Large digraphs of given degree and diameter and their properties

Mária Ždímalová

Slovak University of Technology Bratislava, Slovakia

Introduction

Introduction

Motivation: design of interconnection networks

Motivation: design of interconnection networks

Degree-diameter problem for graphs and digraphs: determination of the largest number n(d, k) of vertices in a graph (digraph) of a given maximum degree d and diameter k

Motivation: design of interconnection networks

Degree-diameter problem for graphs and digraphs: determination of the largest number n(d, k) of vertices in a graph (digraph) of a given maximum degree d and diameter k

Restricted classes of graphs and digraphs: vertex-transitive, Cayley, bipartite graphs (digraphs), graphs (digraphs) embaddable in a fixed surface...

Directed case

Directed case

Upper bounds:

Directed case

Upper bounds:

• Directed Moore bound M'(d, k):

Directed case

Upper bounds:

• Directed Moore bound M'(d, k):

$$n(d,k) \leq 1 + d + d^2 + \ldots + d^k = M'(d,k)$$

Directed case

Upper bounds:

Directed Moore bound M'(d, k):

$$n(d,k) \leq 1 + d + d^2 + \ldots + d^k = M'(d,k)$$

• Moore digraphs: $d = 1 \dots C_{k+1}$, $k \ge 1$; $k = 1 \dots K_{d+1}$ for d > 1.

Vertex-transitive case

Upper bounds:

• A digraph is vertex-transitive if for every pair of vertices *u* and *v* there exists an automorphism of Γ that carries *u* to *v*.

- A digraph is vertex-transitive if for every pair of vertices *u* and *v* there exists an automorphism of Γ that carries *u* to *v*.
- vt(d, k)-the largest order of a vertex-transitive digraph of maximum degree d and diameter at most k.

- A digraph is vertex-transitive if for every pair of vertices *u* and *v* there exists an automorphism of Γ that carries *u* to *v*.
- vt(d, k)-the largest order of a vertex-transitive digraph of maximum degree d and diameter at most k.
- vt(d, k) = M'(d, k) is attained only in the trivial cases if d = 1 or if k = 1.

- A digraph is vertex-transitive if for every pair of vertices *u* and *v* there exists an automorphism of Γ that carries *u* to *v*.
- vt(d, k)-the largest order of a vertex-transitive digraph of maximum degree d and diameter at most k.
- vt(d, k) = M'(d, k) is attained only in the trivial cases if d = 1 or if k = 1.
- vt(d, 2) = M'(d, 2) − 1 for all d ≥ 2... (line digraphs of complete digraphs are vertex-transitive)

- A digraph is vertex-transitive if for every pair of vertices *u* and *v* there exists an automorphism of Γ that carries *u* to *v*.
- vt(d, k)-the largest order of a vertex-transitive digraph of maximum degree d and diameter at most k.
- vt(d, k) = M'(d, k) is attained only in the trivial cases if d = 1 or if k = 1.
- vt(d, 2) = M'(d, 2) − 1 for all d ≥ 2... (line digraphs of complete digraphs are vertex-transitive)
- There is no general upper bound on vt(d, k) better than M'(d, k) 1, for $d, k \ge 2$.

Constructions

Constructions

Lower bounds:

Constructions

Lower bounds:

• Faber-Moore-Chen digraphs: $vt(d, k) \ge \frac{(d+1)!}{(d+1-k)!}$.

Constructions

Lower bounds:

- Faber-Moore-Chen digraphs: $vt(d,k) \ge \frac{(d+1)!}{(d+1-k)!}$.
- Comellas Fiol digraphs: harder to be extracted, the construction depends on an input digraph of order *n*, degree *d*, and reachability *r* and two additional numerical parameters *t* and *l*.

Constructions

Lower bounds:

- Faber-Moore-Chen digraphs: $vt(d, k) \ge \frac{(d+1)!}{(d+1-k)!}$.
- Comellas Fiol digraphs: harder to be extracted, the construction depends on an input digraph of order *n*, degree *d*, and reachability *r* and two additional numerical parameters *t* and *l*.
- For two positive integers t and l, the output digraph is a d-regular vertex-transitive digraph of diameter at most (r + t)l 1 and order tln^{l} .

