Algorithmic game theory - Homework 2^{11}
 Nash equilibria

assigned 4.11.2021, deadline 18.11.2021
If you wish to see your score on the web page, please choose a nickname and write it on the paper with your solutions (as well as your name), or send it by e-mail. Without the nickname I will not make your score public.

Homework 1. Show that the following linear programs from the proof of the Minimax Theorem are dual to each other.
(a) For a matrix $M \in \mathbb{R}^{m \times n}$,

	Program P	Program D
Variables	y_{1}, \ldots, y_{n}	x_{0}
Objective function	$\min x^{\top} M y$	$\max x_{0}$
Constraints	$\sum_{j=1}^{n} y_{j}=1$,	$\mathbf{1} x_{0} \leq M^{\top} x$.
	$y_{1}, \ldots, y_{n} \geq 0$.	

(b) For a matrix $M \in \mathbb{R}^{m \times n}$,

	Program P^{\prime}	Program D^{\prime}
Variables	$y_{0}, y_{1}, \ldots, y_{n}$	$x_{0}, x_{1}, \ldots, x_{m}$
Objective function	$\min y_{0}$	$\max x_{0}$
Constraints	$\mathbf{1} y_{0}-M y \geq \mathbf{0}$,	$\mathbf{1} x_{0}-M^{\top} x \leq \mathbf{0}$,
	$\sum_{j=1}^{n} y_{j}=1$,	$\sum_{i=1}^{m} x_{i}=1$,
	$y_{1}, \ldots, y_{n} \geq 0$.	$x_{1}, \ldots, x_{m} \geq 0$.

You may use the recipe for making dual programs from the lecture.
Homework 2. Use the Lemke-Howson algorithm and compute a Nash equilibrium of the following bimatrix game

$$
M=\left(\begin{array}{lll}
1 & 3 & 0 \\
0 & 0 & 2 \\
2 & 1 & 1
\end{array}\right) \quad \text { and } \quad N=\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 3 & 1 \\
0 & 0 & 3 .
\end{array}\right)
$$

Start the computation by choosing the label 1.
Homework 3. [Sperner's Lemma] Let S be a given subdivision of a triangle T in the plane. A legal coloring the vertices of S assigns one of three colors (red, blue, and green) to each vertex of S such that all the three colors are used on the vertices of T. Moreover, a vertex of S lying on an edge of T must have one of the two colors of the endpoints of this edge.

Prove that, in every legal coloring of S, there is is a triangular face of S whose vertices are colored with all three colors.

Hint: Use a reduction to the END-OF-THE-LINE problem.

[^0]
[^0]: ${ }^{1}$ Information about the course can be found at http://kam.mff.cuni.cz/~balko/

