cup.

- Peters and Szekeres generalized the notion of convex position as follows.
- A (convex) k-gon is an ordered 3-uniform hypergraph on k vertices
 consisting of a red and a blue monotone path that are vertex disjoint
 except for the common end-vertices.

- There are point sets in convex position that are not a cap nor a cup.
- Every point set in convex position is a union of a cap and a cup.

- Peters and Szekeres generalized the notion of convex position as follows.
- A (convex) k-gon is an ordered 3-uniform hypergraph on k vertices
 consisting of a red and a blue monotone path that are vertex disjoint
 except for the common end-vertices.

• There is exactly 2^{k-2} pairwise nonisomorphic k-gons.

• For $k \ge 2$, let $\widehat{\mathsf{ES}}(k)$ be be the maximum number N such that there is a coloring of \mathcal{K}_N^3 with no k-gon.

- For $k \ge 2$, let $\widehat{\mathsf{ES}}(k)$ be be the maximum number N such that there is a coloring of \mathcal{K}_N^3 with no k-gon.
- By the results of Erdős and Szekeres, we have $2^{k-2} \le \widehat{\mathsf{ES}}(k) \le \binom{2k-4}{k-2}$.

- For $k \geq 2$, let $\widehat{\mathsf{ES}}(k)$ be be the maximum number N such that there is a coloring of \mathcal{K}_N^3 with no k-gon.
- By the results of Erdős and Szekeres, we have $2^{k-2} \le \widehat{\mathsf{ES}}(k) \le \binom{2k-4}{k-2}$.
- Peters and Szekeres proved $\widehat{\mathsf{ES}}(k) = 2^{k-2}$ for $k \leq 5$ using exhaustive computer search.

- For $k \geq 2$, let $\widehat{\mathsf{ES}}(k)$ be be the maximum number N such that there is a coloring of \mathcal{K}_N^3 with no k-gon.
- By the results of Erdős and Szekeres, we have $2^{k-2} \le \widehat{\mathsf{ES}}(k) \le \binom{2k-4}{k-2}$.
- Peters and Szekeres proved $\widehat{\mathsf{ES}}(k) = 2^{k-2}$ for $k \leq 5$ using exhaustive computer search.

Conjecture (Peters and Szekeres, 2006)

For every $k \ge 2$, $\widehat{\mathsf{ES}}(k) = 2^{k-2}$.

- For $k \geq 2$, let $\widehat{\mathsf{ES}}(k)$ be be the maximum number N such that there is a coloring of \mathcal{K}_N^3 with no k-gon.
- By the results of Erdős and Szekeres, we have $2^{k-2} \le \widehat{\mathsf{ES}}(k) \le \binom{2k-4}{k-2}$.
- Peters and Szekeres proved $\widehat{\mathsf{ES}}(k) = 2^{k-2}$ for $k \leq 5$ using exhaustive computer search.

Conjecture (Peters and Szekeres, 2006)

For every
$$k \ge 2$$
, $\widehat{\mathsf{ES}}(k) = 2^{k-2}$.

• As our main result we refute this conjecture.

- For $k \geq 2$, let $\widehat{\mathsf{ES}}(k)$ be be the maximum number N such that there is a coloring of \mathcal{K}_N^3 with no k-gon.
- By the results of Erdős and Szekeres, we have $2^{k-2} \le \widehat{\mathsf{ES}}(k) \le \binom{2k-4}{k-2}$.
- Peters and Szekeres proved $\widehat{\mathsf{ES}}(k) = 2^{k-2}$ for $k \leq 5$ using exhaustive computer search.

Conjecture (Peters and Szekeres, 2006)

For every
$$k \ge 2$$
, $\widehat{\mathsf{ES}}(k) = 2^{k-2}$.

• As our main result we refute this conjecture.

Theorem

We have $\widehat{\mathsf{ES}}(7) > 32$ and $\widehat{\mathsf{ES}}(8) > 64$.

- For $k \ge 2$, let $\widehat{\mathsf{ES}}(k)$ be be the maximum number N such that there is a coloring of \mathcal{K}_N^3 with no k-gon.
- By the results of Erdős and Szekeres, we have $2^{k-2} \le \widehat{\mathsf{ES}}(k) \le \binom{2k-4}{k-2}$.
- Peters and Szekeres proved $\widehat{\mathsf{ES}}(k) = 2^{k-2}$ for $k \leq 5$ using exhaustive computer search.

