Large digraphs of given degree and diameter and their properties

Mária Ždímalová

Slovak University of Technology
Bratislava, Slovakia
Introduction

Motivation:
- Design of interconnection networks

Degree-diameter problem for graphs and digraphs:
- Determination of the largest number $n(d, k)$ of vertices in a graph (digraph) of a given maximum degree d and diameter k

Restricted classes of graphs and digraphs:
- Vertex-transitive, Cayley, bipartite graphs (digraphs), graphs (digraphs) embeddable in a fixed surface...
Motivation: design of interconnection networks
Motivation: design of interconnection networks

Degree-diameter problem for graphs and digraphs: determination of the largest number $n(d, k)$ of vertices in a graph (digraph) of a given maximum degree d and diameter k
Introduction

Motivation: design of interconnection networks

Degree-diameter problem for graphs and digraphs: determination of the largest number \(n(d, k) \) of vertices in a graph (digraph) of a given maximum degree \(d \) and diameter \(k \)

Restricted classes of graphs and digraphs: vertex-transitive, Cayley, bipartite graphs (digraphs), graphs (digraphs) embeddable in a fixed surface...
Directed case

Upper bounds:

Directed Moore bound $M'(d, k) = n(d, k) \leq 1 + d + d^2 + \ldots + d^k = M'(d, k)$

Moore digraphs: $d = 1 \ldots C_{k+1}$, $k \geq 1; k = 1 \ldots K_{d+1}$ for $d \geq 1$.
Directed case

Upper bounds:
Directed case

Upper bounds:

- Directed Moore bound $M'(d, k)$:
Directed case

Upper bounds:

- Directed Moore bound $M'(d, k)$:

\[
\begin{align*}
n(d, k) \leq 1 + d + d^2 + \ldots + d^k &= M'(d, k)
\end{align*}
\]
Directed case

Upper bounds:

- Directed Moore bound $M'(d, k)$:
 \[n(d, k) \leq 1 + d + d^2 + \ldots + d^k = M'(d, k) \]

- Moore digraphs: $d = 1 \ldots C_{k+1}$, $k \geq 1$;
 \[k = 1 \ldots K_{d+1} \text{ for } d \geq 1. \]
Vertex-transitive case

A digraph is vertex-transitive if for every pair of vertices \(u \) and \(v \) there exists an automorphism of \(\Gamma \) that carries \(u \) to \(v \).

\(v^t(d,k) \)-the largest order of a vertex-transitive digraph of maximum degree \(d \) and diameter at most \(k \).

\(v^t(d,k) = M'(d,k) \) is attained only in the trivial cases if \(d = 1 \) or if \(k = 1 \).

There is no general upper bound on \(v^t(d,k) \) better than \(M'(d,k) - 1 \), for \(d, k \geq 2 \).
Vertex-transitive case

Upper bounds:
Vertex-transitive case

Upper bounds:

- A digraph is **vertex-transitive** if for every pair of vertices \(u \) and \(v \) there exists an automorphism of \(\Gamma \) that carries \(u \) to \(v \).
Vertex-transitive case

Upper bounds:

- A digraph is **vertex-transitive** if for every pair of vertices u and v there exists an automorphism of Γ that carries u to v.
- $vt(d, k)$-the largest order of a vertex-transitive digraph of maximum degree d and diameter at most k.
 Vertex-transitive case

Upper bounds:

- A digraph is vertex-transitive if for every pair of vertices \(u \) and \(v \) there exists an automorphism of \(\Gamma \) that carries \(u \) to \(v \).
- \(vt(d, k) \)-the largest order of a vertex-transitive digraph of maximum degree \(d \) and diameter at most \(k \).
- \(vt(d, k) = M'(d, k) \) is attained only in the trivial cases if \(d = 1 \) or if \(k = 1 \).
Vertex-transitive case

Upper bounds:

- A digraph is **vertex-transitive** if for every pair of vertices \(u \) and \(v \) there exists an automorphism of \(\Gamma \) that carries \(u \) to \(v \).
- \(vt(d, k) \)-the largest order of a vertex-transitive digraph of maximum degree \(d \) and diameter at most \(k \).
- \(vt(d, k) = M'(d, k) \) is attained only in the trivial cases if \(d = 1 \) or if \(k = 1 \).
- \(vt(d, 2) = M'(d, 2) - 1 \) for all \(d \geq 2 \) ... (line digraphs of complete digraphs are vertex-transitive)
Vertex-transitive case

Upper bounds:

- A digraph is **vertex-transitive** if for every pair of vertices u and v there exists an automorphism of Γ that carries u to v.

