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The Automorphism Group of a Disconnected Graph

◮ If a graph G has n pairwise nonisomorphic connected
components G1, . . . ,Gn, then

Aut(G ) = Aut(G1)× · · · ×Aut(Gn).



The Automorphism Group of a Disconnected Graph

◮ If a graph G has n pairwise nonisomorphic connected
components G1, . . . ,Gn, then

Aut(G ) = Aut(G1)× · · · ×Aut(Gn).

◮ Aut

( )

6∼= Z2 × Z2



The Automorphism Group of a Disconnected Graph

◮ If a graph G has n pairwise nonisomorphic connected
components G1, . . . ,Gn, then

Aut(G ) = Aut(G1)× · · · ×Aut(Gn).

◮ Aut

( )

6∼= Z2 × Z2



Wreath product

◮ If a graph G contains k copies of H, then the automorphism
group of G is isomorphic to Aut(G ) ≀ Sk , where

Aut(G ) ≀ Sk =
{

(g1, . . . , gk , π) : gi ∈ Aut(H), π ∈ Sk

}
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◮ If a graph G contains ki copies of Gi for i = 1, . . . , n, then the
automorphism group of G is isomorphic to

Aut(G1) ≀ Sk1 × · · · ×Aut(Gn) ≀ Skn .



Automorphism Groups of Trees

root

T1 T1 T2



Automorphism Groups of Trees

root

T1 T1 T2

root

T1 T1 T2

Aut(T1) ≀ S2 ×Aut(T2)



Automorphism Groups of Trees

root

T1 T1 T2

root

T1 T1 T2

Aut(T1) ≀ S2 ×Aut(T2)

Theorem (Jordan, 1869)

The finite group Γ is isomorophic to the automorphism group of a

finite tree if and only if Γ ∈ T , where the class T of finite groups is

defined inductively as follows:

(a) {1} ∈ T ,

(b) if Γ1, Γ2 ∈ T then Γ1 × Γ2 ∈ T ,

(c) if Γ ∈ T and n ≥ 2 then Γ ≀ Sn ∈ T .

For interval graphs we show that we need to add an operation (d).
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Interval Graphs

Let I1, . . . , In be intervals on a real line. The corresponding interval
graph G is the intersection graph of those intervals.

◮ V (G ) = {I1, . . . , In}.

◮ {Ix , Iy} ∈ E (G ) if and only if Ix ∩ Iy 6= ∅.

Colbourn and Kellogg found (1981) a linear time algorithm for
finding a set of generators of the automorphism group of an
interval graph.



Characterization of interval graphs

Theorem (Fulkerson and Gross)

A graph G is an interval graph if and only if there exists and

ordering of the maximal cliques such that for every vertex

v ∈ V (G ), the cliques containing v appear in it consequtively.



Characterization of interval graphs

Theorem (Fulkerson and Gross)

A graph G is an interval graph if and only if there exists and

ordering of the maximal cliques such that for every vertex

v ∈ V (G ), the cliques containing v appear in it consequtively.

1 2 3 4 5 6

Restricting conditions for the ordering are {1, 2}, {5, 6} and
{2, 3, 4, 5}.
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purpose and used them to design a linear time algorithm for
recognizing interval graphs.
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Automorphisms of PQ-trees

Two PQ-trees T and T ′ are equivalent if one can be obtained
from the other by applying the following two equivalence
transformations:

◮ Arbitrarily permute the children of a P-node.

◮ Reverse the children of a Q-node.
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If ε represents a sequence of equivalence transformations,
ε ∈ Aut(T ) if there exists α ∈ Aut(G ) such that α(Tε) is T .



Automorphism groups of PQ-trees

If we consider only PQ-trees with no Q-node, we get the same
automorphism groups as for trees.

T1 T2 T3 T4 T5

Q

If T1 is isomorphic to T5 and T2 is isomorphic to T4, then
reversing the ordering of T1, . . . ,T5 is an automorphism of T .

Aut(T ) = (Aut(T1)× · · · ×Aut(T5))⋊ Z2

=
{

(t1, . . . , t5, z) : ti ∈ Aut(Ti ), z ∈ Z2

}
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Automorphisms of MPQ-trees

Two MPQ-trees T and T ′ are equivalent if one can be obtained
from the other by applying the equivalence transformations and
reordering the sections with a node preserving permutation.

If ε represents a sequence of equivalence transformations and ν is a
node preserving permutation, then (ε, ν) ∈ Aut(T ) if there exists
α ∈ Aut(G ) such that α(Tε,ν) is T .



Automorphism groups of MPQ-trees

◮ If T is a MPQ-tree for an interval graph G , then

Aut(T ) ∼= Aut(G ).

◮ Aut(T ) = E × N, where E is the automorphism group of the
corresponding PQ-tree and N is a direct product of symmetric
groups.



Automorphism Groups of Interval Graphs

Theorem
The finite group Γ is isomorophic to the automorphism group of a

finite tree if and only if Γ ∈ I, where the class I of finite groups is

defined inductively as follows:

(a) {1} ∈ I,

(b) if Γ1, Γ2 ∈ I then Γ1 × Γ2 ∈ I,

(c) if Γ ∈ I and n ≥ 2 then Γ ≀ Sn ∈ I.

(d) if Γ1, . . . , Γn ∈ I, n ≥ 3 and Gi is the graph for which

Aut(Gi ) = Γi , then (Γ1 × · · · × Γn)⋊ Z2 ∈ I if

G1
∼= Gn, G2

∼= Gn−1, and so on.



Further research

◮ Circle graphs

◮ Circular-arc graphs

◮ Intersection graphs in general



Thank you!

Aut(G ) ∼= (Z2 ⋊ Z2)× Z2