Conjecture (Peters and Szekeres, 2006)

For every
$$k \ge 2$$
, $\widehat{\mathsf{ES}}(k) = 2^{k-2}$.

• As our main result we refute this conjecture.

Theorem

We have
$$\widehat{\mathsf{ES}}(7) > 32$$
 and $\widehat{\mathsf{ES}}(8) > 64$.

• We also tried to tackle the Erdős–Szekeres conjecture by restricting to special colorings of \mathcal{K}_N^3 , but this conjecture remains open.

• In 1996, Erdős, Tuza, and Valtr refined the Erdős-Szekeres conjecture by adding a third parameter in N(a, u).

- In 1996, Erdős, Tuza, and Valtr refined the Erdős-Szekeres conjecture by adding a third parameter in N(a, u).
- For integers a, u, k with $2 \le a, u \le k \le a + u 2$, let N(a, u, k) be the maximum N such that there is a set of N points in the plane in general position with no a-cap, no u-cup, and no k points in convex position.

- In 1996, Erdős, Tuza, and Valtr refined the Erdős-Szekeres conjecture by adding a third parameter in N(a, u).
- For integers a, u, k with $2 \le a, u \le k \le a + u 2$, let N(a, u, k) be the maximum N such that there is a set of N points in the plane in general position with no a-cap, no u-cup, and no k points in convex position.

Conjecture (Erdős, Tuza, and Valtr, 1996)

For all integers a, u, k with $2 \le a, u \le k \le a + u - 2$, we have

$$N(a, u, k) = \sum_{i=k-a+2}^{u} N(i, k+2-i) = \sum_{i=k-a+2}^{u} {k-2 \choose i-2}.$$

- In 1996, Erdős, Tuza, and Valtr refined the Erdős-Szekeres conjecture by adding a third parameter in N(a, u).
- For integers a, u, k with $2 \le a, u \le k \le a + u 2$, let N(a, u, k) be the maximum N such that there is a set of N points in the plane in general position with no a-cap, no u-cup, and no k points in convex position.

Conjecture (Erdős, Tuza, and Valtr, 1996)

For all integers a, u, k with $2 \le a, u \le k \le a + u - 2$, we have

$$N(a, u, k) = \sum_{i=k-a+2}^{u} N(i, k+2-i) = \sum_{i=k-a+2}^{u} {k-2 \choose i-2}.$$

• This conjecture is equivalent with the Erdős–Szekeres conjecture.

- In 1996, Erdős, Tuza, and Valtr refined the Erdős-Szekeres conjecture by adding a third parameter in N(a, u).
- For integers a, u, k with $2 \le a, u \le k \le a + u 2$, let N(a, u, k) be the maximum N such that there is a set of N points in the plane in general position with no a-cap, no u-cup, and no k points in convex position.

Conjecture (Erdős, Tuza, and Valtr, 1996)

For all integers a, u, k with $2 \le a, u \le k \le a + u - 2$, we have

$$N(a, u, k) = \sum_{i=k-a+2}^{u} N(i, k+2-i) = \sum_{i=k-a+2}^{u} {k-2 \choose i-2}.$$

- This conjecture is equivalent with the Erdős–Szekeres conjecture.
- In particular, showing $N(a,u,k) > \sum_{i=k-a+2}^{u} {k-2 \choose i-2}$ for some a,u,k would refute the Erdős–Szekeres conjecture.

• Erdős, Tuza, and Valtr showed $N(a, u, k) \ge \sum_{i=k-a+2}^{u} {k-2 \choose i-2}$ for all a, u, k with $2 \le a, u \le k \le a + u - 2$.

- Erdős, Tuza, and Valtr showed $N(a, u, k) \ge \sum_{i=k-a+2}^{u} {k-2 \choose i-2}$ for all a, u, k with $2 \le a, u \le k \le a+u-2$.
- The best known upper bound for N(a, u, k) is $N(a, u, k) \le {a+u-4 \choose a-2}$ obtained from $N(a, u, k) \le N(a, u)$.

- Erdős, Tuza, and Valtr showed $N(a, u, k) \ge \sum_{i=k-a+2}^{u} {k-2 \choose i-2}$ for all a, u, k with $2 \le a, u \le k \le a + u 2$.
- The best known upper bound for N(a, u, k) is $N(a, u, k) \le {a+u-4 \choose a-2}$ obtained from $N(a, u, k) \le N(a, u)$.
- The conjecture is true for k = a + u 2 and k = a + u 3.