- $vt(d, k)$-the largest order of a vertex-transitive digraph of maximum degree d and diameter at most k.

- $vt(d, k) = M'(d, k)$ is attained only in the trivial cases if $d = 1$ or if $k = 1$.

- $vt(d, 2) = M'(d, 2) - 1$ for all $d \geq 2$... (line digraphs of complete digraphs are vertex-transitive)

- There is **no** general upper bound on $vt(d, k)$ **better** than $M'(d, k) - 1$, for $d, k \geq 2$.
Constructions

Faber-Moore-Chen digraphs:
$$v_t(d, k) \geq \frac{(d+1)!}{(d+1-k)!}.$$

Comellas Fiol digraphs: harder to be extracted, the construction depends on an input digraph of order n, degree d, and reachability r and two additional numerical parameters t and l. For two positive integers t and l, the output digraph is a d-regular vertex-transitive digraph of diameter at most $(r+t)l-1$ and order tln.

Gómez digraphs: a new family of large vertex transitive digraphs, giving the bound
$$n(d, k) \geq \frac{(d+\lceil k-1/2 \rceil)!}{(d-\lceil k+1/2 \rceil)!}$$ for $k \geq 3$ and $d \geq \lceil k+1/2 \rceil$.

Mária Ždímalová
Large digraphs of given degree and diameter and their properties
Constructions

Lower bounds:

Faber-Moore-Chen digraphs:
$$vt(d,k) \geq \frac{(d+1)!}{(d+1-k)!}.$$

Comellas Fiol digraphs: harder to be extracted, the construction depends on an input digraph of order \(n\), degree \(d\), and reachability \(r\) and two additional numerical parameters \(t\) and \(l\). For two positive integers \(t\) and \(l\), the output digraph is a \(d\)-regular vertex-transitive digraph of diameter at most \((r+t)l-1\) and order \(tlnl\).

Gómez digraphs: a new family of large vertex transitive digraphs, giving the bound
$$n(d,k) \geq \frac{(d+\lfloor k-1/2\rfloor)!}{(d-\lfloor k+1/2\rfloor)!}$$ for \(k \geq 3\) and \(d \geq \lceil k+1/2 \rceil\).
Constructions

Lower bounds:

- Faber-Moore-Chen digraphs: \(vt(d, k) \geq \frac{(d+1)!}{(d+1-k)!} \).
Constructions

Lower bounds:

- **Faber-Moore-Chen digraphs**: $vt(d, k) \geq \frac{(d+1)!}{(d+1-k)!}$.

- **Comellas Fiol digraphs**: harder to be extracted, the construction depends on an input digraph of order n, degree d, and reachability r and two additional numerical parameters t and l.

- **Gómez digraphs**: a new family of large vertex transitive digraphs, giving the bound $n(d, k) \geq \frac{(d+\lceil k/2 \rceil)!}{(d-\lfloor k+1/2 \rfloor)!}$ for $k \geq 3$ and $d \geq \lceil k+1/2 \rceil$.

Mária Ždímalová

Large Digraphs of Given Degree and Diameter and Their Properties
Constructions

Lower bounds:

- **Faber-Moore-Chen digraphs**: $vt(d, k) \geq \frac{(d+1)!}{(d+1-k)!}$.

- **Comellas Fiol digraphs**: harder to be extracted, the construction depends on an input digraph of order n, degree d, and reachability r and two additional numerical parameters t and l.

 For two positive integers t and l, the output digraph is a d-regular vertex-transitive digraph of diameter at most $(r + t)/l - 1$ and order tln^l.
Constructions

Lower bounds:

- **Faber-Moore-Chen digraphs**: \(vt(d, k) \geq \frac{(d+1)!}{(d+1-k)!} \).

- **Comellas Fiol digraphs**: harder to be extracted, the construction depends on an input digraph of order \(n \), degree \(d \), and reachability \(r \) and two additional numerical parameters \(t \) and \(l \).

 For two positive integers \(t \) and \(l \), the output digraph is a \(d \)-regular vertex-transitive digraph of diameter at most \((r + t)/l - 1\) and order \(tln^l \).

- **Gómez digraphs**: a new family of large vertex transitive digraphs, giving the bound \(n(d, k) \geq (d + \lceil k - 1/2 \rceil)!/(d - \lfloor k + 1/2 \rfloor)! \) for \(k \geq 3 \) and \(d \geq \lceil \frac{k+1}{2} \rceil \).
Faber-Moore-Chen digraphs

For any given $k \geq 2$ and $d \geq k$ their construction gives a family of large vertex-transitive digraphs $\Gamma(d, k)$:

Vertices of $\Gamma(d, k)$ are the different words $x_1x_2...x_k$ of length k, forming a k-permutation of an alphabet A of $d + 1$ letters.

