
Introduction

Large digraphs of given degree and diameter
and their properties
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Motivation: design of interconnection networks

Degree-diameter problem for graphs and digraphs: determination of
the largest number n(d , k) of vertices in a graph (digraph) of a given
maximum degree d and diameter k

Restricted classes of graphs and digraphs: vertex-transitive, Cayley,
bipartite graphs (digraphs), graphs (digraphs) embaddable in a fixed
surface...
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Directed case

Upper bounds:

Directed Moore bound M ′(d , k):

n(d , k) ≤ 1 + d + d2 + . . .+ dk = M ′(d , k)

Moore digraphs: d = 1 ......Ck+1, k ≥ 1;

k = 1.....Kd+1 for d ≥ 1.
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Vertex-transitive case

Upper bounds:

A digraph is vertex-transitive if for every pair of vertices u and v there
exists an automorphism of Γ that carries u to v .

vt(d , k)-the largest order of a vertex-transitive digraph of maximum
degree d and diameter at most k.

vt(d , k) = M ′(d , k) is attained only in the trivial cases if d = 1 or if
k = 1.

vt(d , 2) = M ′(d , 2)− 1 for all d ≥ 2... (line digraphs of complete
digraphs are vertex-transitive)

There is no general upper bound on vt(d , k) better than
M ′(d , k)− 1, for d , k ≥ 2.
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Introduction

Constructions

Lower bounds:

Faber-Moore-Chen digraphs: vt(d , k) ≥ (d+1)!
(d+1−k)! .

Comellas Fiol digraphs: harder to be extracted, the construction
depends on an input digraph of order n, degree d , and reachability r
and two additional numerical parameters t and l .

For two positive integers t and l , the output digraph is a d-regular
vertex-transitive digraph of diameter at most (r + t)l − 1 and order
tlnl .

Gómez digraphs: a new family of large vertex transitive digraphs,
giving the bound n(d , k) ≥ (d + [k − 1/2])!/(d − [k + 1/2])! for
k ≥ 3 and d ≥ dk+1

2 e.
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Introduction

Faber-Moore-Chen digraphs

Joint work with Ľ. Staneková

For any given k ≥ 2 and d ≥ k their construction gives a family of
large vertex-transitive digraphs Γ(d , k):

Vertices of Γ(d , k) are the different words x1x2 . . . xk of length k ,
forming a k-permutation of an alphabet A of d + 1 letters.

Adjacencies are given by:

x1x2 . . . xk →



x2x3x4 . . . xk+1, xk+1 6= x1, x2, . . . , xk
x2x3x4 . . . xkx1
x1x3x4 . . . xkx2
x1x2x4 . . . xkx3
. . .
x1x2x3 . . . xkxk−1

Order: (d + 1)k = (d + 1)!/(d − k + 1)!, diameter k, and d-regular.
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Mária Žd́ımalová Large digraphs of given degree and diameter and their properties



Introduction

Faber-Moore-Chen digraphs

Joint work with Ľ. Staneková
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Mária Žd́ımalová Large digraphs of given degree and diameter and their properties



Introduction

Faber-Moore-Chen digraphs

Joint work with Ľ. Staneková

For any given k ≥ 2 and d ≥ k their construction gives a family of
large vertex-transitive digraphs Γ(d , k):

Vertices of Γ(d , k) are the different words x1x2 . . . xk of length k ,
forming a k-permutation of an alphabet A of d + 1 letters.

Adjacencies are given by:

x1x2 . . . xk →



x2x3x4 . . . xk+1, xk+1 6= x1, x2, . . . , xk
x2x3x4 . . . xkx1
x1x3x4 . . . xkx2
x1x2x4 . . . xkx3
. . .
x1x2x3 . . . xkxk−1

Order: (d + 1)k = (d + 1)!/(d − k + 1)!, diameter k, and d-regular.
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Theorem

The automorphism group of the Faber-Moore-Chen digraphs is isomorphic
to Sd+1 acting on V (Γ) in a natural way, that is, for any σ ∈ Sd+1, the
assignment x1 . . . xk 7→ σ(x1)σ(x2) . . . σ(xk) defines an automorphism of Γ.