Constructions

Lower bounds:

- Faber-Moore-Chen digraphs: $vt(d, k) \ge \frac{(d+1)!}{(d+1-k)!}$.
- Comellas Fiol digraphs: harder to be extracted, the construction depends on an input digraph of order *n*, degree *d*, and reachability *r* and two additional numerical parameters *t* and *l*.
- For two positive integers t and l, the output digraph is a d-regular vertex-transitive digraph of diameter at most (r + t)l 1 and order tln^{l} .
- Gómez digraphs: a new family of large vertex transitive digraphs, giving the bound $n(d, k) \ge (d + [k 1/2])!/(d [k + 1/2])!$ for $k \ge 3$ and $d \ge \lfloor \frac{k+1}{2} \rfloor$.

Faber-Moore-Chen digraphs

• Joint work with L. Staneková

- Joint work with L. Staneková
- For any given k ≥ 2 and d ≥ k their construction gives a family of large vertex-transitive digraphs Γ(d, k):

- Joint work with L. Staneková
- For any given k ≥ 2 and d ≥ k their construction gives a family of large vertex-transitive digraphs Γ(d, k):
- Vertices of $\Gamma(d, k)$ are the different words $x_1x_2 \dots x_k$ of length k, forming a k-permutation of an alphabet A of d + 1 letters.

- Joint work with L. Staneková
- For any given k ≥ 2 and d ≥ k their construction gives a family of large vertex-transitive digraphs Γ(d, k):
- Vertices of $\Gamma(d, k)$ are the different words $x_1x_2 \dots x_k$ of length k, forming a k-permutation of an alphabet A of d + 1 letters.
- Adjacencies are given by:

$$x_{1}x_{2}\ldots x_{k} \rightarrow \begin{cases} x_{2}x_{3}x_{4}\ldots x_{k+1}, & x_{k+1} \neq x_{1}, x_{2}, \ldots, x_{k} \\ x_{2}x_{3}x_{4}\ldots x_{k}x_{1} \\ x_{1}x_{3}x_{4}\ldots x_{k}x_{2} \\ x_{1}x_{2}x_{4}\ldots x_{k}x_{3} \\ \ldots \\ x_{1}x_{2}x_{3}\ldots x_{k}x_{k-1} \end{cases}$$

- Joint work with Ľ. Staneková
- For any given k ≥ 2 and d ≥ k their construction gives a family of large vertex-transitive digraphs Γ(d, k):
- Vertices of $\Gamma(d, k)$ are the different words $x_1x_2 \dots x_k$ of length k, forming a k-permutation of an alphabet A of d + 1 letters.
- Adjacencies are given by:

$$x_{1}x_{2}...x_{k} \rightarrow \begin{cases} x_{2}x_{3}x_{4}...x_{k+1}, & x_{k+1} \neq x_{1}, x_{2},...,x_{k} \\ x_{2}x_{3}x_{4}...x_{k}x_{1} \\ x_{1}x_{3}x_{4}...x_{k}x_{2} \\ x_{1}x_{2}x_{4}...x_{k}x_{3} \\ ... \\ x_{1}x_{2}x_{3}...x_{k}x_{k-1} \end{cases}$$

• Order: $(d+1)_k = (d+1)!/(d-k+1)!$, diameter k, and d-regular.

Theorem

The automorphism group of the Faber-Moore-Chen digraphs is isomorphic to S_{d+1} acting on $V(\Gamma)$ in a natural way, that is, for any $\sigma \in S_{d+1}$, the assignment $x_1 \dots x_k \mapsto \sigma(x_1)\sigma(x_2) \dots \sigma(x_k)$ defines an automorphism of Γ .

Theorem

The automorphism group of the Faber-Moore-Chen digraphs is isomorphic to S_{d+1} acting on $V(\Gamma)$ in a natural way, that is, for any $\sigma \in S_{d+1}$, the assignment $x_1 \dots x_k \mapsto \sigma(x_1)\sigma(x_2) \dots \sigma(x_k)$ defines an automorphism of Γ .

Theorem

The digraph $\Gamma(d, k)$ is a Cayley digraph if and only if

- b) d = k + 1 and any k,
- c) d = q 1, where q is a prime power and k = 2.
- d) d = q, where q is a prime power and k = 3,
- e) d = 10 and k = 4,
- f) d = 11 and k = 5.

• Joint work with M. Olejár.

- Joint work with M. Olejár.
- Explicit constructions of large Cayley digraphs of given (general) out-degree and diameter have not been considered in the literature.

- Joint work with M. Olejár.
- Explicit constructions of large Cayley digraphs of given (general) out-degree and diameter have not been considered in the literature.
- Exception Cayley graphs of Abelian groups, Dougherty and Faber, Garcia and Peyrat.