- Erdős, Tuza, and Valtr showed $N(a, u, k) \ge \sum_{i=k-a+2}^{u} {k-2 \choose i-2}$ for all a, u, k with $2 \le a, u \le k \le a + u 2$.
- The best known upper bound for N(a, u, k) is $N(a, u, k) \le {a+u-4 \choose a-2}$ obtained from $N(a, u, k) \le N(a, u)$.
- The conjecture is true for k = a + u 2 and k = a + u 3.

Proposition

- Erdős, Tuza, and Valtr showed $N(a, u, k) \ge \sum_{i=k-a+2}^{u} {k-2 \choose i-2}$ for all a, u, k with $2 \le a, u \le k \le a + u 2$.
- The best known upper bound for N(a, u, k) is $N(a, u, k) \le {a+u-4 \choose a-2}$ obtained from $N(a, u, k) \le N(a, u)$.
- The conjecture is true for k = a + u 2 and k = a + u 3.

Proposition

- Erdős, Tuza, and Valtr showed $N(a, u, k) \ge \sum_{i=k-a+2}^{u} {k-2 \choose i-2}$ for all a, u, k with $2 \le a, u \le k \le a + u 2$.
- The best known upper bound for N(a, u, k) is $N(a, u, k) \le {a+u-4 \choose a-2}$ obtained from $N(a, u, k) \le N(a, u)$.
- The conjecture is true for k = a + u 2 and k = a + u 3.

Proposition

- Erdős, Tuza, and Valtr showed $N(a, u, k) \ge \sum_{i=k-a+2}^{u} {k-2 \choose i-2}$ for all a, u, k with $2 \le a, u \le k \le a + u 2$.
- The best known upper bound for N(a, u, k) is $N(a, u, k) \le {a+u-4 \choose a-2}$ obtained from $N(a, u, k) \le N(a, u)$.
- The conjecture is true for k = a + u 2 and k = a + u 3.

Proposition

- Erdős, Tuza, and Valtr showed $N(a, u, k) \ge \sum_{i=k-a+2}^{u} {k-2 \choose i-2}$ for all a, u, k with $2 \le a, u \le k \le a + u 2$.
- The best known upper bound for N(a, u, k) is $N(a, u, k) \le {a+u-4 \choose a-2}$ obtained from $N(a, u, k) \le N(a, u)$.
- The conjecture is true for k = a + u 2 and k = a + u 3.

Proposition

- Erdős, Tuza, and Valtr showed $N(a, u, k) \ge \sum_{i=k-a+2}^{u} {k-2 \choose i-2}$ for all a, u, k with $2 \le a, u \le k \le a + u 2$.
- The best known upper bound for N(a, u, k) is $N(a, u, k) \le {a+u-4 \choose a-2}$ obtained from $N(a, u, k) \le N(a, u)$.
- The conjecture is true for k = a + u 2 and k = a + u 3.

Proposition

- Erdős, Tuza, and Valtr showed $N(a, u, k) \ge \sum_{i=k-a+2}^{u} {k-2 \choose i-2}$ for all a, u, k with $2 \le a, u \le k \le a + u 2$.
- The best known upper bound for N(a, u, k) is $N(a, u, k) \le {a+u-4 \choose a-2}$ obtained from $N(a, u, k) \le N(a, u)$.
- The conjecture is true for k = a + u 2 and k = a + u 3.

Proposition

- Erdős, Tuza, and Valtr showed $N(a, u, k) \ge \sum_{i=k-a+2}^{u} {k-2 \choose i-2}$ for all a, u, k with $2 \le a, u \le k \le a + u 2$.
- The best known upper bound for N(a, u, k) is $N(a, u, k) \le {a+u-4 \choose a-2}$ obtained from $N(a, u, k) \le N(a, u)$.
- The conjecture is true for k = a + u 2 and k = a + u 3.

Proposition

- Erdős, Tuza, and Valtr showed $N(a, u, k) \ge \sum_{i=k-a+2}^{u} {k-2 \choose i-2}$ for all a, u, k with $2 \le a, u \le k \le a + u 2$.
- The best known upper bound for N(a, u, k) is $N(a, u, k) \le {a+u-4 \choose a-2}$ obtained from $N(a, u, k) \le N(a, u)$.
- The conjecture is true for k = a + u 2 and k = a + u 3.

Proposition

• We find an analogous refinement for the Peters–Szekeres conjecture.