Adjacencies are given by:

\[
\begin{align*}
 x_1x_2...x_k &\rightarrow \begin{cases}
 x_2x_3...x_k, & x_{k+1} \neq x_1, x_2, ..., x_k, \\
 x_2x_3...x_k, & x_{k+1} = x_k, \\
 x_1x_2...x_k, & x_{k+1} = x_1.
 \end{cases}
\end{align*}
\]

Order: $(d+1)^k = (d+1)!/(d-k+1)!$, diameter k, and d-regular.
Faber-Moore-Chen digraphs

Joint work with Ž. Staneková
Faber-Moore-Chen digraphs

- Joint work with Ľ. Staneková
- For any given $k \geq 2$ and $d \geq k$ their construction gives a family of large vertex-transitive digraphs $\Gamma(d, k)$:
Faber-Moore-Chen digraphs

- Joint work with Ľ. Staneková
- For any given $k \geq 2$ and $d \geq k$ their construction gives a family of large vertex-transitive digraphs $\Gamma(d, k)$:
 - Vertices of $\Gamma(d, k)$ are the different words $x_1x_2 \ldots x_k$ of length k, forming a k-permutation of an alphabet A of $d + 1$ letters.
Faber-Moore-Chen digraphs

- Joint work with Ľ. Staneková
- For any given $k \geq 2$ and $d \geq k$ their construction gives a family of large vertex-transitive digraphs $\Gamma(d, k)$:

 - Vertices of $\Gamma(d, k)$ are the different words $x_1x_2\ldots x_k$ of length k, forming a k-permutation of an alphabet A of $d + 1$ letters.
 - Adjacencies are given by:

$$
\begin{align*}
 x_1x_2\ldots x_k \rightarrow & \left\{ \begin{array}{l}
 x_2x_3x_4\ldots x_{k+1}, \quad x_{k+1} \neq x_1, x_2, \ldots, x_k \\
 x_2x_3x_4\ldots x_kx_1 \\
 x_1x_3x_4\ldots x_kx_2 \\
 x_1x_2x_4\ldots x_kx_3 \\
 \ldots \\
 x_1x_2x_3\ldots x_kx_{k-1}
 \end{array} \right.
\end{align*}
$$
Faber-Moore-Chen digraphs

- Joint work with Ž. Staneková
- For any given $k \geq 2$ and $d \geq k$ their construction gives a family of large vertex-transitive digraphs $\Gamma(d, k)$:
 - Vertices of $\Gamma(d, k)$ are the different words $x_1x_2\ldots x_k$ of length k, forming a k-permutation of an alphabet A of $d + 1$ letters.
 - Adjacencies are given by:

\[
x_1x_2\ldots x_k \rightarrow \begin{cases}
 x_2x_3x_4\ldots x_{k+1}, & x_{k+1} \neq x_1, x_2, \ldots, x_k \\
 x_2x_3x_4\ldots x_kx_1 \\
 x_1x_3x_4\ldots x_kx_2 \\
 x_1x_2x_4\ldots x_kx_3 \\
 \ldots \\
 x_1x_2x_3\ldots x_kx_{k-1}
\end{cases}
\]

- Order: $(d + 1)^k = (d + 1)!/(d - k + 1)!$, diameter k, and d-regular.
Theorem

The automorphism group of the Faber-Moore-Chen digraphs is isomorphic to S_{d+1} acting on $V(\Gamma)$ in a natural way, that is, for any $\sigma \in S_{d+1}$, the assignment $x_1 \ldots x_k \mapsto \sigma(x_1)\sigma(x_2)\ldots\sigma(x_k)$ defines an automorphism of Γ.

Theorem

The digraph $\Gamma(d, k)$ is a Cayley digraph if and only if

a) $d = k$

b) $d = k + 1$ and any k,

c) $d = q - 1$, where q is a prime power and $k = 2$,

d) $d = q$, where q is a prime power and $k = 3$,

e) $d = 10$ and $k = 4$,

f) $d = 11$ and $k = 5$.

Mária Ždímalová

Large digraphs of given degree and diameter and their properties
Theorem

The automorphism group of the Faber-Moore-Chen digraphs is isomorphic to S_{d+1} acting on $V(\Gamma)$ in a natural way, that is, for any $\sigma \in S_{d+1}$, the assignment $x_1 \ldots x_k \mapsto \sigma(x_1)\sigma(x_2)\ldots\sigma(x_k)$ defines an automorphism of Γ.