- Joint work with M. Olejár.
- Explicit constructions of large Cayley digraphs of given (general) out-degree and diameter have not been considered in the literature.
- Exception Cayley graphs of Abelian groups, Dougherty and Faber, Garcia and Peyrat.
- We characterized those Faber-Moore-Chen digraphs which are Cayley digraphs with the help of classification of sharply *k*-transitive groups of a given degree.

Large Cayley digraphs of given diameter and degree from sharply transitive groups

- Joint work with M. Olejár.
- Explicit constructions of large Cayley digraphs of given (general) out-degree and diameter have not been considered in the literature.
- Exception Cayley graphs of Abelian groups, Dougherty and Faber, Garcia and Peyrat.
- We characterized those Faber-Moore-Chen digraphs which are Cayley digraphs with the help of classification of sharply *k*-transitive groups of a given degree.
- We show that the Cayley digraphs arising from the Faber-Moore-Chen construction can be derived directly from the 'first principles': just from the definition of sharply k-transitive groups for k ≥ 2, and not involving any theory of such groups and any prior knowledge of the Faber-Moore-Chen digraphs.

Large Cayley digraphs of given diameter and degree from sharply transitive groups

- Joint work with M. Olejár.
- Explicit constructions of large Cayley digraphs of given (general) out-degree and diameter have not been considered in the literature.
- Exception Cayley graphs of Abelian groups, Dougherty and Faber, Garcia and Peyrat.
- We characterized those Faber-Moore-Chen digraphs which are Cayley digraphs with the help of classification of sharply *k*-transitive groups of a given degree.
- We show that the Cayley digraphs arising from the Faber-Moore-Chen construction can be derived directly from the 'first principles': just from the definition of sharply k-transitive groups for k ≥ 2, and not involving any theory of such groups and any prior knowledge of the Faber-Moore-Chen digraphs.

Preliminaries

Mária Ždímalová Large digraphs of given degree and diameter and their propert

Preliminaries

• Permutation group: A group of permutations G of a set X.

Mária Ždímalová Large digraphs of given degree and diameter and their propert

Preliminaries

- Permutation group: A group of permutations G of a set X.
- G is transitive if for any $a, b \in X$, there exists $g \in G$, such that g(a) = b.

Preliminaries

- Permutation group: A group of permutations G of a set X.
- G is transitive if for any a, b ∈ X, there exists g ∈ G, such that g(a) = b.
- G is k-transitive if for any ordered k-tuples (a₁, a₂,..., a_k) and (b₁, b₂,..., b_k) of distinct elements of X there exists some g ∈ G such that g(a_i) = b_i for all i, 1 ≤ i ≤ k.

Preliminaries

- Permutation group: A group of permutations G of a set X.
- G is transitive if for any $a, b \in X$, there exists $g \in G$, such that g(a) = b.
- G is k-transitive if for any ordered k-tuples (a₁, a₂,..., a_k) and (b₁, b₂,..., b_k) of distinct elemnets of X there exists some g ∈ G such that g(a_i) = b_i for all i, 1 ≤ i ≤ k.
- If this element g is unique, then G is sharply k-transitive.

Examples of such Cayley digraphs can be obtained from examples of sharply *k*-transitive groups, which is especially handy in the cases k = 2 and k = 3.

Examples of such Cayley digraphs can be obtained from examples of sharply *k*-transitive groups, which is especially handy in the cases k = 2 and k = 3.

Proposition 1 Let G be a sharply 2-transitive permutation group on a finite set S with $|S| \ge 2$, so that |G| = |S|(|S| - 1). Then, there exists a Cayley digraph Γ_1 of the group G of degree |S| - 1 and diameter 2.

Examples of such Cayley digraphs can be obtained from examples of sharply *k*-transitive groups, which is especially handy in the cases k = 2 and k = 3.

Proposition 1 Let *G* be a sharply 2-transitive permutation group on a finite set *S* with $|S| \ge 2$, so that |G| = |S|(|S| - 1). Then, there exists a Cayley digraph Γ_1 of the group *G* of degree |S| - 1 and diameter 2.

Proposition 2 Let G be a sharply 3-transitive permutation group on a finite set S with $|S| \ge 3$, so that |G| = |S|(|S| - 1)(|S| - 2). Then, there exists a Cayley digraph Γ_2 of the group G of degree |S| - 1 and diameter 3.