Theorem

The digraph Γ(d , k) is a Cayley digraph if and only if

a) d = k

b) d = k + 1 and any k,

c) d = q − 1, where q is a prime power and k = 2.

d) d = q, where q is a prime power and k = 3,

e) d = 10 and k = 4,

f) d = 11 and k = 5.
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Large Cayley digraphs of given diameter and degree from
sharply transitive groups

Joint work with M. Olejár.

Explicit constructions of large Cayley digraphs of given (general)
out-degree and diameter have not been considered in the literature.

Exception - Cayley graphs of Abelian groups, Dougherty and Faber,
Garcia and Peyrat.

We characterized those Faber-Moore-Chen digraphs which are Cayley
digraphs - with the help of classification of sharply k-transitive groups
of a given degree.

We show that the Cayley digraphs arising from the Faber-Moore-Chen
construction can be derived directly from the ‘first principles’: just
from the definition of sharply k-transitive groups for k ≥ 2, and not
involving any theory of such groups and any prior knowledge of the
Faber-Moore-Chen digraphs.
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Preliminaries

Permutation group: A group of permutations G of a set X .

G is transitive if for any a, b ∈ X , there exists g ∈ G , such that
g(a) = b.

G is k-transitive if for any ordered k-tuples (a1, a2, . . . , ak) and
(b1, b2, . . . , bk) of distinct elemnets of X there exists some g ∈ G
such that g(ai ) = bi for all i , 1 ≤ i ≤ k .

If this element g is unique, then G is sharply k-transitive.
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Examples of such Cayley digraphs can be obtained from examples of
sharply k-transitive groups, which is especially handy in the cases k = 2
and k = 3.

Proposition 1 Let G be a sharply 2-transitive permutation group on a
finite set S with |S | ≥ 2, so that |G | = |S |(|S | − 1). Then, there exists a
Cayley digraph Γ1 of the group G of degree |S | − 1 and diameter 2.

Proposition 2 Let G be a sharply 3-transitive permutation group on a
finite set S with |S | ≥ 3, so that |G | = |S |(|S | − 1)(|S | − 2). Then, there
exists a Cayley digraph Γ2 of the group G of degree |S | − 1 and diameter 3.
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Introduction

For diameter 2 the only 2-sharply transitive groups are the groups of
linear transformations {x −→ ax + b : a, b ∈ F , a 6= 0} of a finite
nearfield F of order q = pm, where p is a prime.

By a Theorem of Zassenhaus, there are two infinite families of sharply
3-transitive groups: PGL2(q), where q = pm and M(q), where
q = 2m if m is even.

Similar results can also be proved for k = 4 and k = 5 with careful
choices of generating sets.

There are just two sharply k-transitive groups: the Mathieu group
M11 for k = 4 and the Mathieu group M12 for k = 5.
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Mária Žd́ımalová Large digraphs of given degree and diameter and their properties



Introduction

For diameter 2 the only 2-sharply transitive groups are the groups of
linear transformations {x −→ ax + b : a, b ∈ F , a 6= 0} of a finite
nearfield F of order q = pm, where p is a prime.

By a Theorem of Zassenhaus, there are two infinite families of sharply
3-transitive groups: PGL2(q), where q = pm and M(q), where
q = 2m if m is even.

Similar results can also be proved for k = 4 and k = 5 with careful
choices of generating sets.

There are just two sharply k-transitive groups: the Mathieu group
M11 for k = 4 and the Mathieu group M12 for k = 5.
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Digraphs: from Proposition 1 - Γ1, from Proposition 2 - Γ2

Γ(d , 2)-FMCH digraphs for diameter 2
Γ(d , 3)-FMCH digraphs for diameter 3

Theorem

The digraph Γ1 is isomorphic to the digraph Γ(d , 2), and the digraph Γ2 is
isomorphic to the digraph Γ(d , 3).
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Construction of Comellas and Fiol

joint work with Ľ. Staneková

Γ - an input r -reachable digraph of out-degree d , with vertex set V
and arc set A.

Let l , t be positive integers.

