Algorithmic game theory – Tutorial 5^*

December 16, 2018

1 Revenue-maximizing auctions

Exercise 1. Let F be the uniform probability distribution on [0, 1]. Consider a single-item auction with two bidders 1 and 2 that have probability distributions $F_1 = F$ and $F_2 = F$ on their valuations. Prove that the expected revenue obtained by the Vickrey auction (with no reserve) is 1/3.

Exercise 2. Compute the virtual valuation function of the following probability distributions and show which of these distributions are regular (meaning the virtual valuation function is strictly increasing).

- (a) The uniform distribution F(z) = z/a on [0, a] with a > 0,
- (b) The exponential distribution $F(z) = 1 e^{-\lambda z}$ with rate $\lambda > 0$ on $[0, \infty)$,

Exercise 3. Consider a single-item auction where bidder i draws his valuation from his own regular distribution F_i , that is, the probability distributions F_1, \ldots, F_n can be different but all virtual valuation functions $\varphi_1, \ldots, \varphi_n$ are strictly increasing.

- (a) Give a formula for the winner's payment in an optimal auction, in terms of the bidders' virtual valuation functions φ_i . Verify that if $F_1 = \cdots = F_n$ are uniform probability distributions on [0, 1], then your formula yields Vickrey auction with reserve price 1/2.
- (b) Find an example of an optimal auction in which the highest bidder does not win, even if he has a positive virtual valuation.

Hint: It suffices to consider two bidders with valuations from different uniform distributions.

Exercise 4. Prove that the Knapsack auction allocation rule x^G induced by the greedy (1/2)-approximation algorithm covered in the lecture is monotone.

^{*}Information about the course can be found at http://kam.mff.cuni.cz/~balko/