- We find an analogous refinement for the Peters–Szekeres conjecture.
- For integers a, u, k with $2 \le a, u \le k \le a + u 2$, let $\widehat{\mathbb{N}}(a, u, k)$ be the maximum number N such that there is a coloring of \mathcal{K}_N^3 with no red a-path, no blue u-path, and no k-gon.

- We find an analogous refinement for the Peters–Szekeres conjecture.
- For integers a, u, k with $2 \le a, u \le k \le a + u 2$, let $\widehat{\mathbb{N}}(a, u, k)$ be the maximum number N such that there is a coloring of \mathcal{K}_N^3 with no red a-path, no blue u-path, and no k-gon.

Lemma

The following statement is equivalent with the Peters–Szekeres conjecture. For all integers a, u, k with $2 \le a, u \le k \le a + u - 2$, we have

$$\widehat{N}(a, u, k) = \sum_{i=k-a+2}^{u} \widehat{N}(i, k+2-i) = \sum_{i=k-a+2}^{u} {k-2 \choose i-2}.$$

- We find an analogous refinement for the Peters–Szekeres conjecture.
- For integers a, u, k with $2 \le a, u \le k \le a + u 2$, let $\widehat{\mathbb{N}}(a, u, k)$ be the maximum number N such that there is a coloring of \mathcal{K}_N^3 with no red a-path, no blue u-path, and no k-gon.

Lemma

The following statement is equivalent with the Peters–Szekeres conjecture. For all integers a, u, k with $2 \le a, u \le k \le a + u - 2$, we have

$$\widehat{N}(a, u, k) = \sum_{i=k-a+2}^{u} \widehat{N}(i, k+2-i) = \sum_{i=k-a+2}^{u} {k-2 \choose i-2}.$$

ullet This allows us to employ computer experiments for larger values of k.

• In our experiments we use the Glucose SAT solver.

- In our experiments we use the Glucose SAT solver.
- We found a coloring of \mathcal{K}_{17}^3 with no red 4-path and no 7-gon and proved $\widehat{N}(4,7,7)=17$. By the lemma, we refute the Peters–Szekeres conjecture.

- In our experiments we use the Glucose SAT solver.
- We found a coloring of \mathcal{K}_{17}^3 with no red 4-path and no 7-gon and proved $\widehat{N}(4,7,7)=17$. By the lemma, we refute the Peters–Szekeres conjecture.
- We also have $\widehat{N}(4,8,8) \geq 23$.

- In our experiments we use the Glucose SAT solver.
- We found a coloring of \mathcal{K}_{17}^3 with no red 4-path and no 7-gon and proved $\widehat{N}(4,7,7)=17$. By the lemma, we refute the Peters–Szekeres conjecture.
- We also have $\widehat{N}(4,8,8) \geq 23$.
- Further counterexamples:

$\widehat{N}(a,u,7)$	2	3	4	5	6	7
2						1
3					5	6
4				10	15	17
5			10	20	[26 ,35]	[27 ,56]
6		5	15	[26 ,35]	[31 ,70]	[32 ,126]
7	1	6	17	[27 ,56]	[32 ,126]	[33 ,210]

- In our experiments we use the Glucose SAT solver.
- We found a coloring of \mathcal{K}_{17}^3 with no red 4-path and no 7-gon and proved $\widehat{N}(4,7,7)=17$. By the lemma, we refute the Peters–Szekeres conjecture.
- We also have $\widehat{N}(4,8,8) \geq 23$.
- Further counterexamples:

$\widehat{N}(a,u,7)$	2	3	4	5	6	7
2						1
3					5	6
4				10	15	17
5			10	20	[26 ,35]	[27 ,56]
6		5	15	[26 ,35]	[31 ,70]	[32 ,126]
7	1	6	17	[27 ,56]	[32 ,126]	[33 ,210]

• For k = 6, we verified the refined Peters–Szekeres conjecture in all cases, except a = u = k.

• To tackle the Erdős–Szekeres conjecture, we consider only special colorings of \mathcal{K}_N^3 .

- To tackle the Erdős–Szekeres conjecture, we consider only special colorings of \mathcal{K}_N^3 .
- A coloring of K_N^3 is pseudolinear if every 4-tuple of vertices of K_N^3 induces a coloring that is an order type of a set of 4 points in the plane.

- To tackle the Erdős–Szekeres conjecture, we consider only special colorings of \mathcal{K}_N^3 .
- A coloring of K_N^3 is pseudolinear if every 4-tuple of vertices of K_N^3 induces a coloring that is an order type of a set of 4 points in the plane.