Vertices of CF (Γ, l , t) are (j |p0p1 . . . pl−1) with j ∈ Zlt and
pi ∈ V = Zn.

Adjacencies are given by:

(j |p0 . . . pj−1 u pj+1 . . . pl−1)→ (j + 1|p0 . . . pj−1 v pj+1 . . . pl−1),

where (u, v) ∈ A

Order: tlnl and diameter at most l(r + t)− 1.
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Mária Žd́ımalová Large digraphs of given degree and diameter and their properties



Introduction

Construction of Comellas and Fiol

joint work with Ľ. Staneková
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Γ - an input r -reachable digraph of out-degree d , with vertex set V
and arc set A.

Let l , t be positive integers.

Vertices of CF (Γ, l , t) are (j |p0p1 . . . pl−1) with j ∈ Zlt and
pi ∈ V = Zn.

Adjacencies are given by:

(j |p0 . . . pj−1 u pj+1 . . . pl−1)→ (j + 1|p0 . . . pj−1 v pj+1 . . . pl−1),

where (u, v) ∈ A

Order: tlnl and diameter at most l(r + t)− 1.
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We determined the full group of automorphism of these digraphs for
wide class of input digraphs.

natural automorphisms:if

(g0, . . . , gl−1; s) ∈ [Aut(Γ)]l o Zlt

α(j |p0, . . . , pl−1) = (j − s|g0(ps) . . . gl−1(ps+l−1))

an alternating walk from u to v in Γ is a walk that contains no
directed sub-walk of length two.

digraph Γ is r -alternately reachable if there is a number r such that
for every pair of vertices u and v there exist two alternating walks
from u to v such that

the first begins with an arc from u
the second begins with an arc terminating at u.

r ′-alternately reachable ⇒ r -alternately reachable for ∀r ≥ r ′
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Introduction

Results

Theorem

If the input digraph Γ is r , r + 1, r + 2-alternately reachable and
vertex-transitive, then the order of the automorphism group of the
Comellas-Fiol digraph CF (Γ, l , 1) is |Aut(CF (Γ, l , 1))| = l .|Aut(Γ)|l .
Consequently, Aut(CF (Γ, l , 1)) ∼= [Aut(Γ)]l o Zl .
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Introduction

We have determined the full automorphism group of Comellas-Fiol
digraphs, when t = 1 and the input digraphs are
{r , r + 1, r + 2}-alternately reachable.

Question: the automorphism group of the output digraph under
weaker restrictions on the input digrahs, or for t ≥ 2.

Computer experiments: the automorphism group H of the output
digraph may be bigger than the group from our main result:
|H| > lt|G |l .

Example: Consider the digraph Γ1 with the vertex set V (Γ1) = Z6

and the dart set (i , i + 1), (i , i + 2), i ∈ Z6. Let the automorphism
group of the digraph Γ1 and corresponding output digraph
CF (Γ1, l , 2) for the parameters l = t = 2 be G1 and H1, respectively.
With the help of a computer we have |G1| = 6 and
|H1| = 576 > 2.2.|G1|2 = 144.
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Example: Consider the digraph Γ1 with the vertex set V (Γ1) = Z6

and the dart set (i , i + 1), (i , i + 2), i ∈ Z6. Let the automorphism
group of the digraph Γ1 and corresponding output digraph
CF (Γ1, l , 2) for the parameters l = t = 2 be G1 and H1, respectively.
With the help of a computer we have |G1| = 6 and
|H1| = 576 > 2.2.|G1|2 = 144.
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Conclusion

Faber-Moore-Chen digraphs: The full automorphism group of the
digraphs.

Comellas-Fiol digraphs: Automorphism group of the digraphs for
special input parameters.

Open problem: Automorphism group of Gómez’s digraphs.
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Mária Žd́ımalová Large digraphs of given degree and diameter and their properties



Introduction

Conclusion

Faber-Moore-Chen digraphs: The full automorphism group of the
digraphs.

Comellas-Fiol digraphs: Automorphism group of the digraphs for
special input parameters.

Open problem: Automorphism group of Gómez’s digraphs.
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Thank you for your attention.
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