Automorphism Groups of Interval Graphs

Peter Zeman joint work with Pavel Klavík

Faculty of Mathematics and Physics, Charles University in Prague

ATCAGC 2014

The Automorphism Group of a Disconnected Graph

▶ If a graph G has n pairwise nonisomorphic connected components G_1, \ldots, G_n , then

$$\operatorname{Aut}(G) = \operatorname{Aut}(G_1) \times \cdots \times \operatorname{Aut}(G_n).$$

The Automorphism Group of a Disconnected Graph

▶ If a graph G has n pairwise nonisomorphic connected components G_1, \ldots, G_n , then

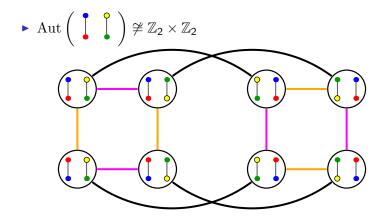
$$\operatorname{Aut}(G)=\operatorname{Aut}(G_1)\times\cdots\times\operatorname{Aut}(G_n).$$

$$\rightarrow \operatorname{Aut} \left(\begin{array}{c} \\ \\ \end{array} \right) \not\cong \mathbb{Z}_2 \times \mathbb{Z}_2$$

The Automorphism Group of a Disconnected Graph

▶ If a graph G has n pairwise nonisomorphic connected components G_1, \ldots, G_n , then

$$\operatorname{Aut}(G) = \operatorname{Aut}(G_1) \times \cdots \times \operatorname{Aut}(G_n).$$



Wreath product

▶ If a graph G contains k copies of H, then the automorphism group of G is isomorphic to $Aut(G) \wr S_k$, where

$$\operatorname{Aut}(G) \wr \mathbb{S}_k = \{(g_1, \dots, g_k, \pi) : g_i \in \operatorname{Aut}(H), \pi \in \mathbb{S}_k \}.$$

$$\pi(1) \qquad \pi(2) \qquad \qquad \pi(k)$$

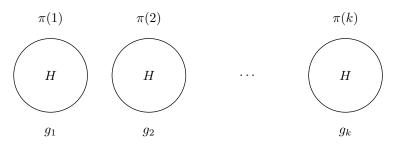
$$H \qquad \qquad \dots \qquad H$$

$$g_1 \qquad g_2 \qquad g_k$$

Wreath product

▶ If a graph G contains k copies of H, then the automorphism group of G is isomorphic to $Aut(G) \wr S_k$, where

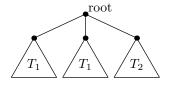
$$\operatorname{Aut}(G) \wr \mathbb{S}_k = \{(g_1, \ldots, g_k, \pi) \colon g_i \in \operatorname{Aut}(H), \pi \in \mathbb{S}_k\}.$$



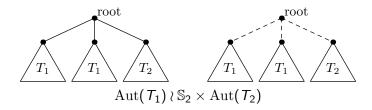
▶ If a graph G contains k_i copies of G_i for i = 1, ..., n, then the automorphism group of G is isomorphic to

$$\operatorname{Aut}(G_1) \wr \mathbb{S}_{k_1} \times \cdots \times \operatorname{Aut}(G_n) \wr \mathbb{S}_{k_n}$$
.

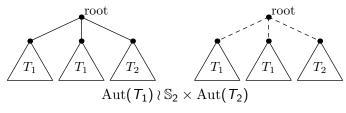
Automorphism Groups of Trees



Automorphism Groups of Trees



Automorphism Groups of Trees



Theorem (Jordan, 1869)

The finite group Γ is isomorophic to the automorphism group of a finite tree if and only if $\Gamma \in \mathcal{T}$, where the class \mathcal{T} of finite groups is defined inductively as follows:

- (a) $\{1\} \in \mathcal{T}$,
- (b) if $\Gamma_1, \Gamma_2 \in \mathcal{T}$ then $\Gamma_1 \times \Gamma_2 \in \mathcal{T}$,
- (c) if $\Gamma \in \mathcal{T}$ and $n \geq 2$ then $\Gamma \wr \mathbb{S}_n \in \mathcal{T}$.

For interval graphs we show that we need to add an operation (d).

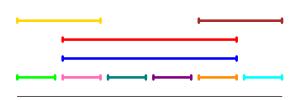
Let I_1, \ldots, I_n be intervals on a real line. The corresponding interval graph G is the intersection graph of those intervals.

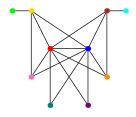
Let I_1, \ldots, I_n be intervals on a real line. The corresponding interval graph G is the intersection graph of those intervals.

- ▶ $V(G) = \{I_1, ..., I_n\}.$
- ▶ $\{I_x, I_y\} \in E(G)$ if and only if $I_x \cap I_y \neq \emptyset$.

Let I_1, \ldots, I_n be intervals on a real line. The corresponding interval graph G is the intersection graph of those intervals.

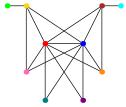
- ▶ $V(G) = \{I_1, ..., I_n\}.$
- ▶ $\{I_x, I_y\} \in E(G)$ if and only if $I_x \cap I_y \neq \emptyset$.





Let I_1, \ldots, I_n be intervals on a real line. The corresponding interval graph G is the intersection graph of those intervals.

- ▶ $V(G) = \{I_1, \ldots, I_n\}.$
- ▶ $\{I_x, I_y\} \in E(G)$ if and only if $I_x \cap I_y \neq \emptyset$.