Theorem

The digraph $\Gamma(d, k)$ is a Cayley digraph if and only if

- a) $d = k$
- b) $d = k + 1$ and any k,
- c) $d = q - 1$, where q is a prime power and $k = 2$.
- d) $d = q$, where q is a prime power and $k = 3$,
- e) $d = 10$ and $k = 4$,
- f) $d = 11$ and $k = 5$.

Mária Ždímalová

Large digraphs of given degree and diameter and their propert...
Large Cayley digraphs of given diameter and degree from sharply transitive groups
Large Cayley digraphs of given diameter and degree from sharply transitive groups

Joint work with M. Olejár.
Large Cayley digraphs of given diameter and degree from sharply transitive groups

- Joint work with M. Olejár.
- Explicit constructions of large Cayley digraphs of given (general) out-degree and diameter have not been considered in the literature.
Large Cayley digraphs of given diameter and degree from sharply transitive groups

- Joint work with M. Olejár.
- Explicit constructions of large Cayley digraphs of given (general) out-degree and diameter have not been considered in the literature.
- Exception - Cayley graphs of Abelian groups, Dougherty and Faber, Garcia and Peyrat.
Large Cayley digraphs of given diameter and degree from sharply transitive groups

- Joint work with M. Olejár.
- Explicit constructions of large Cayley digraphs of given (general) out-degree and diameter have not been considered in the literature.
- Exception - Cayley graphs of Abelian groups, Dougherty and Faber, Garcia and Peyrat.
- We characterized those Faber-Moore-Chen digraphs which are Cayley digraphs - with the help of classification of sharply k-transitive groups of a given degree.
Large Cayley digraphs of given diameter and degree from sharply transitive groups

- Joint work with M. Olejár.
- Explicit constructions of large Cayley digraphs of given (general) out-degree and diameter have not been considered in the literature.
- Exception - Cayley graphs of Abelian groups, Dougherty and Faber, Garcia and Peyrat.
- We characterized those Faber-Moore-Chen digraphs which are Cayley digraphs - with the help of classification of sharply k-transitive groups of a given degree.
- We show that the Cayley digraphs arising from the Faber-Moore-Chen construction can be derived directly from the ‘first principles’: just from the definition of sharply k-transitive groups for $k \geq 2$, and not involving any theory of such groups and any prior knowledge of the Faber-Moore-Chen digraphs.
Large Cayley digraphs of given diameter and degree from sharply transitive groups

- Joint work with M. Olejár.
- Explicit constructions of large Cayley digraphs of given (general) out-degree and diameter have not been considered in the literature.
- Exception - Cayley graphs of Abelian groups, Dougherty and Faber, Garcia and Peyrat.
- We characterized those Faber-Moore-Chen digraphs which are Cayley digraphs - with the help of classification of sharply \(k \)-transitive groups of a given degree.
- We show that the Cayley digraphs arising from the Faber-Moore-Chen construction can be derived directly from the ‘first principles’: just from the definition of sharply \(k \)-transitive groups for \(k \geq 2 \), and not involving any theory of such groups and any prior knowledge of the Faber-Moore-Chen digraphs.
Preliminaries

Permutation group: A group of permutations G of a set X. G is transitive if for any $a, b \in X$, there exists $g \in G$, such that $g(a) = b$. G is k-transitive if for any ordered k-tuples (a_1, a_2, \ldots, a_k) and (b_1, b_2, \ldots, b_k) of distinct elements of X there exists some $g \in G$ such that $g(a_i) = b_i$ for all i, $1 \leq i \leq k$. If this element g is unique, then G is sharply k-transitive.
Preliminaries

- Permutation group: A group of permutations G of a set X.

G is transitive if for any $a, b \in X$, there exists $g \in G$, such that $g(a) = b$.

G is k-transitive if for any ordered k-tuples (a_1, a_2, \ldots, a_k) and (b_1, b_2, \ldots, b_k) of distinct elements of X there exists some $g \in G$ such that $g(a_i) = b_i$ for all i, $1 \leq i \leq k$.

If this element g is unique, then G is sharply k-transitive.
Preliminaries

- Permutation group: A group of permutations G of a set X.
- G is transitive if for any $a, b \in X$, there exists $g \in G$, such that $g(a) = b$.
- G is k-transitive if for any ordered k-tuples (a_1, a_2, \ldots, a_k) and (b_1, b_2, \ldots, b_k) of distinct elements of X, there exists some $g \in G$ such that $g(a_i) = b_i$ for all i, $1 \leq i \leq k$.
- If this element g is unique, then G is sharply k-transitive.
Preliminaries

- Permutation group: A group of permutations G of a set X.
- G is transitive if for any $a, b \in X$, there exists $g \in G$, such that $g(a) = b$.
- G is k-transitive if for any ordered k-tuples (a_1, a_2, \ldots, a_k) and (b_1, b_2, \ldots, b_k) of distinct elements of X there exists some $g \in G$ such that $g(a_i) = b_i$ for all i, $1 \leq i \leq k$.
Preliminaries

- Permutation group: A group of permutations G of a set X.