 For diameter 2 the only 2-sharply transitive groups are the groups of linear transformations {x → ax + b : a, b ∈ F, a ≠ 0} of a finite nearfield F of order q = p^m, where p is a prime.

- For diameter 2 the only 2-sharply transitive groups are the groups of linear transformations {x → ax + b : a, b ∈ F, a ≠ 0} of a finite nearfield F of order q = p^m, where p is a prime.
- By a Theorem of Zassenhaus, there are two infinite families of sharply 3-transitive groups: $PGL_2(q)$, where $q = p^m$ and M(q), where $q = 2^m$ if *m* is even.

- For diameter 2 the only 2-sharply transitive groups are the groups of linear transformations {x → ax + b : a, b ∈ F, a ≠ 0} of a finite nearfield F of order q = p^m, where p is a prime.
- By a Theorem of Zassenhaus, there are two infinite families of sharply 3-transitive groups: $PGL_2(q)$, where $q = p^m$ and M(q), where $q = 2^m$ if *m* is even.
- Similar results can also be proved for k = 4 and k = 5 with careful choices of generating sets.

- For diameter 2 the only 2-sharply transitive groups are the groups of linear transformations {x → ax + b : a, b ∈ F, a ≠ 0} of a finite nearfield F of order q = p^m, where p is a prime.
- By a Theorem of Zassenhaus, there are two infinite families of sharply 3-transitive groups: $PGL_2(q)$, where $q = p^m$ and M(q), where $q = 2^m$ if *m* is even.
- Similar results can also be proved for k = 4 and k = 5 with careful choices of generating sets.
- There are just two sharply k-transitive groups: the Mathieu group M_{11} for k = 4 and the Mathieu group M_{12} for k = 5.

- For diameter 2 the only 2-sharply transitive groups are the groups of linear transformations {x → ax + b : a, b ∈ F, a ≠ 0} of a finite nearfield F of order q = p^m, where p is a prime.
- By a Theorem of Zassenhaus, there are two infinite families of sharply 3-transitive groups: $PGL_2(q)$, where $q = p^m$ and M(q), where $q = 2^m$ if *m* is even.
- Similar results can also be proved for k = 4 and k = 5 with careful choices of generating sets.
- There are just two sharply k-transitive groups: the Mathieu group M_{11} for k = 4 and the Mathieu group M_{12} for k = 5.

Digraphs: from Proposition 1 - Γ_1 , from Proposition 2 - Γ_2

```
Digraphs: from Proposition 1 - \Gamma_1, from Proposition 2 - \Gamma_2
```

```
\Gamma(d, 2)-FMCH digraphs for diameter 2
\Gamma(d, 3)-FMCH digraphs for diameter 3
```

```
Digraphs: from Proposition 1 - \Gamma_1, from Proposition 2 - \Gamma_2
```

```
\Gamma(d, 2)-FMCH digraphs for diameter 2
\Gamma(d, 3)-FMCH digraphs for diameter 3
```

Theorem

The digraph Γ_1 is isomorphic to the digraph $\Gamma(d, 2)$, and the digraph Γ_2 is isomorphic to the digraph $\Gamma(d, 3)$.

Construction of Comellas and Fiol

Mária Ždímalová Large digraphs of given degree and diameter and their propert

Construction of Comellas and Fiol

• joint work with L. Staneková

Construction of Comellas and Fiol

- joint work with L. Staneková
- Γ an input *r*-reachable digraph of out-degree *d*, with vertex set *V* and arc set *A*.

Construction of Comellas and Fiol

- joint work with L. Staneková
- Γ an input *r*-reachable digraph of out-degree *d*, with vertex set V and arc set A.
- Let *I*, *t* be positive integers.

Construction of Comellas and Fiol

- joint work with L. Staneková
- Γ an input *r*-reachable digraph of out-degree *d*, with vertex set V and arc set A.
- Let *I*, *t* be positive integers.
- Vertices of $CF(\Gamma, I, t)$ are $(j|p_0p_1 \dots p_{l-1})$ with $j \in \mathbb{Z}_{lt}$ and $p_i \in V = \mathbb{Z}_n$.