Colbourn and Kellogg found (1981) a linear time algorithm for finding a set of generators of the automorphism group of an interval graph.

Characterization of interval graphs

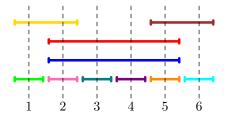
Theorem (Fulkerson and Gross)

A graph G is an interval graph if and only if there exists and ordering of the maximal cliques such that for every vertex $v \in V(G)$, the cliques containing v appear in it consequtively.

Characterization of interval graphs

Theorem (Fulkerson and Gross)

A graph G is an interval graph if and only if there exists and ordering of the maximal cliques such that for every vertex $v \in V(G)$, the cliques containing v appear in it consequtively.



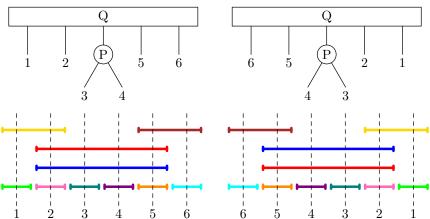
Restricting conditions for the ordering are $\{1,2\},~\{5,6\}$ and $\{2,3,4,5\}.$

PQ-trees

Booth and Lueker (1976) invented PQ-trees for a more general purpose and used them to design a linear time algorithm for recognizing interval graphs.

PQ-trees

Booth and Lueker (1976) invented PQ-trees for a more general purpose and used them to design a linear time algorithm for recognizing interval graphs.



Automorphisms of PQ-trees

Two PQ-trees T and T' are equivalent if one can be obtained from the other by applying the following two equivalence transformations:

- ► Arbitrarily permute the children of a P-node.
- Reverse the children of a Q-node.

Automorphisms of PQ-trees

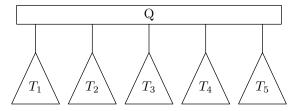
Two PQ-trees T and T' are equivalent if one can be obtained from the other by applying the following two equivalence transformations:

- ► Arbitrarily permute the children of a P-node.
- Reverse the children of a Q-node.

If ε represents a sequence of equivalence transformations, $\varepsilon \in \operatorname{Aut}(T)$ if there exists $\alpha \in \operatorname{Aut}(G)$ such that $\alpha(T_{\varepsilon})$ is T.

Automorphism groups of PQ-trees

If we consider only PQ-trees with no Q-node, we get the same automorphism groups as for trees.



If T_1 is isomorphic to T_5 and T_2 is isomorphic to T_4 , then reversing the ordering of T_1, \ldots, T_5 is an automorphism of T.

$$\text{Aut}(T) = (\text{Aut}(T_1) \times \cdots \times \text{Aut}(T_5)) \times \mathbb{Z}_2$$

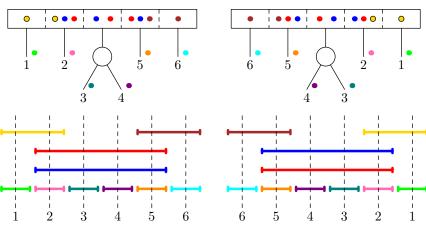
$$= \{(t_1, \dots, t_5, z) \colon t_i \in \text{Aut}(T_i), z \in \mathbb{Z}_2\}$$

MPQ-trees

Korte and Möhring used MPQ-trees (1989) to desing a more simple recognition algorithm for interval graphs.

MPQ-trees

Korte and Möhring used MPQ-trees (1989) to desing a more simple recognition algorithm for interval graphs.



Automorphisms of MPQ-trees

Two MPQ-trees T and T' are equivalent if one can be obtained from the other by applying the equivalence transformations and reordering the sections with a node preserving permutation.

If ε represents a sequence of equivalence transformations and ν is a node preserving permutation, then $(\varepsilon, \nu) \in \operatorname{Aut}(T)$ if there exists $\alpha \in \operatorname{Aut}(G)$ such that $\alpha(T_{\varepsilon,\nu})$ is T.

Automorphism groups of MPQ-trees

▶ If T is a MPQ-tree for an interval graph G, then

$$\operatorname{Aut}(T) \cong \operatorname{Aut}(G)$$
.

▶ $Aut(T) = E \times N$, where E is the automorphism group of the corresponding PQ-tree and N is a direct product of symmetric groups.

Automorphism Groups of Interval Graphs

Theorem

The finite group Γ is isomorophic to the automorphism group of a finite tree if and only if $\Gamma \in \mathcal{I}$, where the class \mathcal{I} of finite groups is defined inductively as follows:

- (a) $\{1\} \in \mathcal{I}$,
- (b) if $\Gamma_1, \Gamma_2 \in \mathcal{I}$ then $\Gamma_1 \times \Gamma_2 \in \mathcal{I}$,
- (c) if $\Gamma \in \mathcal{I}$ and $n \geq 2$ then $\Gamma \wr \mathbb{S}_n \in \mathcal{I}$.
- (d) if $\Gamma_1, \ldots, \Gamma_n \in \mathcal{I}$, $n \geq 3$ and G_i is the graph for which $\operatorname{Aut}(G_i) = \Gamma_i$, then $(\Gamma_1 \times \cdots \times \Gamma_n) \rtimes \mathbb{Z}_2 \in \mathcal{I}$ if $G_1 \cong G_n$, $G_2 \cong G_{n-1}$, and so on.

Further research

- ► Circle graphs
- Circular-arc graphs
- ▶ Intersection graphs in general

Thank you!