- G is transitive if for any $a, b \in X$, there exists $g \in G$, such that $g(a) = b$.

- G is k-transitive if for any ordered k-tuples (a_1, a_2, \ldots, a_k) and (b_1, b_2, \ldots, b_k) of distinct elements of X there exists some $g \in G$ such that $g(a_i) = b_i$ for all i, $1 \leq i \leq k$.

- If this element g is unique, then G is sharply k-transitive.
Examples of such Cayley digraphs can be obtained from examples of sharply k-transitive groups, which is especially handy in the cases $k = 2$ and $k = 3$.

Proposition 1
Let G be a sharply 2-transitive permutation group on a finite set S with $|S| \geq 2$, so that $|G| = |S|(|S| - 1)$. Then, there exists a Cayley digraph Γ_1 of the group G of degree $|S| - 1$ and diameter 2.

Proposition 2
Let G be a sharply 3-transitive permutation group on a finite set S with $|S| \geq 3$, so that $|G| = |S|(|S| - 1)(|S| - 2)$. Then, there exists a Cayley digraph Γ_2 of the group G of degree $|S| - 1$ and diameter 3.
Examples of such Cayley digraphs can be obtained from examples of sharply k-transitive groups, which is especially handy in the cases $k = 2$ and $k = 3$.

Proposition 1 Let G be a sharply 2-transitive permutation group on a finite set S with $|S| \geq 2$, so that $|G| = |S|(|S| - 1)$. Then, there exists a Cayley digraph Γ_1 of the group G of degree $|S| - 1$ and diameter 2.
Examples of such Cayley digraphs can be obtained from examples of sharply \(k \)-transitive groups, which is especially handy in the cases \(k = 2 \) and \(k = 3 \).

Proposition 1 Let \(G \) be a sharply 2-transitive permutation group on a finite set \(S \) with \(|S| \geq 2 \), so that \(|G| = |S|(|S| - 1) \). Then, there exists a Cayley digraph \(\Gamma_1 \) of the group \(G \) of degree \(|S| - 1 \) and diameter 2.

Proposition 2 Let \(G \) be a sharply 3-transitive permutation group on a finite set \(S \) with \(|S| \geq 3 \), so that \(|G| = |S|(|S| - 1)(|S| - 2) \). Then, there exists a Cayley digraph \(\Gamma_2 \) of the group \(G \) of degree \(|S| - 1 \) and diameter 3.
For diameter 2 the only 2-sharply transitive groups are the groups of linear transformations $\{x \mapsto ax + b : a, b \in F, a \neq 0\}$ of a finite nearfield F of order $q = p^m$, where p is a prime.
For diameter 2 the only 2-sharply transitive groups are the groups of linear transformations \(\{x \mapsto ax + b : a, b \in F, a \neq 0\} \) of a finite nearfield \(F \) of order \(q = p^m \), where \(p \) is a prime.

By a Theorem of Zassenhaus, there are two infinite families of sharply 3-transitive groups: \(PGL_2(q) \), where \(q = p^m \) and \(M(q) \), where \(q = 2^m \) if \(m \) is even.
For diameter 2 the only 2-sharply transitive groups are the groups of linear transformations \(\{ x \mapsto ax + b : a, b \in F, a \neq 0 \} \) of a finite nearfield \(F \) of order \(q = p^m \), where \(p \) is a prime.

By a Theorem of Zassenhaus, there are two infinite families of sharply 3-transitive groups: \(PGL_2(q) \), where \(q = p^m \) and \(M(q) \), where \(q = 2^m \) if \(m \) is even.

Similar results can also be proved for \(k = 4 \) and \(k = 5 \) with careful choices of generating sets.
For diameter 2 the only 2-sharply transitive groups are the groups of linear transformations \(\{ x \mapsto ax + b : a, b \in F, a \neq 0 \} \) of a finite nearfield \(F \) of order \(q = p^m \), where \(p \) is a prime.

By a Theorem of Zassenhaus, there are two infinite families of sharply 3-transitive groups: \(PGL_2(q) \), where \(q = p^m \) and \(M(q) \), where \(q = 2^m \) if \(m \) is even.