Construction of Comellas and Fiol

- joint work with L. Staneková
- Γ an input *r*-reachable digraph of out-degree *d*, with vertex set V and arc set A.
- Let *I*, *t* be positive integers.
- Vertices of $CF(\Gamma, I, t)$ are $(j|p_0p_1 \dots p_{l-1})$ with $j \in \mathbb{Z}_{lt}$ and $p_i \in V = \mathbb{Z}_n$.
- Adjacencies are given by:

 $(j|p_0 \dots p_{j-1} \ u \ p_{j+1} \dots p_{l-1}) \to (j+1|p_0 \dots p_{j-1} \ v \ p_{j+1} \dots p_{l-1}),$ where $(u, v) \in A$

Construction of Comellas and Fiol

- joint work with L. Staneková
- Γ an input *r*-reachable digraph of out-degree *d*, with vertex set V and arc set A.
- Let *I*, *t* be positive integers.
- Vertices of $CF(\Gamma, I, t)$ are $(j|p_0p_1 \dots p_{l-1})$ with $j \in \mathbb{Z}_{lt}$ and $p_i \in V = \mathbb{Z}_n$.
- Adjacencies are given by:

 $(j|p_0...p_{j-1} u p_{j+1}...p_{l-1}) \rightarrow (j+1|p_0...p_{j-1} v p_{j+1}...p_{l-1}),$

where $(u, v) \in A$ • Order: t/n' and diameter at most l(r + t) - 1. • We determined the full group of automorphism of these digraphs for wide class of input digraphs.

- We determined the full group of automorphism of these digraphs for wide class of input digraphs.
- natural automorphisms:

- We determined the full group of automorphism of these digraphs for wide class of input digraphs.
- natural automorphisms:if

$$(g_0,\ldots,g_{l-1};s) \in [\operatorname{Aut}(\Gamma)]^l \rtimes \mathbb{Z}_{lt}$$

 $\alpha(j|p_0,\ldots,p_{l-1}) = (j-s|g_0(p_s)\ldots g_{l-1}(p_{s+l-1}))$

- We determined the full group of automorphism of these digraphs for wide class of input digraphs.
- natural automorphisms:if

$$(g_0,\ldots,g_{l-1};s) \in [\operatorname{Aut}(\Gamma)]^l \rtimes \mathbb{Z}_{lt}$$

 $\alpha(j|p_0,\ldots,p_{l-1}) = (j-s|g_0(p_s)\ldots g_{l-1}(p_{s+l-1}))$

• an alternating walk from u to v in Γ is a walk that contains no directed sub-walk of length two.

- We determined the full group of automorphism of these digraphs for wide class of input digraphs.
- natural automorphisms:if

$$(g_0,\ldots,g_{l-1};s)\in [\operatorname{Aut}(\Gamma)]^l
times \mathbb{Z}_{lt}$$

 $lpha(j|p_0,\ldots,p_{l-1})=(j-s|g_0(p_s)\ldots g_{l-1}(p_{s+l-1}))$

- an alternating walk from u to v in Γ is a walk that contains no directed sub-walk of length two.
- digraph Γ is r-alternately reachable if there is a number r such that for every pair of vertices u and v there exist two alternating walks from u to v such that

- We determined the full group of automorphism of these digraphs for wide class of input digraphs.
- natural automorphisms:if

$$(g_0,\ldots,g_{l-1};s)\in [\operatorname{Aut}(\Gamma)]^l
times \mathbb{Z}_{lt}$$

 $lpha(j|p_0,\ldots,p_{l-1})=(j-s|g_0(p_s)\ldots g_{l-1}(p_{s+l-1}))$

- an alternating walk from u to v in Γ is a walk that contains no directed sub-walk of length two.
- digraph Γ is *r*-alternately reachable if there is a number *r* such that for every pair of vertices *u* and *v* there exist two alternating walks from *u* to *v* such that
 - the first begins with an arc from u

- We determined the full group of automorphism of these digraphs for wide class of input digraphs.
- natural automorphisms:if

$$(g_0,\ldots,g_{l-1};s)\in [\operatorname{Aut}(\Gamma)]^l
times \mathbb{Z}_{lt}$$

 $lpha(j|p_0,\ldots,p_{l-1})=(j-s|g_0(p_s)\ldots g_{l-1}(p_{s+l-1}))$

- an alternating walk from u to v in Γ is a walk that contains no directed sub-walk of length two.
- digraph Γ is *r*-alternately reachable if there is a number *r* such that for every pair of vertices *u* and *v* there exist two alternating walks from *u* to *v* such that
 - the first begins with an arc from u
 - the second begins with an arc terminating at u.