- To tackle the Erdős–Szekeres conjecture, we consider only special colorings of \mathcal{K}_N^3 .
- A coloring of K_N^3 is pseudolinear if every 4-tuple of vertices of K_N^3 induces a coloring that is an order type of a set of 4 points in the plane.

Theorem (Streinu, 1997, Felsner and Weil, 2001, B., Fulek, and Kynčl, 2013)

There is a one-to-one correspondence between pseudolinear colorings of \mathcal{K}_N^3 and signatures of x-monotone pseudolinear drawings of \mathcal{K}_N .

- To tackle the Erdős–Szekeres conjecture, we consider only special colorings of \mathcal{K}_N^3 .
- A coloring of K_N^3 is pseudolinear if every 4-tuple of vertices of K_N^3 induces a coloring that is an order type of a set of 4 points in the plane.

Theorem (Streinu, 1997, Felsner and Weil, 2001, B., Fulek, and Kynčl, 2013)

There is a one-to-one correspondence between pseudolinear colorings of \mathcal{K}_N^3 and signatures of x-monotone pseudolinear drawings of \mathcal{K}_N .

 For pseudolinear colorings, all our results matched the values from the refined Erdős–Szekeres conjecture.

- To tackle the Erdős–Szekeres conjecture, we consider only special colorings of \mathcal{K}_N^3 .
- A coloring of K_N^3 is pseudolinear if every 4-tuple of vertices of K_N^3 induces a coloring that is an order type of a set of 4 points in the plane.

Theorem (Streinu, 1997, Felsner and Weil, 2001, B., Fulek, and Kynčl, 2013)

There is a one-to-one correspondence between pseudolinear colorings of \mathcal{K}_N^3 and signatures of x-monotone pseudolinear drawings of \mathcal{K}_N .

- For pseudolinear colorings, all our results matched the values from the refined Erdős–Szekeres conjecture.
- We verified the refined Erdős–Szekeres conjecture for some cases. We have N(4,7,7)=16 and N(4,8,8)=22.

Problem (Peters and Szekeres, 2006)

For every $k \ge 2$, is it true that every pseudolinear coloring of \mathcal{K}_N^3 with $N = 2^{k-2} + 1$ contains a k-gon?

Problem (Peters and Szekeres, 2006)

For every $k \ge 2$, is it true that every pseudolinear coloring of \mathcal{K}_N^3 with $N = 2^{k-2} + 1$ contains a k-gon?

Conjecture (Goodman and Pollack, 1981)

For every $k \ge 2$ the number $\mathsf{ES}(k)$ equals the maximum N for which there is a pseudolinear coloring of \mathcal{K}_N^3 with no k-gon.

Problem (Peters and Szekeres, 2006)

For every $k \ge 2$, is it true that every pseudolinear coloring of \mathcal{K}_N^3 with $N = 2^{k-2} + 1$ contains a k-gon?

Conjecture (Goodman and Pollack, 1981)

For every $k \ge 2$ the number ES(k) equals the maximum N for which there is a pseudolinear coloring of \mathcal{K}_N^3 with no k-gon.

• Is there some structure behind the found colorings?

Problem (Peters and Szekeres, 2006)

For every $k \ge 2$, is it true that every pseudolinear coloring of \mathcal{K}_N^3 with $N = 2^{k-2} + 1$ contains a k-gon?

Conjecture (Goodman and Pollack, 1981)

For every $k \ge 2$ the number ES(k) equals the maximum N for which there is a pseudolinear coloring of \mathcal{K}_N^3 with no k-gon.

- Is there some structure behind the found colorings?
- Is there a general construction of colorings of \mathcal{K}_N^3 with no k-gon for arbitrarily large k and $N > 2^{k-2} + 1$.

Problem (Peters and Szekeres, 2006)

For every $k \ge 2$, is it true that every pseudolinear coloring of \mathcal{K}_N^3 with $N = 2^{k-2} + 1$ contains a k-gon?

Conjecture (Goodman and Pollack, 1981)

For every $k \ge 2$ the number $\mathsf{ES}(k)$ equals the maximum N for which there is a pseudolinear coloring of \mathcal{K}_N^3 with no k-gon.

- Is there some structure behind the found colorings?
- Is there a general construction of colorings of \mathcal{K}_N^3 with no k-gon for arbitrarily large k and $N > 2^{k-2} + 1$.

Thank you.