Similar results can also be proved for \(k = 4 \) and \(k = 5 \) with careful choices of generating sets.

There are just two sharply \(k \)-transitive groups: the Mathieu group \(M_{11} \) for \(k = 4 \) and the Mathieu group \(M_{12} \) for \(k = 5 \).
For diameter 2 the only 2-sharply transitive groups are the groups of linear transformations \(\{ x \mapsto ax + b : a, b \in F, a \neq 0 \} \) of a finite nearfield \(F \) of order \(q = p^m \), where \(p \) is a prime.

By a Theorem of Zassenhaus, there are two infinite families of sharply 3-transitive groups: \(PGL_2(q) \), where \(q = p^m \) and \(M(q) \), where \(q = 2^m \) if \(m \) is even.

Similar results can also be proved for \(k = 4 \) and \(k = 5 \) with careful choices of generating sets.

There are just two sharply \(k \)-transitive groups: the Mathieu group \(M_{11} \) for \(k = 4 \) and the Mathieu group \(M_{12} \) for \(k = 5 \).
Digraphs: from Proposition 1 - Γ_1, from Proposition 2 - Γ_2
Digraphs: from Proposition 1 - \(\Gamma_1 \), from Proposition 2 - \(\Gamma_2 \)

\(\Gamma(d, 2) \)-FMCH digraphs for diameter 2

\(\Gamma(d, 3) \)-FMCH digraphs for diameter 3
Digraphs: from Proposition 1 - Γ_1, from Proposition 2 - Γ_2

$\Gamma(d,2)$-FMCH digraphs for diameter 2
$\Gamma(d,3)$-FMCH digraphs for diameter 3

Theorem

*The digraph Γ_1 is isomorphic to the digraph $\Gamma(d,2)$, and the digraph Γ_2 is isomorphic to the digraph $\Gamma(d,3)$.***
Construction of Comellas and Fiol

Introduction

Construction of Comellas and Fiol

Let \(l, t \) be positive integers.

Vertices of \(\text{CF}(\Gamma, l, t) \) are \((j | p_0 \ldots p_{l-1})\) with \(j \in \mathbb{Z}_{lt} \) and \(p_i \in V = \mathbb{Z}_n \).

Adjacencies are given by:

\[
(j | p_0 \ldots p_{j-1}u \ p_{j+1} \ldots p_{l-1}) \rightarrow (j+1 | p_0 \ldots p_{j-1}v \ p_{j+1} \ldots p_{l-1}),
\]

where \((u, v) \in A\).

Order: \(tl \) and diameter at most \((r + t) - 1\).
Construction of Comellas and Fiol

- joint work with Ľ. Staneková
Construction of Comellas and Fiol

- joint work with Ľ. Staneková
- \(\Gamma \) - an input \(r \)-reachable digraph of out-degree \(d \), with vertex set \(V \) and arc set \(A \).
Construction of Comellas and Fiol

- joint work with Ž. Staneková
- Γ - an input r-reachable digraph of out-degree d, with vertex set V and arc set A.
- Let l, t be positive integers.

Large digraphs of given degree and diameter and their properties
Construction of Comellas and Fiol

- joint work with Ľ. Staneková
- Γ - an input r-reachable digraph of out-degree d, with vertex set V and arc set A.
- Let l, t be positive integers.
- Vertices of $CF(\Gamma, l, t)$ are $(j | p_0 p_1 \ldots p_{l-1})$ with $j \in \mathbb{Z}_{lt}$ and $p_i \in V = \mathbb{Z}_n$.

\[\text{Adjacencies are given by:} \]
\[(j | p_0 p_1 \ldots p_{j-1} u p_{j+1} \ldots p_{l-1}) \rightarrow (j+1 | p_0 p_1 \ldots p_{j-1} v p_{j+1} \ldots p_{l-1}) , \]
where $(u, v) \in A$.

\[\text{Order: } tl \text{ and diameter at most } l(r + t) - 1. \]
Construction of Comellas and Fiol

