Algorithmic game theory - Tutorial 3*

November 10, 2018

1ε-Nash and correlated equilibria

Exercise 1. Show that, in every normal-form game $G=(P, A, u)$ of n players, for every Nash equilibrium there exists a corresponding correlated equilibrium. In particular, show that if $s^{*}=$ $\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a Nash equilibrium in G, then the product probability distribution $p_{s^{*}}$ given by

$$
p_{s^{*}}(a)=\prod_{j=1}^{n} s_{j}^{*}\left(a_{j}\right)
$$

for every $a=\left(a_{1}, \ldots, a_{n}\right) \in A$, is a correlated equilibrium in G.
Exercise 2. Show that, in every normal-form game $G=(P, A, u)$, every convex combination of correlated equilibria is a correlated equilibrium.

Exercise 3. Let $G=(P=\{1,2\}, A, u)$ be a normal-form game of two players with $A_{1}=\{U, D\}$ and $A_{2}=\{L, R\}$ with payoff function u depicted in Table 1 .

	L	R
U	$(1,1)$	$(0,0)$
D	$\left(1+\frac{\varepsilon}{2}, 1\right)$	$(500,500)$

Table 1: A game from Exercise 3 .
Show that there is an ε-Nash equilibrium s of G such that $u_{i}\left(s^{\prime}\right)>10 u_{i}(s)$ for every $i \in P$ and every Nash equilibrium s^{\prime} of G. In other words, there might be games where some ε-Nash equilibria are far away from any Nash equilibrium.

Exercise 4. Let $G=(P=\{1,2\}, A, u)$ be a normal-form game of two players with $A_{1}=\{U, D\}$ and $A_{2}=\{L, R\}$ with payoff function u depicted in Table 2 .

	L	R
U	$(6,6)$	$(2,7)$
D	$(7,2)$	$(0,0)$

Table 2: A game from Exercise 4
(a) Compute all Nash equilibria of G and draw the convex hull of Nash equilibrium payoffs.
(b) Is there any correlated equilibrium of G (for some ditribution p) that yields payoffs outside this convex hull?

Exercise 5. Let $G=(P=\{1,2\}, A, u)$ be a normal-form game of two players with $A_{1}=\{U, D\}$ and $A_{2}=\{L, R\}$ with payoff function u depicted in Table 3 .

	L	R
U	$(4,4)$	$(1,5)$
D	$(5,1)$	$(0,0)$

Table 3: A game from Exercise 5.
(a) Compute all Nash equilibria of G and draw the convex hull of Nash equilibrium payoffs.
(b) Determine the set of all correlated equilibria of G.

[^0]
[^0]: *Information about the course can be found at http://kam.mff.cuni.cz/~balko/