- We determined the full group of automorphism of these digraphs for wide class of input digraphs.
- natural automorphisms:if

$$(g_0,\ldots,g_{l-1};s)\in [\operatorname{Aut}(\Gamma)]^l
times \mathbb{Z}_{lt}$$

 $lpha(j|p_0,\ldots,p_{l-1})=(j-s|g_0(p_s)\ldots g_{l-1}(p_{s+l-1}))$

- an alternating walk from u to v in Γ is a walk that contains no directed sub-walk of length two.
- digraph Γ is *r*-alternately reachable if there is a number *r* such that for every pair of vertices *u* and *v* there exist two alternating walks from *u* to *v* such that
 - the first begins with an arc from u
 - the second begins with an arc terminating at u.
- r'-alternately reachable \Rightarrow r-alternately reachable for $\forall r \geq r'$

- We determined the full group of automorphism of these digraphs for wide class of input digraphs.
- natural automorphisms:if

$$(g_0,\ldots,g_{l-1};s)\in [\operatorname{Aut}(\Gamma)]^l
times \mathbb{Z}_{lt}$$

 $lpha(j|p_0,\ldots,p_{l-1})=(j-s|g_0(p_s)\ldots g_{l-1}(p_{s+l-1}))$

- an alternating walk from u to v in Γ is a walk that contains no directed sub-walk of length two.
- digraph Γ is *r*-alternately reachable if there is a number *r* such that for every pair of vertices *u* and *v* there exist two alternating walks from *u* to *v* such that
 - the first begins with an arc from u
 - the second begins with an arc terminating at u.
- r'-alternately reachable \Rightarrow r-alternately reachable for $\forall r \geq r'$

Results

Results

Theorem

If the input digraph Γ is r, r + 1, r + 2-alternately reachable and vertex-transitive, then the order of the automorphism group of the Comellas-Fiol digraph $CF(\Gamma, I, 1)$ is $|Aut(CF(\Gamma, I, 1))| = I.|Aut(\Gamma)|^{I}$. Consequently, $Aut(CF(\Gamma, I, 1)) \cong [Aut(\Gamma)]^{I} \rtimes \mathbb{Z}_{I}$.

We have determined the full automorphism group of Comellas-Fiol digraphs, when t = 1 and the input digraphs are {r, r + 1, r + 2}-alternately reachable.

- We have determined the full automorphism group of Comellas-Fiol digraphs, when t = 1 and the input digraphs are {r, r + 1, r + 2}-alternately reachable.
- Question: the automorphism group of the output digraph under weaker restrictions on the input digrahs, or for t ≥ 2.

- We have determined the full automorphism group of Comellas-Fiol digraphs, when t = 1 and the input digraphs are {r, r + 1, r + 2}-alternately reachable.
- Question: the automorphism group of the output digraph under weaker restrictions on the input digrahs, or for t ≥ 2.
- Computer experiments: the automorphism group H of the output digraph may be bigger than the group from our main result: $|H| > It|G|^{I}$.

- We have determined the full automorphism group of Comellas-Fiol digraphs, when t = 1 and the input digraphs are {r, r + 1, r + 2}-alternately reachable.
- Question: the automorphism group of the output digraph under weaker restrictions on the input digrahs, or for t ≥ 2.
- Computer experiments: the automorphism group H of the output digraph may be bigger than the group from our main result: $|H| > lt|G|^{l}$.
- **Example:** Consider the digraph Γ_1 with the vertex set $V(\Gamma_1) = Z_6$ and the dart set $(i, i + 1), (i, i + 2), i \in Z_6$. Let the automorphism group of the digraph Γ_1 and corresponding output digraph $CF(\Gamma_1, I, 2)$ for the parameters I = t = 2 be G_1 and H_1 , respectively. With the help of a computer we have $|G_1| = 6$ and $|H_1| = 576 > 2.2.|G_1|^2 = 144.$

Conclusion

Mária Ždímalová Large digraphs of given degree and diameter and their propert

Conclusion

• Faber-Moore-Chen digraphs: The full automorphism group of the digraphs.

Conclusion

- Faber-Moore-Chen digraphs: The full automorphism group of the digraphs.
- Comellas-Fiol digraphs: Automorphism group of the digraphs for special input parameters.

Conclusion

- Faber-Moore-Chen digraphs: The full automorphism group of the digraphs.
- Comellas-Fiol digraphs: Automorphism group of the digraphs for special input parameters.
- Open problem: Automorphism group of Gómez's digraphs.

Thank you for your attention.