- joint work with Ž. Staneková
- Γ - an input r-reachable digraph of out-degree d, with vertex set V and arc set A.
- Let l, t be positive integers.
- Vertices of $CF(\Gamma, l, t)$ are $(j|p_0p_1 \ldots p_{l-1})$ with $j \in \mathbb{Z}_{lt}$ and $p_i \in V = \mathbb{Z}_n$.
- Adjacencies are given by:

 $$(j|p_0 \ldots p_{j-1} u p_{j+1} \ldots p_{l-1}) \rightarrow (j + 1|p_0 \ldots p_{j-1} v p_{j+1} \ldots p_{l-1}),$$

 where $(u, v) \in A$
Construction of Comellas and Fiol

- joint work with Ž. Staneková
- Γ - an input r-reachable digraph of out-degree d, with vertex set V and arc set A.
- Let l, t be positive integers.
- Vertices of $CF(\Gamma, l, t)$ are $(j|p_0p_1 \ldots p_{l-1})$ with $j \in \mathbb{Z}_{lt}$ and $p_i \in V = \mathbb{Z}_n$.
- Adjacencies are given by:

 $$(j|p_0 \ldots p_{j-1} u p_{j+1} \ldots p_{l-1}) \rightarrow (j+1|p_0 \ldots p_{j-1} v p_{j+1} \ldots p_{l-1}),$$

 where $(u, v) \in A$

- Order: tl^n and diameter at most $l(r + t) - 1$.
We determined the **full group of automorphism** of these digraphs for wide class of input digraphs.
We determined the full group of automorphism of these digraphs for wide class of input digraphs.

natural automorphisms:
We determined the full group of automorphism of these digraphs for wide class of input digraphs.

natural automorphisms: if

\[(g_0, \ldots, g_{l-1}; s) \in [\text{Aut}(\Gamma)]^l \times \mathbb{Z}_l\]

\[\alpha(j|p_0, \ldots, p_{l-1}) = (j - s|g_0(p_s) \ldots g_{l-1}(p_{s+l-1}))\]
We determined the full group of automorphism of these digraphs for wide class of input digraphs.

natural automorphisms: if

\[(g_0, \ldots, g_{l-1}; s) \in [\text{Aut}(\Gamma)]^l \times \mathbb{Z}_l\]

\[\alpha(j|p_0, \ldots, p_{l-1}) = (j - s|g_0(p_s) \ldots g_{l-1}(p_{s+l-1}))\]

an alternating walk from \(u\) to \(v\) in \(\Gamma\) is a walk that contains no directed sub-walk of length two.
We determined the **full group of automorphism** of these digraphs for wide class of input digraphs.

natural automorphisms: if

\[(g_0, \ldots, g_{l-1}; s) \in [\text{Aut}(\Gamma)]^l \rtimes \mathbb{Z}_l \]

\[\alpha(j|p_0, \ldots, p_{l-1}) = (j - s|g_0(p_s) \ldots g_{l-1}(p_{s+l-1}))\]

an **alternating walk** from \(u\) to \(v\) in \(\Gamma\) is a walk that contains no directed sub-walk of length two.

digraph \(\Gamma\) is **\(r\)-alternately reachable** if there is a number \(r\) such that for every pair of vertices \(u\) and \(v\) there exist two alternating walks from \(u\) to \(v\) such that
We determined the full group of automorphism of these digraphs for wide class of input digraphs.

natural automorphisms: if

\[(g_0, \ldots, g_{l-1}; s) \in [\text{Aut}(\Gamma)]^l \times \mathbb{Z}_{lt}\]

\[\alpha(j|p_0, \ldots, p_{l-1}) = (j - s|g_0(p_s) \cdots g_{l-1}(p_{s+l-1}))\]

an alternating walk from \(u\) to \(v\) in \(\Gamma\) is a walk that contains no directed sub-walk of length two.

digraph \(\Gamma\) is \(r\)-alternately reachable if there is a number \(r\) such that for every pair of vertices \(u\) and \(v\) there exist two alternating walks from \(u\) to \(v\) such that

- the first begins with an arc from \(u\)
We determined the **full group of automorphism** of these digraphs for wide class of input digraphs.

natural automorphisms: if

\[(g_0, \ldots, g_{l-1}; s) \in [\text{Aut}(\Gamma)]^l \times \mathbb{Z}_l\]

\[\alpha(j|p_0, \ldots, p_{l-1}) = (j - s|g_0(p_s) \ldots g_{l-1}(p_{s+l-1}))\]

- an **alternating walk** from \(u\) to \(v\) in \(\Gamma\) is a walk that contains no directed sub-walk of length two.
- digraph \(\Gamma\) is **\(r\)-alternately reachable** if there is a number \(r\) such that for every pair of vertices \(u\) and \(v\) there exist two alternating walks from \(u\) to \(v\) such that
 - the first begins with an arc from \(u\)
 - the second begins with an arc terminating at \(u\).
We determined the full group of automorphism of these digraphs for wide class of input digraphs.

natural automorphisms: if

\[(g_0, \ldots, g_{l-1}; s) \in [\text{Aut}(\Gamma)]^l \times \mathbb{Z}_{lt}\]

\[\alpha(j|p_0, \ldots, p_{l-1}) = (j - s|g_0(p_s) \cdots g_{l-1}(p_{s+l-1}))\]

an alternating walk from \(u\) to \(v\) in \(\Gamma\) is a walk that contains no directed sub-walk of length two.

digraph \(\Gamma\) is \(r\)-alternately reachable if there is a number \(r\) such that for every pair of vertices \(u\) and \(v\) there exist two alternating walks from \(u\) to \(v\) such that

- the first begins with an arc from \(u\)
- the second begins with an arc terminating at \(u\).

