Algorithmic game theory — Homework 2^1 Nash equilibria

assigned 29.10.2018, deadline 26.11.2018

If you wish to see your score on the web page, please choose a nickname and write it on the paper with your solutions (as well as your name), or send it by e-mail. Without the nickname I will not make your score public.

Homework 1. Show that the following linear programs from the proof of the Minimax Theorem are dual to each other.

(a) For a matrix $M \in \mathbb{R}^{m \times n}$,

	Program P	Program D
Variables	y_1, \ldots, y_n	x_0
Objective function	$\min x^{\top} M y$	$\max x_0$
Constraints	$\sum_{j=1}^{n} y_j = 1,$ $y_1, \dots, y_n \ge 0.$	$1x_0 \le M^\top x.$
	$y_1,\ldots,y_n\geq 0.$	

(b) For a matrix $M \in \mathbb{R}^{m \times n}$,

	Program P'	Program D'
Variables	y_0, y_1, \ldots, y_n	x_0, x_1, \ldots, x_m
Objective function	$\min y_0$	$\max x_0$
Constraints	$1y_0 - My \ge 0,$	$1x_0 - M^\top x \le 0,$
	$\sum_{j=1}^{n} y_j = 1,$	$\sum_{i=1}^{m} x_i = 1,$
	$y_1,\ldots,y_n\geq 0.$	$x_1,\ldots,x_m \ge 0.$

You may use the recipe for making dual programs from the lecture.

Homework 2. Use the Lemke–Howson algorithm and compute a Nash equilibrium of the following bimatrix game [2]

$$M = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 0 & 2 \\ 2 & 1 & 1 \end{pmatrix} \quad and \quad N = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 0 & 3. \end{pmatrix}$$

Start the computation by choosing the label 1.

Homework 3. [Sperner's Lemma] Let S be a given subdivision of a triangle T in the plane. A legal coloring the vertices of S assigns one of three colors (red, blue, and green) to each vertex of S such that all the three colors are used on the vertices of T. Moreover, a vertex of S lying on an edge of T must have one of the two colors of the endpoints of this edge.

Prove that, in every legal coloring of S, there is a triangular face of S whose vertices are colored with all three colors.

Hint: Use a reduction to the END-OF-THE-LINE problem.

[3]

[2]

 $[\mathbf{2}]$

¹Information about the course can be found at http://kam.mff.cuni.cz/~balko/