\(r'\)-alternately reachable \(\Rightarrow\) \(r\)-alternately reachable for \(\forall r \geq r'\)
We determined the full group of automorphism of these digraphs for wide class of input digraphs.

natural automorphisms: if

\[(g_0, \ldots, g_{l-1}; s) \in [\text{Aut}(\Gamma)]^l \times \mathbb{Z}_l\]

\[\alpha(j|p_0, \ldots, p_{l-1}) = (j - s|g_0(p_s) \ldots g_{l-1}(p_{s+l-1}))\]

an alternating walk from \(u\) to \(v\) in \(\Gamma\) is a walk that contains no directed sub-walk of length two.

digraph \(\Gamma\) is \(r\)-alternately reachable if there is a number \(r\) such that for every pair of vertices \(u\) and \(v\) there exist two alternating walks from \(u\) to \(v\) such that

- the first begins with an arc from \(u\)
- the second begins with an arc terminating at \(u\).

\(r'\)-alternately reachable \(\Rightarrow\) \(r\)-alternately reachable for \(\forall r \geq r'\)
Introduction

Results
Theorem

If the input digraph Γ is r, $r + 1$, $r + 2$-alternately reachable and vertex-transitive, then the order of the automorphism group of the Comellas-Fiol digraph $CF(\Gamma, l, 1)$ is $|\text{Aut}(CF(\Gamma, l, 1))| = l.|\text{Aut}(\Gamma)|^l$. Consequently, $\text{Aut}(CF(\Gamma, l, 1)) \cong [\text{Aut}(\Gamma)]^l \rtimes \mathbb{Z}_l$.
We have determined the full automorphism group of Comellas-Fiol digraphs, when $t = 1$ and the input digraphs are \{r, r + 1, r + 2\}-alternately reachable.
We have determined the full automorphism group of Comellas-Fiol digraphs, when \(t = 1 \) and the input digraphs are \(\{r, r + 1, r + 2\} \)-alternately reachable.

Question: the automorphism group of the output digraph under weaker restrictions on the input digraphs, or for \(t \geq 2 \).
We have determined the full automorphism group of Comellas-Fiol digraphs, when $t = 1$ and the input digraphs are $\{r, r + 1, r + 2\}$-alternately reachable.

Question: the automorphism group of the output digraph under weaker restrictions on the input digraphs, or for $t \geq 2$.

Computer experiments: the automorphism group H of the output digraph may be bigger than the group from our main result: $|H| > lt|G|'$.
We have determined the full automorphism group of Comellas-Fiol digraphs, when \(t = 1 \) and the input digraphs are \(\{r, r + 1, r + 2\} \)-alternately reachable.

Question: the automorphism group of the output digraph under weaker restrictions on the input digraphs, or for \(t \geq 2 \).

Computer experiments: the automorphism group \(H \) of the output digraph may be bigger than the group from our main result: \(|H| > lt|G| \).

Example: Consider the digraph \(\Gamma_1 \) with the vertex set \(V(\Gamma_1) = \mathbb{Z}_6 \) and the dart set \((i, i + 1), (i, i + 2), i \in \mathbb{Z}_6\). Let the automorphism group of the digraph \(\Gamma_1 \) and corresponding output digraph \(CF(\Gamma_1, l, 2) \) for the parameters \(l = t = 2 \) be \(G_1 \) and \(H_1 \), respectively. With the help of a computer we have \(|G_1| = 6 \) and \(|H_1| = 576 > 2.2|G_1|^2 = 144 \).
Conclusion
Conclusion

- Faber-Moore-Chen digraphs: The full automorphism group of the digraphs.
Conclusion

- Faber-Moore-Chen digraphs: The full automorphism group of the digraphs.
- Comellas-Fiol digraphs: Automorphism group of the digraphs for special input parameters.
Conclusion

- Faber-Moore-Chen digraphs: The full automorphism group of the digraphs.
- Comellas-Fiol digraphs: Automorphism group of the digraphs for special input parameters.
- Open problem: Automorphism group of Gómez’s digraphs.
Thank you for your attention.